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Abstract: This article presents a distributed iterative learning impedance control algorithm for a team of robot
manipulators with varying trial lengths. This approach enables each manipulator to achieve the desired impedance
model only using the impedance information of its neighbors, eliminating the need for direct access to the desired joint
angle profiles. Furthermore, the proposed scheme addresses the challenge of randomly varying operation lengths across
iterations. This capability is particularly important for ensuring the robustness of practical industrial systems, where trial
durations vary due to dynamic task requirements. It is demonstrated that the impedance error L2-norm of each manipulator
converges to zero as the iteration index approaches infinity even under variable-length operations. Finally, experimental
validation using collaborative robot manipulators confirms the effectiveness, adaptability, and practicality of the proposed
method.
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1. Introduction
Iterative Learning Control (ILC) was developed to enable machinery to improve performance through human-

inspired, cycle-based learning from repeated tasks. As an innovative control method for repetitive industrial processes
with fixed operation intervals and consistent learning objectives [1–3], ILC leverages past control experiences to enhance
current system performance. It requires only knowledge of the boundary of the system gradient rather than an exact
system model, offering an efficient solution to handle uncertainties. In recent years, robot manipulators have become an
important application area for ILC.

In practical operations, due to the limitations of a single manipulator’s load capacity and working range, multiple
manipulators often need to collaborate, such as when transporting large objects on construction sites in manufacturing
factories. Similarly, for paralyzed patients, using multiple manipulators to simultaneously train both arms and legs
can more effectively help them learn to coordinate different parts of their body. This is generally achieved through
the implementation of cooperative impedance control techniques [4–10]. Despite significant progress in impedance
control and ILC, most existing studies rely on centralized architectures that assume full access to joint angle trajectories.
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However, in practical multi-robot systems, such assumptions are often unrealistic due to communication constraints,
partial observability, or decentralized task execution. For instance, when a group of manipulators collaboratively lifts
a heavy object, only one manipulator may know the destination, and the others need to coordinate through interactions
with their neighbors. For such cases, a distributed impedance control framework is more practical, as it allows each
manipulator to coordinate using only local information and relative configurations with its neighbors.

Building upon the principles of impedance control, recent studies have strategically integrated Iterative Learning
Control (ILC) into robotic and Multi-Agent Systems (MASs) to enhance performance in dynamic tasks. In [11], an
iterative learning framework achieves finite-time consensus for second-order leader-follower MASs, ensuring precise
coordination under time-critical constraints. Extending these principles, [12] proposes an adaptive neural-Fourier ILC
scheme that enables robust consensus and formation control for nonlinearMASs, effectively suppressing control chattering
under disturbances through hybrid approximation strategies. Further addressing cybersecurity challenges in networked
environments, [13] develops a dual-domain triggered ILC architecture for switched systems under Denial-of-Service
(DoS) attacks, combining real-time attack detection, buffer compensation, and Lyapunov-based stability guarantees to
maintain bounded tracking errors while minimizing network traffic. Together, these advancements demonstrate how the
synergistic integration of impedance control and ILC fosters adaptability, precision, and resilience in multi-robot systems
operating within dynamic, uncertain, and adversarial environments.

In robot-assisted applications, a combined impedance control and sliding mode ILC approach was developed to
manage unknown model parameters and human-robot interaction disturbances in bathing tasks [14], while a gravity
compensation ILC scheme with steady-state scaling was proposed for trajectory tracking in arthroscopic surgery under
dynamic uncertainties [15]. Moreover, [16] proposed a formation-based decentralized Iterative Learning Cooperative
Impedance Control (ILCIC) architecture to enable manipulators to achieve desired impedance models under iteration-
varying tasks, even without direct access to desired angle trajectories. Collectively, these studies highlight the
effectiveness of ILC and impedance control in addressing learning and control challenges in dynamic and uncertain
collaborative environments.

ILC inherently requires a constant operation length per iteration to achieve convergent learning of control/system
information. Yet real-world uncertainties frequently disrupt this condition. In bipedal robot applications, for instance, gaits
consist of temporally variable phases, inherently conflicting with the constant-duration assumption [17]. Another example
is seen in the analysis of laboratory-scale gantry cranes, where ILC is applied to trajectory tracking tasks, but iterations
terminate prematurely when the output exceeds specified boundaries, leading to variable trial lengths [18]. Furthermore,
in studies on Functional Electrical Stimulation (FES) for drop foot treatment, trials may need to be stopped early for
safety reasons, resulting in variable trial durations [19]. These real-world examples highlight the need to address the
issue of variable trial lengths in the design and analysis of ILC. By introducing control algorithms that accommodate
variable-length operations, the applicability of ILC in dynamic and complex environments can be significantly expanded.

In recent years, several ILC methods have been developed to handle the issue of varying trial lengths. Li et al.
[20–22] introduced a stochastic model based on Bernoulli variable distributions and iterative averaging operators to
address information loss caused by prematurely terminated trials. Shen et al. [23, 24] later proposed an analytical method
independent of averaging operators, demonstrating the strong convergence of p-type ILC under variable operation lengths.
Furthermore, [25] proposed an ILC scheme for stochastic time-varying systems with variable pass lengths, ensuring
bounded tracking errors through a modified iteration-average operator. Recent advances extend these results to nonlinear
systems, such as adaptive control for Multiple-Input Multiple-Output (MIMO) nonlinear systems achieving rapid error
convergence under nonuniform trial lengths [26], segmented compensation methods for discrete time-varying systems
with varying initial conditions [27], and learning schemes with forgetting factors for impulsive nonlinear systems, ensuring
convergence and robustness [28]. These studies collectively provide robust tools to address the challenge of variable trial
lengths.

However, the aforementioned works primarily focus on systems represented by mathematical models and investigate
only centralized methods. To date, Distributed Iterative Learning Impedance Control (DILIC) for multi-manipulator
systems operating with varying-length trials remains unexplored. This gap directly motivates our work. Our core
contributions are:
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(i) Distributed Framework for Varying-Trial-Length Impedance Control: Compared to centralized variable-trial-
length ILC methods (e.g., [21, 24]), this work proposes a global-trajectory-free distributed architecture, significantly
reducing communication load and resolving partial observability bottlenecks in practical collaboration.

(ii) Adaptive Learning Mechanism for Physical Uncertainties: Unlike model-dependent strategies (e.g., [26, 28]),
our approach compensates for unmodeled dynamics (e.g., joint friction) through online adaptive learning, substantially
enhancing adaptability in dynamic environments.

(iii) Hardware Validation of Engineering Feasibility: Addressing the limitation of existing studies remaining
simulation-only (e.g., [20, 25]), we implement hardware validation of varying-trial-length ILC on a multi-manipulator
platform, successfully handling real-world disturbances (e.g., emergency stops) and bridging the theory-to-practice gap
in distributed learning control.

This work unfolds through six cohesive sections: Section II establishes the graph-theoretic foundation and formalizes
the impedance control problem. Building on this, Section III develops the ILCIC architecture through controller
synthesis and adaptive learning mechanisms. The subsequent Section IV rigorously proves the convergence theorem via
Lyapunov analysis, followed by robustness characterization. Experimental validation on a multi-robot testbed in Section
V demonstrates practical efficacy, culminating in Section VI with concluding insights and open challenges.

2. Preliminaries and problem statement
2.1 Graph theory

Consider a cooperative multi-agent system represented by an undirected graph G = (V , E ), where V = {1, . . . , n}
denotes robotic agents and E ⊆ V ×V defines bidirectional communication links. Two agents i, j ∈ V establish mutual
interactions through edge (i, j) ∈ E , with Ni = { j ∈ V | ( j, i) ∈ E } representing the neighbor set of agent i.

The network’s structural characteristics are encoded through three core matrices: The adjacency matrix A = [ai j] ∈
{0, 1}n×n with ai j = 1 iff (i, j) ∈ E (excluding self-loops via aii = 0). The degree matrix D = diag(d1, . . . , dn) where
di = ∑ j∈Ni ai j measures nodal connectivity. The Laplacian matrix L = D−A ∈ Rn×n [29], whose spectral properties
(particularly the second smallest eigenvalue λ2) dictate consensus convergence rates. This matrix fundamentally captures
graph connectivity through its null space dimension.

To address trajectory tracking requirements, we introduce a leader-follower hierarchy via the diagonal indicator
matrix Ld = diag(l1, . . . , ln), where li = 1 identifies leaders with direct reference trajectory access and li = 0 designates
followers dependent on local interactions. The scalar projection operation for vector v onto direction u is defined as

proju(v) = ∥v∥cosθ =
v⊤u
∥u∥

[30], measuring directional alignment. The Kronecker product A⊗B [30] constructs block

matrices for multi-agent state stacking, enabling compact representation of networked dynamics.

2.2 Problem statement

Consider N robotic manipulators with n-DOF kinematics, where each agent i ∈ {1, . . . , N} follows the iteration-
varying dynamics:

Mi(qk
i (t))q̈

k
i (t)+Ci(qk

i (t), q̇k
i (t))q̇

k
i (t)+Gi(qk

i (t)) = τk
i (t)− τk

e, i(t)+dk
i (t) (1)

with k ∈ Z+ indexing iterations over t ∈ [0, T ] (T > 0). The joint configuration qk
i (t) = [qk

1, i(t), . . . , qk
n, i(t)]

⊤ ∈ Rn

aggregates angular positions of n joints, whose velocities q̇k
i (t) and accelerations q̈k

i (t) complete the kinematic description.
The symmetric positive-definite inertia matrix Mi(·) ∈ Sn

++ [31], Coriolis matrix Ci(·, ·) ∈ Rn×n, and gravity vector
Gi(·) ∈ Rn characterize system dynamics, driven by control input τk

i (t) ∈ Rn and perturbed by bounded disturbance
∥dk

i (t)∥ ≤ d̄i. Environmental interaction forces propagate through the Jacobian mapping [31] τk
e, i(t) = J⊤(qk

i (t))d
k
e, i(t),
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where dk
e, i(t) ∈ Rm denotes task-space forces and J(qk

i (t)) ∈ Rm×n the configuration-dependent Jacobian matrix [31]
(representing the Jacobian mapping at qk

i (t)).
The following properties and assumptions are necessary in the control of mechanical arms.
P1. For each agent i ∈ {1, . . . , N} and iteration k ∈ Z+:
(i) Mi(q

t, k
i ) ∈ Sn

++ for all t ∈ [0, T ], implying M−1
i (·) ∈ Sn

++;
(ii) ∃λi, Mi > 0 unknown such that ∀x ∈ Rn:

λi∥x∥2 ≤ x⊤M−1
i (·)x ≤ Mi∥x∥2;

(iii) ∥M−1
i (·)∥ ≤ Mi with ∥ · ∥ denoting induced matrix norm.

P2. The nonlinear dynamics admit linear parameterization:

Ci(·)q̇k
i (t)+Gi(·) = Ψi(qk

i (t), q̇k
i (t))ϑi,

where the regressor matrix Ψi : Rn×Rn →Rn×q is known, and ϑi ∈Rq contains unknown parameters with ∥ϑi∥ ≤ ϑ i for
some ϑ i > 0.

A1. The communication graph G contains a directed spanning tree, with at least one leader agent having access to
the reference trajectory qd(t).

A2. For each agent i ∈ V and iteration k ∈ N:

∥dk
i (t)∥L∞[0, T ] ≤ di, ∃di > 0 unknown.

A3. All agents satisfy trajectory-aligned initial conditions:

qk
i (0) :=

[
qk

i (0)
⊤ q̇k

i (0)
⊤
]⊤

= qi, d(0), ∀i ∈ V ,

where qi, d :=
[
q⊤i, d q̇⊤i, d

]⊤
denotes the desired state vector.

A4. The trial length Tk is a random variable with compact support T ≜ [Tmin, T ] (T > Tmin > 0), whose Cumulative
Distribution Function (CDF) satisfies:

FTk(t)≜ P(Tk < t) =


0, t ≤ Tmin

p(t), Tmin < t ≤ T

1, t > T

, (2)

where the unknown continuous function p : T → [0, 1] characterizes duration randomness. This model ensures non-
degeneracy (Tk ≥ Tmin almost surely via FTk(Tmin) = 0) while maintaining design invariance.

Remark 1 Under Assumption 1, Ω = L+Ld will be a symmetric and positive definite matrix. If Assumption 1 does
not hold, there may exist disconnected subsets in the network, and these subsets cannot access the required joint angle
information, making cooperative fault-tolerant control infeasible.
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Remark 2 In practice, bounded uncertainties within many applications of mechanical manipulators are frequently
encountered, including friction, faults, and bias signals.

In the current work, the impedance control problem is characterized by the dynamic coupling between desired
trajectories, relative configurations, and interaction forces. The target impedance model in joint space is formalized
as:

Mk
d(t)ë

k
i (t)+Ck

d(t)ė
k
i (t)+Kk

d(t)e
k
i (t)+ τk

e, i(t) = 0, (3)

where the time-varying symmetric positive-definite matrix triplet (Mk
d(t), Ck

d(t), Kk
d(t)) ∈ (Sn

++)
3 governs the desired

dynamic response: Mk
d(t) specifies the inertia characteristics with Mk

d(t) ≻ 0, Ck
d(t) enforces energy dissipation through

its symmetric structure Ck
d(t) =Ck

d(t)
⊤ ≻ 0, and Kk

d(t)≻ 0 determines positional stiffness.
The tracking error vector ek

i (t) ≜ qk
i (t)− qd, i(t) quantifies the instantaneous deviation between the measured joint

configuration qk
i (t) and its desired trajectory qd, i(t).

The tracking error dynamics are governed by:

ek
i (t)≜ qk

i (t)−qk
d(t)− εk

i, d(t),

where qk
d(t) ∈ Rn denotes the desired joint trajectory and εk

i, d(t) ∈ Rn specifies the relative position reference. The inter-
agent coordination requirement manifests through the relative configuration constraint:

εk
i, j(t)≜ εk

i, d(t)− εk
j, d(t), ∀ j ∈ Ni,

where Ni represents the neighbor set of agent i. The accessibility condition lk
i (t) = 0 indicates agent i lacks direct

knowledge of qk
d(t) or εk

i, d(t), necessitating distributed estimation through Ni.
To compactly formulate the impedance control objective, we introduce the composite error metric between the

physical system and a virtual impedance model:

wk(t)≜ Mk
d(t)ë

k
i (t)+Ck

d(t)ė
k
i (t)+Kk

d(t)e
k
i (t)+ τk

e, i(t) (4)

The Iterative Learning Control (ILC) design aims to construct an update law that ensures:

lim
k→∞

∥wk(t)∥L∞[0, T ] = 0 ∀t ∈ T ≜ [0, T ], k ∈ Z+, (5)

where T denotes the fixed operation interval and Z+ the iteration domain.
To facilitate convergence analysis, define the augmented impedance error:

w̄k(t)≜ Kk
f (t)w

k(t) = ëk(t)+Kk
d(t)ė

k(t)+Kk
p(t)e

k(t)+Kk
f (t)τ

k
e (t). (6)

with the gain matrices parameterized through:
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Kk
d(t)≜

(
Mk

d(t)
)−1

Ck
d(t),

Kk
p(t)≜

(
Mk

d(t)
)−1

Kk
d(t),

Kk
f (t)≜

(
Mk

d(t)
)−1

.

(7)

Remark 3 The non-singularity condition det(Mk
d(t)) ̸= 0 holds throughout the operation, ensuring well-posed

impedance parameter selection. Subsequent analysis will establish constructive criteria for choosing Mk
d(t), Ck

d(t), and
Kk

d(t).
Through the decomposition with positive-definite matrices Λk(t), Γk(t)≻ 0 satisfying:

Λk(t)+Γk(t) = Kk
d(t), (8)

Λ̇k(t)+Γk(t)Λk(t) = Kk
p(t), (9)

the augmented error admits the equivalent realization:

w̄k(t) = ëk(t)+Kk
d(t)ė

k(t)+Kk
p(t)e

k(t)+Kk
f (t)τ

k
e (t) (10)

where the auxiliary variable τk
l (t) evolves according to:

Kk
f (t)τ

k
e (t) = τ̇k

l (t)+Γk(t)τk
l (t). (11)

To streamline the convergence analysis, define the composite state variable γk
i (t) integrating error dynamics and

auxiliary interactions:

γk
i (t)≜ ėk

i (t)+Λk(t)ek
i (t)+ τk

l, i(t), (12)

where Λk(t)≻ 0 is the time-varying coupling gain matrix. Substitution into the augmented error dynamics yields:

w̄k
i (t) = γ̇k

i (t)+Γk(t)γk
i (t), (13)

with Γk(t)≻ 0 being the damping gain matrix. This reformulation reduces the control objective to achieving asymptotic
convergence:
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lim
k→∞

∥γk
i (t)∥L2(T ) = 0, ∀t ∈ T , i ∈ {1, . . . , N}, (14)

where T ≜ [0, T ] denotes the operation interval. The L2-convergence guarantees exact impedance tracking across all
manipulators in the cooperative network as iterations progress.

To streamline the convergence analysis, we invoke the following auxiliary result established in control literature [32]:
Lemma 1 For constants q > 0, l ≥ 2 with (q, l) ∈ R+×Z≥2, define the decaying sequence

∆k ≜ qk−l , k ∈ Z+.

The partial sum sequence {Sk}∞
k=1 with Sk = ∑k

i=1 ∆i satisfies:

limsup
k→∞

Sk ≤ 2q.

3. Control scheme design
This section details the core components of the proposed distributed adaptive Iterative Learning Impedance Control

(ILCIC) framework. The controller design aims to achieve two primary objectives: (1) enforce the desired impedance
behavior among neighboring manipulators and with the reference trajectory using only local information exchange, and
(2) actively compensate for unmodeled dynamics and disturbances through an online adaptive mechanism. The key
innovation lies in integrating these capabilities within a distributed learning framework that accommodates varying trial
lengths.

Define the neighborhood impedance error δ k
i (t) for agent i ∈ {1, . . . , N} as:

δ k
i = ∑

j∈Ni

ai j

[
(τk

l, i−τk
l, j)+(q̇k

i −q̇k
j−ε̇k

i j)+Λk(qk
i −qk

j−εk
i j)
]
+ lk

i

[
τk

l, i +(q̇k
i −q̇k

d−ε̇k
id)+Λk(qk

i −qk
0−εk

id)
]

(15)

The ILCIC law is activated post-operation at Tk, with the following control law valid over [0, Tk]:

τk
i (t) =−δ k

i (t)α̂k
i (t)τ̄k

i (t)+ τk
e, i(t), t ≤ Tk, (16)

where the adaptive term τ̄k
i (t) incorporates:

τ̄k
i = Pδ k

i +Λkq̇k
i + Λ̇kqk

i + τ̇k
l, i + θ̂ k

i (δ k
i )

⊤Ψk
i + σ̂ k

i (δ k
i )

⊤+ κ̂k
i Ξk

[
lk
i +(1− lk

i )(δ k
i )

⊤
]

(17)

with the regression matrix and parameter vector structured as:
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Ξk ≜
[
In In Λk Λk Λ̇k Λ̇k

]
∈ Rn×6n,

κk
i ≜

[
q̈k⊤

d ε̈k⊤
id ; q̇k⊤

d ε̇k⊤
id ; qk⊤

d εk⊤
id

]⊤
∈ R6n

(18)

The symmetric positive-definite gain matrix P ∈ Sn
++ ensures stability, while κk

i (t) is accessible only if lk
i (t) = 1.

To guarantee robustness and boundedness of the learned parameters (α̂k
i , θ̂ k

i , σ̂ k
i , κ̂k

i ) despite uncertainties and
disturbances, a parameter projection operator is employed. For a parameter vector ϕϕϕ = [ϕ1, . . . , ϕm]

⊤ with known bounds
ϕ ∗

i > 0, the projection is defined component-wise using a saturation function:

P(ϕϕϕ)≜

 sgn(ϕ1)min(|ϕ1|, ϕ ∗
1 )

...
sgn(ϕm)min(|ϕm|, ϕ ∗

m)

 .

where the scalar projection operation sgn(x)min(|x|, a)≜ sgn(x)min(|x|, a). The symmetric positive-definite gain matrix
P ∈ Sn

++ ensures stability, while κk
i (t) is accessible only if lk

i (t) = 1.

4. Main results
Theorem 1 For the manipulator system satisfying Assumptions 1-4 under the proposed distributed control law, the

composite error vector

γγγk(t) =
[
γk

1(t)
⊤, . . . , γk

N(t)
⊤
]⊤

∈ RNn

achieves zero-error convergence in the L2[0, T ]-norm sense:

lim
k→∞

∥∥∥γγγk(t)
∥∥∥

L2[0, T ]
= 0, ∀t ∈ [0, T ],

where the norm is defined over the fixed operation interval [0, T ].
Proof. The stability analysis employs a Composite Energy Function (CEF) synthesizing impedance errors and

parameter estimation dynamics:

Ek(t)≜ 1
2

(
γγγk(t)

)⊤
(Ω⊗ In)γγγk(t)+V k

r (t), (19)

where ⊗ denotes Kronecker product. The regularization term V k
r (t) quantifies parameter estimation errors:
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V k
r (t)≜

N

∑
i=1

Sr

2η

∫ t

0

∥∥∥X̃ k
i (ζ )

∥∥∥2
dζ ,

Sr =


λi, r = 1

1, r ∈ {2, 3}
1− lk

i (ζ ), r = 4

(20)

with parameter estimation error X̃ k
i (t)≜ X̂ k

i (t)−Xi relating estimates X̂ k
i (t) to true parameters Xi.

The proof establishes:
(i) Boundedness: Ek(t) remains bounded ∀t ∈ T , k ∈ Z+ via Lyapunov analysis;
(ii) Convergence: limk→∞ ∥γγγk(t)∥L2(T ) = 0 through iterative energy decay.
The first-order difference of the CEF is:

∆Ek ≜ Ek −Ek−1 =
1
2

γγγk⊤(Ω⊗ In)γγγk − 1
2

γγγk−1⊤(Ω⊗ In)γγγk−1 +∆V k
r (21)

For t ≤ Tk, the energy difference decomposes as:

1
2

γγγk⊤(Ω⊗ In)γγγk − 1
2

γγγk−1⊤(Ω⊗ In)γγγk−1 (22)

=
1
2

γγγk(0)⊤(Ω⊗ In)γγγk(0)+
∫ t

0
γγγk⊤(ζ )(Ω⊗ In)γ̇γγk(ζ )dζ − 1

2
γγγk−1⊤(Ω⊗ In)γγγk−1

This decomposition breaks down the energy change at the k-th iteration into three parts: (1) the filtering error energy
at the initial time of the k-th iteration (i.e., at t = 0); (2) the integral term of the energy ‘flow’ generated by the interaction
between the filtering error vector γγγk and its own rate of change γ̇γγk over the entire time interval [0, t]; (3) the energy
subtracted by the (k−1)-th iteration (as a reference).

Substituting the error dynamics γ̇k
i (t) = ëk

i (t)+Λk(t)ėk
i (t)+ Λ̇k(t)ek

i (t)+ τ̇k
l, i(t) into the integral term yields:

∫ t

0
γγγk(ζ )⊤(Ω⊗ In)γ̇γγk(ζ )dζ =

N

∑
i=1

∫ t

0
(δ k

i (ζ ))⊤Dk
i (ζ )dζ (23)

where Dk
i (t)≜ ëk

i (t)+Λk(t)ėk
i (t)+ Λ̇k(t)ek

i (t)+ τ̇k
l, i(t).

Expanding ëk
i (t) via system dynamics:

ëk
i =−

(
Mk

i
)−1Ψiϑi +

(
Mk

i
)−1

(
τk

i − τk
e, i +dk

i

)
(24)

For each integrand term, bounded via control law and system properties:
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∫ t

0
γγγk(ζ )⊤(Ω⊗ In)γ̇γγk(ζ )dζ ≤

∫ t

0

N

∑
i=1

[
∥δ k

i (ζ )∥∥Ψk
i (ζ )∥θi +∥

(
Mk

i (ζ )
)−1∥∥dk

i (ζ )∥

+(δ k
i (ζ ))⊤

(
Λk(ζ )q̇k

i (ζ )+ Λ̇k(ζ )qk
i (ζ )+ τ̇k

l, i(ζ )
)]

dζ

(25)

Grouping terms with parameter estimation errors α̃k
i (t)≜ α̂k

i (t)−αi, etc.:

∫ t

0
γγγk(ζ )⊤(Ω⊗ In)γ̇γγk(ζ )dζ <

∫ t

0

N

∑
i=1

[
θi∥δ k

i ∥∥Ψk
i ∥+σ f , i∥δ k

i ∥+(1− lk
i )∥δ k

i ∥∥Ξk∥κk
i

−δ k⊤
i

(
λiα̃k

i τ̄k
i + τ̄k

i −Λkq̇k
i − Λ̇kqk

i − τ̇k
l, i
)]

dζ

(26)

Final compact form via energy dissipation analysis:

∫ t

0
γγγk(ζ )⊤(Ω⊗ In)γ̇γγk(ζ )dζ <

∫ t

0

N

∑
i=1

[
−δ k⊤

i (ζ )
(

λiα̃k
i (ζ )τ̄k

i (ζ )+Kδ k
i (ζ )

)

−∥δ k
i (ζ )∥

(
σ̃i + θ̃i∥Ψk

i (ζ )∥+(1− lk
i (ζ ))κ̃i∥Ξk(ζ )∥

)]
dζ

(27)

The integral analysis reveals that bounded parameter variations induce monotonic Composite Energy Function (CEF)
decay. Specifically, the parameter update bounds are quantified as follows:

For the inertia-related parameter error α̃k
i (t)≜ α̂k

i (t)−αi, its energy increment satisfies:

∆V k
1 (t)≜

N

∑
i=1

S1

2η

∫ t

0

[(
α̃k

i (ζ )
)2

−
(

α̃k−1
i (ζ )

)2
]

dζ

≤
N

∑
i=1

S1

∫ t

0
α̃k

i (ζ )
(

δ k
i (ζ )

)⊤
τ̄k

i (ζ )dζ ,

(28)

where the projection operator P(·) ensures parameter boundedness. Subsequent parametric bounds are established for:
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∆V k
2 (t)≤

N

∑
i=1

∫ t

0

∥∥∥θ̃ k
i (ζ )

∥∥∥∥∥∥δ k
i (ζ )

∥∥∥∥∥∥Ψk
i (ζ )

∥∥∥dζ , (29)

∆V k
3 (t)≤

N

∑
i=1

∫ t

0

∥∥∥σ̃ k
i (ζ )

∥∥∥∥∥∥δ k
i (ζ )

∥∥∥dζ , (30)

∆V k
4 (t)≤

N

∑
i=1

∫ t

0
S4

∥∥∥κ̃k
i (ζ )

∥∥∥∥∥∥δ k
i (ζ )

∥∥∥∥∥∥Ξk(ζ )
∥∥∥dζ , (31)

with S4 ≜ 1− lk
i (ζ ) following previous definitions.

Physically, this means that the energy fluctuation introduced by the adaptive learning process (due to parameter
estimation inaccuracies) is effectively transformed into an energy dissipation pathway that suppresses the filtering tracking
error δ k

i . The projection operator P(·) plays a key role here, ensuring the boundedness of parameter estimates, thereby
providing the foundation for this energy cancellation relationship.

These bounded variations collectively guarantee:

4

∑
r=1

∆V k
r (t)≤−

N

∑
i=1

∫ t

0

(
δ k

i (ζ )
)⊤

Kδ k
i (ζ )dζ < 0, (32)

enforcing strict energy dissipation ∆Ek(t)< 0 throughout the iterative learning process.
When Tk < t ≤ T , the energy difference satisfies:

1
2

γγγk(t)⊤(Ω⊗ In)γγγk(t)− 1
2

γγγk−1(t)⊤(Ω⊗ In)γγγk−1(t)

<
∫ Tk

0

N

∑
i=1

[
−δ k⊤

i (ζ )
(

S1α̃k
i (ζ )τ̄k

i (ζ )+Kδ k
i (ζ )

)
−∥δ k

i (ζ )∥
(

σ̃i∥δ k
i (ζ )∥+ θ̃i∥Ψk

i (ζ )∥+S4κ̃k
i (ζ )∥Ξk(ζ )∥

)]
dζ

(33)

The bounded variations of auxiliary functions are quantified through parameter-specific bounds: For inertia
estimation error α̃k

i (t),

∆V k
1 (t)≤

N

∑
i=1

S1

∫ Tk

0
α̃k

i (ζ )(δ k
i (ζ ))⊤τ̄k

i (ζ )dζ ; (34)

Coriolis parameter error θ̃ k
i (t) satisfies

∆V k
2 (t)≤

N

∑
i=1

∫ Tk

0
∥θ̃ k

i (ζ )∥∥δ k
i (ζ )∥∥Ψk

i (ζ )∥dζ ; (35)

and disturbance estimation error σ̃ k
i (t) obeys
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∆V k
3 (t)≤

N

∑
i=1

∫ Tk

0
∥σ̃ k

i (ζ )∥∥δ k
i (ζ )∥dζ . (36)

With S4 ≜ 1− lk
i (ζ ), the collective boundedness

4

∑
r=1

∆V k
r (t)≤−

N

∑
i=1

∫ Tk

0
(δ k

i (ζ ))⊤Kδ k
i (ζ )dζ < 0, (37)

establishes strict energy dissipation ∆Ek(t)< 0 throughout the extended temporal domain.
The residual term ∆V k

4 (t) involving κ̃k
i (t) satisfies:

∆V k
4 (t)≤

N

∑
i=1

∫ Tk

0
(1− lk

i (ζ ))∥κ̃k
i (ζ )∥∥δ k

i (ζ )∥∥Ξk(ζ )∥dζ . (38)

Aggregating all auxiliary function bounds:

∆Ek(t)<
N

∑
i=1

∫ Tk

0
−
(

δ k
i (ζ )

)⊤
Pδ k

i (ζ )dζ < 0. (39)

For general t ∈ T , the energy difference satisfies:

∆Ek(t)≤
N

∑
i=1

∫ Tk∧t

0
−
(

δ k
i (ζ )

)⊤
Pδ k

i (ζ )dζ , (40)

where Tk ∧ t ≜ min{Tk, t}, ensuring Ek(t) is monotonically decreasing in k.
The energy evolution satisfies:

Ek(t)< E1(t)+
k

∑
h=2

N

∑
i=1

∫ t

0
−
(

δ h
i (ζ )

)⊤
Pδ h

i (ζ )dζ . (41)

Initial energy boundedness is established via:

Ė1(t)<
N

∑
i=1

[
−∥δ 1

i ∥
(

σ̃i + θ̃i∥Ψ1
i ∥+(1− l1

i )κ̃1
i ∥Ξ1∥

)
−S1α̃1

i δ 1⊤
i τ̄1

i +
1

2η

(
S1(α̃1

i )
2 +(θ̃ 1

i )
2 +(σ̃1

i )
2 +(1− l1

i )(κ̃1
i )

2
)]

<
N

∑
i=1

1
2η

(
S1α2

i +θ 2
i +σ2

i +κ2
i

)
< ∞

(42)
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From the boundedness of E1(t) over T ≜ [0, T ], the composite energy satisfies:

0 < E1(t)+ lim
k→∞

k

∑
h=2

N

∑
i=1

∫ t

0
−
(

δ h
i (ζ )

)⊤
Pδ h

i (ζ )dζ . (43)

The L2-convergence of consensus errors follows:

lim
k→∞

N

∑
i=1

∫ t

0

(
δ k

i (ζ )
)⊤

Pδ k
i (ζ )dζ = 0. (44)

The critical relationship between error vectors:

δδδ k(t)≜ (Ω⊗ In)γγγk(t), (45)

yields the spectral bound:

0 ≤ λmin(Ω) lim
k→∞

∫
T

(
γγγk(ζ )

)⊤
γγγk(ζ )dζ

≤ lim
k→∞

∫
T

(
γγγk(ζ )

)⊤
(Ω⊗ In)γγγk(ζ )dζ

= 0.

(46)

This establishes the L2-convergence:

lim
k→∞

∫
T

(
γγγk(ζ )

)⊤
γγγk(ζ )dζ = 0, (47)

guaranteeing asymptotic impedance tracking with accumulated error energy dissipating over iterations.
Remark 4 The composite energy function Ek(t) serves as a Lyapunov-like function that encapsulates both the system

performance and parameter estimation accuracy. The term
1
2
(
γγγk(t)

)⊤
(Ω⊗ In)γγγk(t) represents the system impedance

energy, while V k
r (t) accounts for the cumulative impact of parameter estimation errors. Together, these terms provide a

holistic measure of the system’s state during the iterative learning process.
The above proof demonstrates thatEk(t) is iteratively bounded andmonotonic decreasing, simultaneously converging

both impedance and parameter estimation errors. Consequently, the control strategy achieves guaranteed stability and
efficacy.
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5. Experiment results
In this section, an experiment has been completed based on a team of 2-DOF collaborative robot manipulators

(see Figure 1) from Institute of Intelligent Manufacturing, Nanjing Tech University. This type of collaborative robot
manipulators have been widely used for intelligent manufacturing production lines in factories. The communication
network of the multiple robot manipulators is illustrated in Figure 2. In this experiment, manipulator 1 communicates
directly with the desired trajectory node represented by 0, while manipulator 2 receives information only frommanipulator
1.

The dynamic model of each manipulator (i = 1, 2) includes the inertia matrix Mi(qk
i (t)) ∈ R2×2, the centripetal?

Coriolis matrix Ci(qk
i (t), q̇k

i (t)) ∈ R2×2, and the gravity vector Gi(qk
i (t)) ∈ R2, are defined as

Mi =

mil2
ci +mil2

i + Ii +2mililci cosqk
2i(t) mil2

ci + Ii +mililci cosqk
2i(t)

mil2
ci + Ii +mililci cosqk

2i(t) mil2
ci + Ii



Ci =

−mililciq̇k
2i(t)sinqk

2i(t) −mililci
(
q̇k

1i(t)+ q̇k
2i(t)

)
sinqk

2i(t)

mililciq̇k
1i(t)sinqk

2i(t) 0



Gi =

(milci +mili)gcosqk
1i(t)+milcigcos

(
qk

1i(t)+qk
2i(t)

)
milcigcos

(
qk

1i(t)+qk
2i(t)

)


The physical parameters of the manipulators are mi = 1 kg and li = 1 m. The center of mass distances and moments
of inertia are lci = 0.5 m and Ii = 0.5 kg-m2.

The system uncertainties, desired impedance model, joint angle trajectory, and control parameters are defined as
follows. The external disturbances affecting the manipulators are modeled as:

dk
i (t) =

[
0.1sin(4πt)
0.2cos(5πt)

]
Nm, (i = 1, 2).

The desired impedance model parameters are given by: Mk
d = I2, Ck

d = (15.4+0.1/k) I2, Kk
d = (6+1.5/k) I2, where

I2 ∈ R2×2 is the identity matrix.
The desired joint angle trajectory for the manipulators is specified as:

q0(t) =

[
0.27+0.27sin(0.5πt)
0.27+0.27cos(0.5πt)

]
rad,

with the ideal relative configurations between the manipulators defined as δ10 =

[
0.1
0.1

]
rad and δ20 =

[
0.2
0.2

]
rad. The

interaction forces for the two manipulators are modeled as:
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τk
e,i(t) =

[
2.5sin(0.5πt)
2.5sin(0.5πt)

]
Nm, i = 1, 2.

The learning rate is configured as η = 0.1 with a nominal operational duration of T = 12 s, while the effective
execution period Tk varies stochastically across 50 iterations to emulate real-world uncertainties. To quantify the
convergence order, we analyze the decay rate of the mean tracking error in Figure 3 and 4. The error reduces to below
5% of its initial value within 10 iterations, and the ratio of successive errors ∥γk+1∥/∥γk∥ stabilizes around 0.85 after
iteration 15. This satisfies the linear convergence criterion ∥γk+1∥ ≤ ρ∥γk∥ with ρ < 1, confirming linear convergence as
anticipated by Theorem 4. Further, Figures 5 and 6 reveal the transient evolution of composite errors γk

1(t) and γk
2(t) at

sampled iterations (1st, 3rd, 5th, 10th, and 50th), explicitly quantifying the impact of non-uniform trial lengths on system
performance. The maximum amplitude of γk

i (t) decreases by approximately 82% from iteration 1 to 50, consistent with
the linear convergence rate ρ ≈ 0.85 observed in Figure 3-4.

The control inputs for both manipulators at the 50th iteration (Figures 7 and 8) validate the proposed strategy, with
actuator signals demonstrating L2-norm regularization as k → ∞. The L2-norm reduction ratio between iterations 40-50
averages 0.87, reaffirming the linear convergence order. This empirical evidence aligns with the theoretical convergence
guarantees in Theorem 4, confirming the robustness of the method against stochastic operational durations.

Figure 1. Type of robot manipulator with two joints

Figure 2. Robot manipulator team communication topology G
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Figure 3. Convergence of the average impedance error ∥γ1(t)∥

Figure 4. Convergence of the average impedance error ∥γ2(t)∥

Figure 5. Profiles of ∥γ1(t)∥ over time at sampled iterations
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Figure 6. Profiles of ∥γ2(t)∥ over time at sampled iterations

Figure 7. Torque profile ∥τ1, 50(t)∥ at the 50th iteration

Figure 8. Torque profile ∥τ2, 50(t)∥ at the 50th iteration
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6. Conclusion
This work presents a distributed iterative learning cooperative impedance control framework for collaborative robot

manipulators with varying trial lengths. Under the proposed scheme, each manipulator can achieve the desired impedance
model using only local neighborhood information, while without requiring direct access to the desired joint angle profiles.
This work addresses the challenge of randomly varying operation lengths across iterations, and the proposed method
ensures robust performance in dynamic and uncertain environments. Rigorous theoretical analysis proves that the
impedance error L2-norm converges to zero as iterations increase, and experiment results demonstrate the effectiveness
and adaptability of the method. In the future, the proposed distributed iterative learning cooperative control strategy
will be applied to other fields of collaborative control including unmanned aerial vehicle swarms and unmanned surface
vessels.
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