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Abstract: In this study numerical solutions for the compressible fluid flow around obstacles, based on a meshless method
with Radial Basis Functions (RBFs) are presented. The numerical solutions are obtained by a hybrid method that uses
the first step of the boundary element method, namely a singular boundary integral equation, which is an equivalent
mathematical model for the problem of the compressible fluid around an obstacle, and then a meshless method based
on RBFs for solving this singular boundary integral equation. Two types of RBFs are used, namely the Multiquadric
RBFs and Gauss-type RBFs. An analytical check is made in order to study the numerical solutions’ accuracy. Using
computer simulations, we compare our results with an analytical solution available for a specific case. We examine
how different parameters used to obtain the numerical solutions affect their accuracy, and we compare these numerical
solutions to determine which RBF is most suitable for this scenario. We also note that the shape parameters of RBFs have
a great influence on numerical solutions accuracy and, through simulations, optimal values are found. For evaluating
the integrals of singular kernels which appear, the truncation method is applied. The influence of the parameter used to
evaluate these integrals is also highlighted in the paper.

Keywords: singular boundary integral equation, optimal values, shape parameter, radial basis functions, Cauchy Principal
Value (CPV)
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1. Introduction
Finding numerical solutions of great accuracy for the mathematical models associated to different real life boundary

value problems is a very challenging problem and different techniques were developed to reach this goal. Finding efficient
numerical computer codes, in order to obtain these numerical solutions, is another challenge in the way of solving these
problems. In order to reach these goals, in this paper we solve the problem of the compressible fluid flow around obstacles
by a new, hybrid method which combines the first step in applying the Boundary Element Method (BEM) with a meshless
method developed by using different types of Radial Basis Functions (RBFs). The current approach benefits both from
the advantages brought by the application of the BEM method in solving problems of compressible fluid flow, and from
those of using meshless methods. The accuracy of numerical solutions obtained with meshless methods based on RBFs is
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influenced a lot by the parameters the RBFs depend on. In this paper, through simulations, optimal values for these shape
parameters are deduced, values which improve numerical solutions’ accuracy.

Compressible fluid flows arise in many practical applications form aerospace and aeronautical engineering, automo-
tive engineering, flows through compressors and turbines, in many environmental and meteorological applications, wind
turbines, medical applications as respiratory airflowmodeling in high frequency ventilations andmany others, everywhere
where the compressibility of the fluid, of the air for example, is extremely important.

Many authors have been studied compressible fluid flows around obstacles, and were focused on finding better and
better numerical solutions for this problem. Different techniques have been applied to solve such problems: the Finite
Element Method (FEM) [1], the Finite Difference Method (FDM) [2], BEM [3] and others. In many papers dealing with
fluid flows, the velocity potential or the stream function are considered to be the unknowns of the problem. In [4], BEM
is applied, in order to solve the problem of compressible flows around obstacles, a problem modelled through a system
of partial differential equations with a nonlinear boundary condition, starting with the primary variables of the problem,
namely the components of the perturbation velocity. There, the Singular Boundary Integral Equations Deduced (SBIEs)
are numerically solved by a collocation method. In [5–7] different types of higher order boundary elements (as quadratic
and cubic) are used to find numerical solutions for the mentioned SBIEs. In these approaches, by using isoparametric
boundary elements, the unknown of the problem and also the boundary are approximated locally by models that follow a
quadratic, respectively a cubic variation law which have local a quadratic, respectively a cubic approximation model.

When applying BEM, as described in many papers, as for example [3, 8], two important steps need to be done. The
first step consists in finding an equivalent mathematical model for the problem to be solved, a model which represents
a boundary integral formulation, usually a singular one, which incorporates the boundary conditions. During the second
step the boundary is discretized and local approximations models for problem’s unknown are introduced, so using different
types of boundary elements numerical solutions for the integral equation are found.

In the herein work, a new numerical model is developed for the mentioned problem. Starting with the Singular
Boundary Integral Equation (SBIE) with sources distribution, obtained in [4] by an indirect BEM, and solving it, with a
meshless method which uses RBFs for the unknown approximation, its numerical solution is found.

From the family of RBFs, we choose two types of infinitely smooth RBFs: theMultiquadric RBFs (MQRBFs, simply
MQ) and the Gaussian RBFs (GA). Comparisons between different numerical solutions are made in order to find which
type of RBFs offers better results. In [9] the GA were used to solve the same problem, but for the boundary discretization,
boundary elements of linear type were utilised, so the boundary of the obstacle is there approximated by a closed polygonal
line.

In approximation problems RBFs have proven to be effective tools. They are very often used for handling large scatter
data [10], for finding solutions of PDEs [11, 12], and for integral equations [13], in computational fluid dynamics [14], and
for compressible viscous flow in axisymmetric tubes [15], for approximating surfaces, in nonlinear approximations, in
computational physics [16], in neural networks, the analysis of patterns and objects recognition and other applications on
computers, and in many other approximations applications [17, 18], even in artificial intelligence applications, in machine
learning algorithms. Together with, for example, eigenfunctions expansions, they are usually used in case of “meshless
methods”. These methods represent a family of approximations methods that approximate the unknowns by a set of basis
functions, rather than discretizing the involved domain.

A function with real values, whose expression depends on two factors: the distance from the argument to a center,
which is a fixed point, and a control parameter, named shape parameter, represents a radial basis function. This shape
parameter can be modified in order to change the appearance and implicitly the behavior of the function. When using
RBFs for solving an approximation problem, any function from the space of the unknown functions is represented as a
linear combination of a set of linear independent RBFs, considered the base of that space. In this paper there are considered
two infinitely smooth BRFs, namely the Gaussian RBFS (GA), and the Multiquadric RBFS (MQ).

We investigate in this paper, through simulations, how the shape parameters and the type of RBFs influence numerical
solutions accuracy by considering the numerical solutions obtained through the present approach and comparing themwith
an exact one, known for a certain particular case. The shape parameter significantly affects the accuracy of the numerical
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solution and so the problem of finding optimal values for this parameter is of great importance. The shape parameter has
a major impact on the accuracy of the numerical solution.

Different methods for finding optimal values for shape parameters were proposed in many studies, but they were
mainly used for functions interpolation, as for example trial and error, or Rippa’s algorithm based on the idea of cross
validation [19]. Some formulas for finding such optimal values were also proposed by certain authors, as for example
Hardy [20] and others.

Finding optimal values for the shape parameter in case of solving partial differential equations or integral ones by
using RBFs is an even more challenging task. Many papers study the influence of these parameters and most optimal
values for the shape parameters are found by numerical experiments. In [21] an extension of Rippa’s Leave-One-Out
Cross Validation (LOOCV) algorithm is applied for partial differential equations. Another extension of the cross validation
algorithm is proposed in [22]. In [23] different methods that should lead to a better conditioning of the systems to be solved
are discussed, as for example a method that uses variable MQ shape parameters related to the local radius of curvature,
which improves the accuracy of the numerical solution. In [24] some intervals for optimal shape parameter values are
experimentally highlighted in the case of using MQ RBFs for solving linear integral equations. In [25] a Sample Solution
Approach (SSA) is proposed for achieving a reasonably good shape parameter in case of MQ-RBF. The procedure is based
on finding a pseudo-problem whose solution is known, obtaining the optimal parameter of the MQ-RBF for the pseudo-
problem and considering that the optimal shape parameter of the pseudo-problem can also achieve an approximately
optimal accuracy in the solution of the original problem.

In paper [26] the authors use GA and Inverse Multiquadric functions (IMQ) in their approach and show, for some
concrete situations, that if the shape parameter is equal with 2, in the case of using GA, the numerical results are very
good, without presenting details related to how this value is chosen.

In [27] the authors use neural networks to determining methods for obtaining optimal values of the control parameter,
for the case of RBFs interpolation problems, and, based on an unsupervised learning strategy, they get these values for
two RBFs: the inverse multiquadric and the Gaussian.

Other strategy to obtain optimal values for the shape parameter is proposed in paper [28] and is based on transforming
the initial problem to a one-dimensional minimization problem, for which the variable to be optimized is the control
parameter. Here, for the considered numerical cases the optimal values of the shape parameter are c = 0.26; (d) c = 0.28,
optimal value for Gaussians, but very good results are obtained when this parameter was situated in the studied range,
namely [0, 1; 1].

Because finding optimal values for the shape parameter is a difficult problem, many of the authors who use RBFs
in their approaches avoid using classical functions (MQ, GA, IMQ and others) and turn to other RBFs such as the
Polyharmonic Splines (PS RBFs), as in papers [29, 30], to conical RBFs as in [31], or to other types of RBFs as in [32].

In the herein study we find, based on simulations and analytical checking, optimal values for the shape parameters
in case of MQ RBFs and GA, taking advantage of the fact that an analytical solution to the studied problem is known, in
a particular case.

After applying the first step of the BEM the equivalent integral model of the problem is a SBIE. Difficulties arise
when evaluating singular integrals, but different methods can be used to overcome this difficulty, see for example [33].

Considering the fact that the SBIE is obtained based on the Cauchy Principal Value (CPV) concept, the integrals
with singular kernels are evaluated using the truncation method. When applying the truncation method, a small parameter,
eps, is used to isolate and to eliminate the singularity. The analysis of how this parameter influences the accuracy of the
numerical solutions is also presented in the paper.

2. Methods
In this section the proposed hybrid procedure for obtaining the numerical solution for the problem of the compressible

fluid flow around obstacles is presented. It is a procedurewhich combines the first step in applying the BEMand ameshless
method with radial basis function to solve the resulting SBIE.
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2.1 The SBIE with sources distributions

A brief presentation of both the problem to be solved and the integral equation resulting from the application of the
first step of BEM is presented below, but a more detailed presentation can be found in [4].

We want to find a numerical solution for the perturbation velocity induced by the presence of a fixed body of a known
boundary, assumed to be smooth and closed, notedC in a compressible fluid, that has, at great distances from the body, a
uniform, steady, potential motion of subsonic velocity. After finding the perturbation velocity field the fluid action on the
body is obtained.

Replacing the obstacle boundary with a continuous distribution of sources of intensity f , which satisfies a Hölder
condition onC, the problem is equivalent with the following SBIE, obtained in [4]:

(
n0

x
2
+β 2n0

y
2
)

f (x̄0)+
1
π

CPV
∮

C
f (x̄)

(x− x0)n0
x +β 2 (y− y0)n0

y

∥x̄− x̄0∥2 ds = 2βn0
x (1)

This SBIE is obtained in [4] following these three steps:
• First, the expressions of u, v, the perturbation velocity along the axes are found, in point Q (x), from the domain of

the fluid;
• Then, for a regular point on the boundary, Q0(x0) ∈C (briefly named x0 ∈C), u and v are deduced by the limits of

the previous expressions, calculated as x0 approaches to C;
• Finally, these expressions are forced to satisfy the nonlinear boundary condition onC.
CPV in (1) denotes the Cauchy Principal Value of an integral, and its definition can be found, for example, in [4],

being in accordance with its classical definition which can be found in many works.

CPV
∮

C
= lim

r→0

∮
C−c

(2)

where c = C∩D(Q0, r) and D(Q0, r) is a disc centered in Q0(x0), of radius r, which isolates the regular point, n0
x , n0

y
are the components of the normal unit vector, outward the fluid at x̄0 ∈C, β =

√
1−M2, and M ∈ [0, 1) Mach number

for the unperturbed fluid flow, and obviously f , the unknown function of the problem, represents the sources’ intensity.
For solving the SBIE (1) a meshless method based on different RBFs, namely MQ and GA is developed in this work.

Denoting by τ (x0) =
(
n0

x
)2

+β 2
(
n0

y
)2 and by K (x, x0) =

1
π

(x− x0)n0
x +β 2 (y− y0)n0

y

∥x− x0∥2 , equation (1) becomes:

τ (x0) f (x0)+CPV
∮

C
f (x̄)K (x, x0)ds = 2βn0

x (3)

2.2 Solving the SIBE by reducing it to a linear system of equations

First, we choose N nodes on the boundary, xi, i = 1, N, xN+1 = x1, and we require that the equation is satisfied in
these nodes. So equation (3) becomes:

τ (xi) f (xi)+CPV
∮

C
f (x̄)K (x, xi)ds = 2βni

x, i = 1, N (4)

ni
x being the component of the normal vector at x̄i ∈C, along Ox.
We introduce in (4) the global model of approximation for the unknown function f , based on RBFs, so we consider

an approximation of the following form:
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f (x) =
N

∑
j=1

λ jφ j (x), (5)

where φ j (x) are the RBFs and λ j are the weights. As the expressions of RBFs are known, weights become the coefficients
to be found.

Introducing relation (5) in equation (4) we get the following form of it:

τ (xi)
M

∑
j=1

λ jφ j (xi)+
M

∑
j=1

CPV
∮

C
λ jφ j (x)K (x, xi)ds = 2βni

x, i = 1, N (6)

The following linear system of N equations and N unknowns, the weights of the RBFs, is obtained:

τ (xi)
N

∑
j=1

λ jφ j (xi)+
N

∑
j=1

CPV
∮

C
λ jφ j (x)K (x, xi)ds = 2βni

x, i = 1, N (7)

We then consider a parametrization for C: x = x(ρ), y = y(ρ), ρ ∈ I, and we have: xi (xi, yi) = xi(ρi), xi = x(ρi),
yi = y(ρi), ρi ∈ I, i = 1, N being parameter values corresponding to the nodes chosen on the boundary.

If we do not have a parametric representation but we know the position of some points on the boundary, C, we can
approximate the boundary by a closed polygonal line, as in paper [9], and we can then proceed to find a numerical solution
of the SBIE.

Denoting by

H j (x(ρ), x(ρi)) = φ j (x(ρ))K (x(ρ), x(ρi))

√
x′(ρ)2 + y′(ρ)2 (8)

we get the following expression for equations (7):

N

∑
j=1

λ j τ (x(ρi))φ j (x(ρi))+
N

∑
j=1

λ jCPV
∮

C
H j (x(ρ), x(ρi))dρ = 2βni

x (9)

The accuracy of numerical results depends on the way of evaluating integrals with singularities. Singularities’
evaluation can be made through different techniques: with special purpose quadrature formulas, orthogonal polynomials,
subtracting the singularity, through analytical transformations, modified shape functions, truncated Taylor series, changes
of coordinates, and other regularization techniques like methods of moments.

In this paper we evaluate the singular integrals that appear by using truncation method. As specified in [34] this
method offers very good results in case when the integrand doesn’t oscillate near the singularities, as it is the one in our
case.

So, we evaluate the integrals with singular kernels by subtracting the singularity, as in the CVP definition, for each i=
1, N, using a small parameter, noted eps, to isolate the singularity. By definition:

CPV
∮

C
H j (x(ρ), x(ρi))dρ = lim

eps→0

(∫ ρi−eps

a
H j (x(ρ), x(ρi))dρ +

∫ b

ρi+eps
H j (x(ρ), x(ρi))dρ

)
, (10)
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where I = [a, b] is the corresponding boundary parameter’s range.
Equations (9) become:

N

∑
j=1

λ j τ (x(ρi))φ j (x(ρi))+
N

∑
j=1

λ j lim
eps→0

(∫ ρi−eps

a
H j (x(ρ), x(ρi))dρ +

∫ b

ρi+eps
H j (x(ρ), x(ρi))dρ

)
= 2βni

x (11)

For the numerical computing of the above integrals we use the following rule:

CPV
∮

C
H j (x(ρ), x(ρi))dρ =

∫ ρi−eps

a
H j (x(ρ), x(ρi))dρ +

∫ b

ρi+eps
H j (x(ρ), x(ρi))dρ, (12)

Denoting by:

qi j = τ (x(ρi))φ j (x(ρi)) , ci j =
∫ ρi−eps

a
H j
(
x(ρ), x

(
ρ i))dρ +

∫ b

ρi+eps
H j
(
x(ρ), x

(
ρ i))dρ, (13)

ai j = qi j + ci j, i, j ∈ {1, . . . , N} , A = (ai j)1≤i, j≤N , {λ}= (λ1 λ2 . . .λN)
T , (14)

B =
(
2βn1

x 2βn2
x . . .2βnN

x
)T (15)

where ()T represents the transpose of the corresponding line vector, namely a column vector from RN , the problem is
reduced to the following system of equations, written in (16) in a matricial form, whose unknowns are the weights λ j, j =
1, N:

A · {λ}= B (16)

The evaluation of the coefficients of system (16), as well as its solution can be obtained with a computer code, one
for each type of RBFs used for the unknown global approximation.

2.3 Types of RBFs and systems coefficients evaluations

RBFs depend only on the distances from current points to their centers, noted c, and on a parameter, called shape
parameter, which change the aspect of the functions: φ (x) = φ(r, α) = φ (∥x− c∥ , α).

In the present study there are used two type of RBFs: MQ RBFs and the GA RBFs. They have the following
expressions:

• φ j (x) =
√∥∥x− c j

∥∥2
+α2, in case of MQ RBFs,

• φ j (x) = e−α2∥x−c j∥2
, in case of GA RBFs,

c j representing, in both situations, the center of φ j.
In this approach we consider the centers to be the nodes chosen on the boundary, so we consider that φ j (x) has the

center in x j, c j = x(ρ j), j = 1, N. Introducing the above expressions of RBFs in equations (15) all systems’ coefficients
can be evaluated with a computer code.

The coefficients obtained, for each of these two situations, are presented in (18), (20).
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For MQ RBFs we get:

q ji =τ (x̄(ρi))

√
α2 +

∥∥x̄(ρ)− x̄(ρ j)
∥∥2 (17)

ci j =
∫ ρi− eps

a

√
α2 +

∥∥x̄(ρ)− x̄(ρ j)
∥∥2K (x̄(ρ), x̄(ρi))J(ρ)dρ

+
∫ b

ρi+eps

√
α2 +

∥∥x̄(ρ)− x̄(ρ j)
∥∥2K (x̄(ρ), x̄(ρi))J(ρ), (18)

For GA RBFs we obtain:

q ji =τ (x̄(ρi))e−α2∥x̄(ρi)−x̄(ρ j)∥2
(19)

ci j =
∫ ρi−eps

a
e−α2∥x̄(ρ)−x̄(ρ j)∥2

K (x̄(ρ), x̄(ρi))J(ρ)dρ

+
∫ b

ρi+eps
e−α2∥x̄(ρ)−x̄(ρ j)∥2

K (x̄(ρ), x̄(ρi))J(ρ)dρ (20)

The above coefficients of system (16), as well as its solution, can be obtained with a computer code, but separately,
for each type of RBFs used for the unknown global approximation. The computer code is similar for these two situations,
differences appear only in coefficients expressions and can be easily adapted for other kinds of RBFs.

The system the problem is reduced at, must be solved with an iterative procedure in order to avoid an ill posed
problem. In this paper the method which uses the concept of the general inverse of a matrix is used and, as will be seen,
it offers good numerical results.

After solving this system, the perturbation velocity components can be evaluated.

3. The velocity field on the boundary
On the boundary the expressions for u and v are:

u(x̄0) =−1
2

f (x̄0)n0
x −

1
2π

CPV
∮

C
f (x̄)

x− x0

∥x̄− x̄0∥2 ds (21)

v(x̄0) =−1
2

f (x̄0)n0
y −

1
2π

CPV
∮

C
f (x̄)

y− y0

∥x̄− x̄0∥2 ds, (22)

After solving the system and finding the weights of the RBFs, we can evaluate the perturbation velocity components
with the above relations (22), on the boundary, in the same manner as in case of obtaining the linear system of equations,
introducing the approximation based on RBFS and considering x̄0 = x̄i, i = 1, N. Using the RBFs, they can be evaluated,
on the N nodes chosen on the boundary, by relations:
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u(xi) =−1
2

N

∑
j=1

λ jφ j (xi)ni
x −

1
2π

N

∑
j=1

λ jCPV
∮

C
φ j (x)

x− xi

∥x− xi∥2 ds (23)

v(xi) =−1
2

N

∑
j=1

λ jφ j (xi)ni
y −

1
2π

N

∑
j=1

λ jCPV
∮

C
φ j (x)

y− yi

∥x− xi∥2 ds, (24)

Using the same technique as in case of obtaining the previous system, we introduce in the above relations the
parametric equations of boundary C: x = x(ρ), y = y(ρ), ρ ∈ I, ρ1, . . . . ρN , being the parameter’s values for the N
nodes, xi (xi, yi) = xi(ρi), xi = x(ρi) , yi = y(ρi).

Denoting by:

ds =
√

x′(ρ)2 + y′(ρ)2 dρ = J(ρ)dρ (25)

gi(ρ) =
x(ρ)− x(ρi)

∥x(ρ)− x(ρi)∥2 , hi(ρ) =
y(ρ)− y(ρi)

∥x(ρ)− x(ρi)∥2 , (26)

wi j = φ j (x(ρi))ni
x +

1
π
CPV

∮
C

φ j (x(ρ))gi(ρ)J(ρ)dρ, (27)

zi j = φ j (x(ρi))ni
y +

1
π
CPV

∮
C

φ j (x(ρ))hi(ρ)J(ρ)dρ, (28)

we get the expressions of the components of the perturbation velocity at the N nodes on the boundary:

u(xi) =−1
2

N

∑
j=1

wi jλ j, i = 1, N, v(xi) =−1
2

N

∑
j=1

zi jλ j, i = 1, N (29)

We further deduce the expressions of the perturbation velocity components for the two types of RBFs we use to solve
the problem.

In case of MQ we have:

wi j =

√
α2 +

∥∥x̄(ρi)− x̄(ρ j)
∥∥2ni

x +
1
π

CPV
∮

C

√
α2 +

∥∥x̄(ρ)− x̄(ρ j)
∥∥2gi(ρ)J(ρ)dρ (30)

zi j =

√
α2 +

∥∥x̄(ρi)− x̄(ρ j)
∥∥2ni

y +
1
π

CPV
∮

C

√
α2 +

∥∥x̄(ρ)− x̄(ρ j)
∥∥2hi(ρ)J(ρ)dρ (31)

In case of GA, the coefficients used for obtaining the velocity components are:

wi j = e−α2∥x̄(ρi)−x̄(ρ j)∥2
ni

x +
1
π

CPV
∮

C
e−α2∥x̄(ρ)−x̄(ρ j)∥2

gi(ρ)J(ρ)dρ (32)
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zi j = e−α2∥x̄(ρi)−x̄(ρ j)∥2
ni

y +
1
π

CPV
∮

C
e−α2∥x̄(ρ)−x̄(ρ j)∥2

hi(ρ)J(ρ)dρ (33)

For evaluating the Cauchy Principal Values of the involved singular integrals, the truncation method is used as in
case of the system’s coefficients. According to the CPV definition we have:

CPV
∮

C
φ j (x(ρ))F i(ρ)dρ = lim

eps→0

(∫ ρi−eps

a
φ j (x(ρ))F i(ρ)dρ +

∫ b

ρi+eps
φ j (x(ρ))F i(ρ)dρ

)
, (34)

F i(ρ) having different expressions: F i(ρ) = gi(ρ)J(ρ) in case of u, F i(ρ) = hi(ρ)J(ρ) in case of v, φ j being either
a MQ or GA.

So, using truncation method, we choose a very small parameter, eps, and we numerically compute the CPV by the
following rule:

CPV
∮

C
φ j (x(ρ))F i(ρ)dρ =

∫ ρi−eps

a
φ j (x(ρ))F i(ρ)dρ +

∫ b

ρi+eps
φ j (x(ρ))F i(ρ)dρ, (35)

After finding the components of the perturbation velocity field we can compute the local pressure coefficient at any
point on the boundary, as for example at xi, using the following relation, see [4]:

cp(xi) =
2

γM2


[

1+
M2(γ −1)

2

(
1− v2 (xi)−

(
1+

u(xi)

β

)2
)] γ

γ−1

−1

 , M ̸= 0, (36)

4. Numerical results
The proposed meshless methods for solving the SBIE with sources distribution, based on RBFs is implemented into

computer codes using Mathcad programming language and, based on them, numerical solutions are obtained. For both
cases the input data are: the number of nodes, N; the parametrization of the boundary C; eps the parameter used for
singular integrals evaluation; shape parameter’s value, α; Mach number, M, (0 ≤ M < 1).

Output data are: nodal values for the RBFs weights, the velocity field components and the local pressure coefficient.
As we have mentioned before a direct method to solve the linear system of equations cannot be applied, so we chose

an iterative method to solve it. The iterative method based on the general (pseudo) inverse, which gives the least-squares
solution to a system of equations, is implemented into a built-in function in Mathcad, namely geninv (matrix). Using this
procedure, we overcome the problems which arise when the ill posed problems arise.

Results validation is done through an analytical checking, by considering a problem with an exact solution, and
making comparisons between the numerical and the exact solutions. For the particular case of a circular obstacle, of radius
one, centered in the origin, and an incompressible fluid flow (M = 0), the exact solution is given in [4]: u = −cos2θ ,
v =−sin2θ , cp =−1+2cos2θ .

So, for testing the proposed method, we have considered a circular obstacle centered in the origin with radius one,
as the smoothed boundary of the obstacle.

For every point, Q, on the boundary we have: Q(cosρ, sinρ), ρ ∈ [0, 2π]. A uniform distribution for the control

points is considered and we have as nodes on the boundary the points corresponding to ρi =
2i−1

N
π , so we evaluate
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the velocity field and the local pressure coefficient at Qi

(
cos

2i−1
N

π, sin
2i−1

N
π
)
for both numerical and analytical

solutions.
The two computer codes are developed in case of a circular obstacle: the first one for the case of MQ RBFS, and the

second for the case of GA. The output data in this situation also include the errors between the numerical and the exact
solution.

The error measure used to quantify the performance of the exposed method and to study the influence of parameters
on the numerical solutions accuracy is considered to be the maximum absolute error, (∥x∥∞). So we define:

Mu = ∥eru∥∞ = max
i=1, N

{eru(i)} , Mv = ∥erv∥∞ = max
i=1, N

{erv(i)} , (37)

Mcp =
∥∥Ercp

∥∥
∞ = max

i=1, N
{Ercp(i)} (38)

In (38), eru(i), erv(i), Ercp(i) are the absolute errors between the numerical and the real values of the velocity
components, respectively of the local pressure coefficient, evaluated at the ith nodal point, and eru, erv, Ercp are the
vectors of the mentioned absolute errors, evaluated in every nodal point.

4.1 Numerical results in case of MQ RBFs

Numerical results are compared with the exact ones in the following diagrams. First, we consider the numerical
solution obtained in the case of MQ RBFs, and compare this solution with the exact one, in case of using only 20 nodes
on the boundary, eps = 0.01 and α = 1.

As we can see in Figure 1 a good agreement exists between the numerical solutions, marked with lowercase letters
(u, v for the Ox, respectively Oy velocity components, cp for local pressure coefficient) and the exact ones, noted with
capital letters (U , V andCp respectively).

Figure 1. Numerical solution vs. exact one and the corresponding absolute errors, for MQ RBFs: N = 20 nodes, eps = 0.01, α = 1

In Figure 1 the distribution of the absolute errors, eru(i), erv(i), Ercp(i), for all three measures of interest, can also
be observed.
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4.1.1The influence of eps on numerical solution’s accuracy (MQ case)

The influence of eps on numerical solution’s accuracy is highlighted in Table 1, where the results obtained for Mu,
Mv, Mcp, in case of using 20 nodes on the boundary and α = 1, for different values of eps parameter are presented.

Table 1. Max of the absolute errors (∥eru∥∞ , ∥erv∥∞
∥∥Ercp

∥∥
∞ ) for different values of eps parameter: Mu, Mv, Mcp

No. eps Mu Mv Mcp

1 0.000001 3.11454E-07 1.6065E-07 1.24581E-06
2 0.00001 3.10615E-06 1.59305E-06 1.24246E-05
3 0.0001 3.1054E-05 1.59175E-05 0.000124215
4 0.001 0.00031062 0.000159207 0.001242381
5 0.01 0.003115119 0.001596632 0.01245053
6 0.1 0.03207119 0.01643786 0.12723038

It can be observed the influence of the parameter used for the numerical evaluation of singular integrals on the
numerical solution’s accuracy. As we can see Mu, Mv, Mcp, vary a lot in relation to eps and their values are smaller as
eps get smaller values.

As we notice, looking at the magnitude of the maximum errors, as eps decreases the precision of the numerical
solution improves a lot, fact that proves that this parameter has a great impact on the numerical solution and the fact that
the procedure used for the numerical evaluation of the singular integrals is a very efficient one.

4.1.2The influence of nodes number on numerical solution’s accuracy (MQ case)

The influence of nodes number on numerical solution’s accuracy can be studied by letting only this parameter to vary
and considering fixed values for the others.

First, we consider different number of nodes and same value for eps and α: eps = 0.01, α = 1. The absolute errors
for the components of velocity and for the local pressure coefficient are presented in the following diagrams, Figure 2.

One can noticed that the errors are similar. For better understanding this influence a comparison by the aid of Mu,
Mv and Mcp is made. When α = 1, eps = 0.01, the diagrams in Figure 3 are obtained.

As we can notice from the above diagrams, the number of nodes does not influence the accuracy of the numerical
solution as in case of using BEM to solve the same SBIE [5–7, 9].

As the number of nodes, N, increases, the maximum absolute error, for each of the quantities analyzed, oscillates
around a certain value, but the amplitude of this oscillation decreases, and for a large number of nodes, the corresponding
limit value is established around this well-defined value, see Figure 3.

The sequence of the maximum errors seems to be convergent to that certain value. Thus, even if in this case, there are
no significant differences between the maximum value of the absolute errors obtained for N = 20 nodes and the maximum
value obtained forN = 150 nodes, asN is bigger the numerical procedure is more stable. However, after a certain limit, the
accuracy of the numerical solution does no longer improve, as such the computational effort, which is obviously greater,
is not justified. Very good numerical results are obtained even for a small number of nodes.

The results were obtained, as mentioned before, in case of eps = 0.01 and α = 1, and we want to further see if they
depend on the considered fixed values, or if similar results are found in other situations too.

The numerical results obtained in case of eps = 0.001 and α = 1, presented in Figure 4, prove that the dependence is
similar in this case too, but in case of a smaller value of eps, the central value toward the maximum errors tend are obvious
smaller than in the previous case, as expected, if we think about what was stated previously regarding the influence of
eps.
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Figure 2. Absolute errors magnitude and distribution for different number of nodes for MQ RBFs, in case of fixed values for the other parameters,
namely eps = 0.01, α = 1

Figure 3. Maximum errors with respect to nodes nr. for MQ RBFs, in case of fixed values for the other parameters, namely α = 1 and eps = 0.010: (a)
Mu; (b) Mv; (c) Mcp
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Figure 4. Maximum errors with respect to number of nodes for MQ RBFs, in case of fixed values for the other parameters, namely α = 1, eps = 0.001:
(a) Mu; (b) Mv; (c) Mcp

As we can notice, in Figure 5, same influence of nodes number on the maximum errors exists in case of eps = 0.0001
too.

Figure 5. Maximum errors with respect to nr. of nodes for MQ RBFs, in case of fixed values for the other parameters, namely for α = 1, eps = 10−4:
(a) Mu, (b) Mv

4.1.3The influence of shape parameter on numerical solution’s accuracy (MQ case)

One of the most important influence on numerical solution’s accuracy, when using meshless methods based on RBFs,
is of the RBFs shape parameter, α .

In case of using MQ RBFs, errors distribution with respect to α is studied in case of N = 30, eps = 0.001, for
getting the range in which the control parameter must be situated for obtaining numerical solutions of great accuracy. The
numerical results are presented in Table 2 and in Figure 6. Simulations were done for 50 values for α ∈ [0.000001; 2,500].

We can observe that if α ≥ 1 the numerical solution is very good and no major changes arise when α increases to
the upper limit 2,500, even beyond this value. The same conclusion can be deduced from Figure 6.
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Table 2. Maximum errors with respect to α . (N = 30, eps = 0.001)

No. α Mu Mv Mcp

1 0.000001 0.003189633 0.001586379 0.01274836
2 0.00001 0.00318893 0.00158603 0.01274555
3 0.0001 0.00318194 0.001582599 0.01271763
4 0.001 0.003113738 0.001548639 0.01244526
5 0.01 0.002539718 0.001262822 0.01015242
6 0.1 0.000559199 0.000278068 0.002236483
7 1 0.000318411 0.000158334 0.001273544
8 3 0.000318411 0.000158334 0.001273544
9 5 0.000318411 0.000158334 0.001273544
10 10 0.000318411 0.000158334 0.001273544
11 20 0.000318411 0.000158333 0.001273544
12 40 0.000318411 0.000158334 0.001273544
13 50 0.000318411 0.000158334 0.001273544

43 1,800 0.000318411 0.000158336 0.001273545
44 1,900 0.000318411 0.000158337 0.001273544
45 2,000 0.000318412 0.000158337 0.001273546
46 2,100 0.000318412 0.000158335 0.001273545
47 2,200 0.000318411 0.000158336 0.001273543
48 2,300 0.000318412 0.000158338 0.001273546
49 2,400 0.000318411 0.000158337 0.001273544
50 2,500 0.000318411 0.000158337 0.001273544

Figure 6. Maximum errors with respect to α for MQ RBFs, in case of fixed values for the other parameters, namely for N = 30 and eps = 0.001

It may be surprising that the shape parameter can have a wide range of values, in the case when these MQ RBFs
appear, to obtain good accuracy. However, to better understand why this happens, we must analyze the context in which
these functions appear. We observe that MQ RBF acts as a regularization factor for the singular integrals that appear.
Thus, large values of α smooth the integral and therefore we obtain this regularization of the integrals. In case of small α
however, we eliminate this regularization, and the singularity becomes more pronounced in the integrand, which leads to
a more difficult numerical integration, extremely sensitive, especially for different geometries.

4.2 Numerical results in case of GA

Now we consider the case when GA are used for obtaining the numerical solution for the case when an exact one
exists, so for the case of an incompressible fluid flow (M = 0) and, as in case of MQRBFs, we study, through an analytical
checking, how good the numerical solution is and the influence of the same mentioned parameters (eps, number of nodes,
shape parameter) on numerical solution’s accuracy.
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We choose N = 20, eps = 0.01, α = 1 and we compare, in Figure 7, the numerical results with the exact ones and
the distribution of absolute errors, eru, erv, Ercp.

Figure 7. Numerical solution vs. exact one in case of GA RBFs, for N = 20, eps = 0.01 and α = 1

The numerical results are very good in this case too, even for only 20 nodes on the boundary.

4.2.1The influence of eps on numerical solution’s accuracy (GA case)

The influence of eps on numerical solution accuracy is study by keeping the same number of nodes, N = 30, and
α = 1 for the control parameter, and varying only eps. The numerical results are presented in Table 3. Same considerations
as in case of MQ RBFs can be made: the errors are smaller as eps gets smaller values, and they decrease a lot.

Table 3. Maximum errors with respect to eps: N = 30, α = 1

No. eps Mu Mv Mcp

1 0.000001 3.18329E-07 1.58329E-07 1.27332E-06
2 0.00001 3.18312E-06 1.58286E-06 1.27325E-05
3 0.0001 3.1832E-05 1.58288E-05 0.000127327
4 0.001 0.000318411 0.000158334 0.001273544
5 0.01 0.003193263 0.001587885 0.01276286
6 0.1 0.03287571 0.01634781 0.13042203

4.2.2The influence of nodes number on numerical solution’s accuracy (GA case)

For studying the nodes number influence on numerical solution accuracy, we consider different fixed values for eps
and α and we analyze only Mu and Mv, without considering Mcp, taking into account that the local pressure coefficient
is evaluated with the aid of the components of the velocity.

In Figure 8 we remark that we have same pattern as in case of MQ RBFs. When the number of nodes increase the
maximum errors tend to a well-defined limit, which value is smaller as eps is smaller, and after a certain number of nodes
the numerical solution’s accuracy does not improve too much, so the numerical effort in such cases is not justified.
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Figure 8. Nodes number influence on numerical solution’s accuracy for GA, in case of different values of eps: (a) Mu in case of eps = 0.01, α = 1; (b)
Mv in case of eps = 0.01, α = 1; (c) Mu in case of eps = 0.001, α = 1; (d) Mv in case of eps = 0.001, α = 1

4.2.3The influence of shape parameter on numerical solution’s accuracy (GA case)

The last influence we study is GA shape parameter’s influence on numerical solution accuracy. By using computer
simulations, taking the advantage of having a case with an exact solution, so the possibility to make an analytical checking,
we can deduce an optimal range for the shape parameter.

We consider fixed values for eps and N, namely eps = 0.01, N = 30 in the first situation, and eps = 0.001, N = 30 in
the second case. The maximum errors obtained are presented in Table 4, where we have highlighted the optimum range
of the GA shape parameter: [0.0005, 5].

Table 4. Maximum errors in relation to α , in case of N = 30 and eps = 0.01, or eps = 0.001

No. α Mu(eps = 0.01) Mv(eps = 0.01) Mu(eps = 0.001) Mv(eps = 0.001)

1 0.0001 1 0.9945219 1 0.9945219
2 0.0005 0.003193263 0.001587885 0.000318411 0.000158334
3 0.001 0.003193263 0.001587885 0.000318411 0.000158334
4 0.005 0.003193263 0.001587885 0.000318411 0.000158333
5 0.01 0.003193263 0.001587885 0.000318411 0.000158333
6 0.05 0.003193263 0.001587885 0.000318411 0.000158333
7 0.1 0.003193263 0.001587885 0.000318411 0.000158334
8 0.3 0.003193263 0.001587885 0.000318411 0.000158334
9 0.5 0.003193263 0.001587885 0.000318411 0.000158333
10 0.7 0.003193263 0.001587885 0.000318411 0.000158333
11 1 0.003193263 0.001587885 0.000318411 0.000158334
12 2 0.003193263 0.001587885 0.000318411 0.000158341
13 3 0.003193265 0.001587886 0.000318412 0.000158333
14 4 0.003199869 0.00159117 0.000325491 0.000161855
15 5 0.003679054 0.00182945 0.000833027 0.000414232
16 10 0.20068269 0.09979167 0.20173511 0.10031499
17 15 0.46511063 0.23128135 0.4666183 0.23203106
18 20 0.60119218 0.29894939 0.60231832 0.29950938
19 25 0.68175459 0.33900993 0.68264588 0.33945314
20 30 0.73514691 0.36555985 0.73588129 0.36592503
21 40 0.80180913 0.39851777 0.802563 0.40311746
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The optimum range can be observed in Figure 9 too, and is the same interval either for eps = 0.01, or eps = 0.001,
so shape parameter’s influence is independent of eps values.

Figure 9. Maximum errors in relation with the shape parameter, α , for GA, in case of different values of eps: (a) Mu, Mv for eps = 0.01, N = 30; (b)
Mu, Mv for eps = 0.001, N = 30

Shape parameter’s influence pattern is the same in both situations, so does not depend on eps value, only the values
of the maximum errors are smaller when eps is smaller.

As we can see, small values of α are convenient, as long as they are not too small, because as α approaches 0, the GA
function becomes more flat, and goes to a constant, 1. In case of the CPV of integrands with GA kernels, the numerical
integration process lead to a less significant contribution of the CPV. It reduces to 0 if α goes to 0. On the other hand,
in case of too great values of α , the GA becomes narrow and peaked, having a more pronounced local influence, and in
such situations the approximation model does not capture so well the complexity of the unknown variation, especially for
a fixed number of nodes, even if it effectively regularizes the singular kernel.

4.3 Comparisons between different numerical results

Comparison between MQ RBFs and GA RBFs is made in Figure 10, by considering a value for the shape parameter
situated in both optimum ranges, namely we choose α = 1, eps = 0.001 and 30 nodes on the boundary.

As we can see the numerical solutions are similar, so they do not depend on the type of RBFs considered when
applying a meshless method to solve the considered SBIE.

Figure 10. Comparisons between numerical solutions obtained in case of using MQ and GA in case of α = 1, eps = 0.001 and N = 30: (a) eru; (b) erv;
(c) Mu, Mv
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In order to show that the accuracy of the numerical solution is greater when using the present approach to solve
the problem of the compressible fluid flow around obstacles then those based exclusively on BEM we have compared
the numerical solution with the ones obtained in [6, 7]. The comparison is made in Figure 11 for the components of
the velocity field, through the distributions of errors between the numerical solutions and the exact ones for the two
components of the velocity field and in Figure 12 through the maximum errors that appear for both components. Because
the numerical solutions obtained through this approach do not differ too much for the two types of RBFs we have used,
only the numerical solution obtained with GA is considered.

Figure 11. Errors distributions for velocity components for different approaches (BEM cubic, BEM msf, GA RBFs), in case of eps = 0.01, N = 30,
and α = 1 when GA are used: (a) eru-for velocity component along Ox, (b) erv-for velocity component along Oy

In Figure 11, BEM cubic-represents errors distribution for the numerical solution obtained in [7], where cubic
isoparametric boundary elements were used to solve the problem for the same SBIE, and the truncation method to evaluate
the integrals of singular kernels. There were considered 30 nodes on the boundary and eps = 0.01; BEM msf-represents
errors distribution for the numerical solution obtained in [8], where cubic isoparametric boundary elements were also
used to solve the same SBIE, but a regu-larization technique with modified shape functions was used to evaluate the
integrals of singular kernels; GA RBFs-represents errors distribution for the numerical solution obtained based on the
present approach for GA, 30 nodes and eps = 0.01.

Figure 12. Maximum errors, Mu and Mv, for the three different numerical solutions (BEM cubic, BEM msf, GA RBFs), in case of eps = 0.01, N = 30,
and α = 1 when GA are used

The numerical results are superior in the case of the method proposed in this paper mainly due to the fact that the
obstacle boundary is no longer approximated in this case, and the approximation of the unknown is a global one.

The superiority of the present approach also lies in the fact that the numerical codes based on the compared methods
using BEM are much more difficult to develop. The approximations of the unknowns being local in these situations,
they require the imposition of compatibility conditions when assembling the equations, use more notation systems, more
memory and implicitly longer running time. They also cannot be easily adapted for other boundary elements, because
both the coefficients of the system and the quantities of interest are very different.
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5. Conclusions
The numerical procedure for solving the problem of the compressible fluid flow around obstacles based on an hybrid

approach, which consists in starting with a SBIE, an equivalent mathematical model for the mentioned problem, obtained
by applying the first step of the BEM, and then solving this SBIE through a meshless method with RBFs is proved to be a
very efficient one. Because the problem has, in a particular case, an exact solution, the numerical solutions obtained can be
compared with the exact ones and so we can deduce how good the numerical results are and, more than that, we can study
the influence of the parameters involved in the procedure, and we refer here at: number of nodes, eps-the parameter used
for the numerical integration of singular kernels, types of RBFs and α their shape parameter, on the numerical solution’s
accuracy.

A great advantage of this approach over the classical BEM arises from the fact that when using meshless methods
with RBFs we have a global model for the unknown approximation and we only need to choose nodes scattered on the
boundary for the unknown interpolation. We don’t need to impose connection conditions at nodes, as in case of applying
BEM or other discretization techniques, and so the computer code can be easily implemented.

The computer codes developed using Mathcad programming language can be easily adapted for any type of RBFs,
not only for MQ or GA. This can be done by only changing the expressions of the RBFs in all evaluated coefficients,
because there is no discretization of the boundary, the unknown has a global approximation and the procedure used for the
evaluation of the singular kernel integrals does not depend on the type of RBFs, but only on the fact that they are CPVs.

As the graphics show, the numerical and the exact values of the nodal components of the perturbation velocity, of
the local pressure coefficient, are in good agreement, even when choosing a small number of nodes on the boundary for
both situations. In the present approach the nodes are uniformly distributed on the boundary, which is considered to be
closed and smooth, and they also represent the centers of the radial basis function. The uniform distribution is sufficient
for obtaining good numerical results because in case of such obstacles we do not need to concentrate nodes near certain
special points on the boundary.

The numerical solutions’ accuracy obviously depends on the number of nodes chosen on the boundary, but in a
different way compared to the procedures that use domain discretization, where the greater the number of nodes, the
better the numerical solution is. Here the maximum error oscillates if small numbers of nodes are used on the boundary,
and even if the errors are quite similar in case of different number of nodes, the procedure is more stable when using more
nodes on the boundary. This number of nodes does not need to be too high in order to obtain a good numerical solution
because, as we have seen in this paper, if the number of nodes is too high, exceeding a certain value, the accuracy of the
numerical solution no longer increases and the computational effort is not justified.

The procedure used for the singular kernel integrals evaluation (truncation method) is in concordance with the CPV
definition of an integral and offers very good results in both cases. The parameter used for the numerical computation
of the singular integrals influences a lot the numerical results. The smaller its value is, the better numerical results are
obtained.

The numerical solutions’ accuracy depends on the shape parameter’s value. In both cases when considering values
around 1 for this parameter, good numerical solutions are obtained.

The shape parameter’s ranges for the two types of RBFs are highlighted, in order to obtain good numerical results:
α ∈ [1; 2,500], even for values above the upper limit, in case of MQ, α ∈ [0.0005; 5] in case of GA. These intervals can
be used in other approaches to validate theoretical results.

Different types of radial basis functions exist and two of them were used in this approach in order to find out which of
them is more suitable for solving the mentioned problem. As proved in the herein paper, the numerical solutions’ accuracy
does not depend on the type of RBFs, if suitable values for the shape parameters are used, because the maximum errors
that appear in the two analyzed cases are quite the same. But, because the optimal range for the shape parameter is larger
in case of MQ RBFs, they can be considered the best choice when solving SBIEs through applying meshless methods.

The numerical solutions obtained by the proposed method have a high accuracy, and this is demonstrated in the paper
by comparing the numerical solutions not only with numerical ones obtained by other methods, but with exact solutions
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that exist in certain special cases. This last comparison allowed the study of the influence of the parameters that appear
in the modeling, on the accuracy of the numerical solution.

The proposed hybrid method is a very efficient one because no discretization of the boundary is needed, like in other
approaches as those based on FEM, BEM and other procedures based on discretization. For this reason, it is implemented
into a very efficient computer code, easy to adapt for any kind of RBFs and for any type of smooth obstacle for which
a parametric representation is known. If a parametric representation is not known, a model for the approximation of the
boundary has to be used.

The approach proves so, through an analytical checking, that combining the global approximation based on RBFs,
with the truncation method for the numerical evaluation of Cauchy-type singular integrals leads to very good numerical
results.

The limitations of the method are based on the fact that for other kind of SBIEs there is no guaranty that the range
for the optimal values of the shape parameter is the same, but these results can be used for validating further theoretical
results regarding finding optimal shape parameters when using RBFs for solving PDEs.

Further work can be focused on developing adaptive strategies to be used to determine the optimal values of the shape
parameter in situations when test problems does not exist. It is interesting to study if, for different obstacles of complex
geometry, for other subsonic flow regimes (for different Mach number values), or for other type of integral equations, the
optimal values of the shape parameter remain in the same range.
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