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Abstract: The trend of incorporating the Picard iteration into already established iterative processes has led to highly
efficient convergence results, as observed in cases such as the Picard-Noor hybrid, Picard-S* hybrid, Picard-S hybrid,
Picard-Ishikawa hybrid, Picard-Mann hybrid, and several others. Using this technique, in this paper, we have introduced
a new hybrid iterative scheme by merging Picard iterative scheme with P iterative scheme. We used numerical example
to show the efficiency new Picard-P hybrid iteration process. By using Picard-P hybrid iterative we proved strong and
weak fixed point convergence results for Suzuki Generalized Nonexpansive Mapping (SGNEM). As an application we
established the solution of delay differential equations using Picard-P hybrid iteration scheme.
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1. Introduction

In numerous fields of applied science, certain problems are frequently too complex or even unsolvable by using
the ordinary analytical techniques introduced in the present literature. In such cases, it is always necessary to obtain an
approximate value of the desired solution [1]. Among various approaches, Fixed Point (F.P.) theory provides highly
effective techniques for obtaining approximate values of such solutions. The desired approximate solution to such
problems can be expressed as the fixed point of a suitable operator, that is, as the solution of an equivalent fixed point
equation.
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Here, the self-map % denotes a suitable operator defined on a subset of a given space. Some types of these operators
are already established in the literature. In this work, we present a some of these operators. Suppose a self-map % of the
given subset V of a Banach Space (BS) is given. Then % is known as a Banach contraction if, for all two points 1%, 0 in
the set V, we have

%S — %8| < ald—0], for some fixed @ € [0, 1) (1)

Notice that when (1) true for the value & exactly equal to 1 then % is called nonexpansive. As almost always, we
will write Ug for the F.P set of %, thatis, Uz = {S € E: % 9= Dp}.

The existence of F.Ps for nonexpansive mappings in the setting of Banach spaces was studied independently by
Browder [2], Gohde [3] and Kirk [4]. They proved that, if V is nonempty closed bounded and convex subset of a uniformly
convex Banach space, then every nonexpansive mapping % : V — V has at-least one F.P. A numbers of generalization
of nonexpansive mappings have been considered by some authors in recent years.

In 2008, Suzuki [5] introduced a new class of mappings as follow. A selfmap % on a subset V of a Banach space &
is said to satisfy (C) condition (also known as Suzuki mapping), if for all ¥, 8 € V, we have:

1
Sl —2v| <|[0 -6l =[|[Zv-%6| <||o -8l @

As we know that the iterative schemes like Abbas and Picard-Noor converges faster as compare to P iterative scheme,
but on the other hand we have proved that by adding Picard iteration to P iteration, then the Picard-P hybrid iteration
converges faster as compare to all above mentioned iterative schemes. We use numerical examples to show the efficiency
of Picard-P hybrid iterative scheme by comparing it with the above mentioned iterative schemes. We also proved some
F.P convergence results using newly introduced Picard-P iterative scheme for Suzuki Generalized Nonexpansive Mapping
(SGNEM). Some of well known iterations are Mann [6] , Ishikawa [7], Noor [8], Agarwal [9], Abbas [10], P [11] etc.

The remainder of this paper is structured as follows: Section 2 provides essential definitions for subsequent
discussions. Section 3 presents the main results of the proposed iteration process. Section 4 includes numerical examples
to analyze the convergence behavior of the proposed method. Section 5 explores real-world applications of the proposed
iteration process. Section 6 introduces polynomiographs to enhance the understanding of our analysis. Finally, Section 7
presents concluding remarks.

2. Preliminaries
Definition 1 Consider a Banach Space (BS) & and 0 # V C Z. Select an element t € & and choose a bounded
sequence, namely, 2 D {¥;}. We may set r(V, {t;}) as
r(V, {%;}) = inf{limsup ||, —¢|| : t €V}
i—o0
The asymptotic radius of the sequence {9;} connected with the set V is given as,
A (V, {0i}) ={s € V: limsup|[; —t[| = r(V, ¥)}

1—ro0
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Remark 1 According [12], Z is represent Uniformly Convex Banach Space (UCBS), consequently it can be
established that o/ (V, {®;}) includes a unique element. Further more it is mentioned that when V is weakly compact
and convex, then &7 (V, {0;}) is convex. (see e.g., [13, 14] and others).

Definition 2 [15] A BS 2 is said to have Opial property if and only if for each weakly convergent sequance {¥;} C
with weak limit r € V, we have,

limsup||9; —t|| < limsup||9; — eo|| Veg € 2\ {t}.
i i—yoo

1—o0

It noted that all BS satisfies Opial property.

Definition 3 [16] Let V be a subset of BS 2. A self mapping % of V is said to satisfy condition (I), if one can find
a non decreasing function k : [0, o) — [0, e0) 5.t k(0) =0, k() >0V & € [0, 00) — {0} and ||¥ — Z O|| > k(d(V, Fy))
when ¥ € V. Here d(3, Fy ) is the distance of ¥ to Fy .

Lemma 1 [14] Suppose Z be aBS,s.t® #V C Dand % : V — V be a self-mapp, then we have:

(i) If 7 is nonexpansive map then %/ is Suzuki Generalized Nonexpansive Mapping (SGNEM).

(ii) If 7 is a SGNEM with a F.P, it is quasi-nonexpansive map.

(iii) If % is SGNEM, then ||[9 —Z 6| <3| % ¥ — &|| + |0 — 6| forall ¥, 6 € V.

Lemma 2 [5] Let a BS Z is said to have satisfy the Opial’s property and % be a SGNEM on a subset V of 2. When
{e;} converges weakly to z and lim; s || % e; — ¢;|| = 0, then % z = z.

Lemma 3 [5] Let & be a uniformly convex BS and V be a weakly compact convex subset of . Suppose % be a
SGNEM, then % has a F.P.

3. Main result

First we introduce our new iteration process, called the Picard-P I.P, which is defined as:

YeV
b= (1 —OC;)L%'—FOC[U‘L%
¢i = (1= Bi)bi+ Bi% b 3)

di = (1 =%)Ubi+ Y% ci

i1 =%d;

Now we study the F.P approximation for SGNEM using the Picard-P iterative scheme (3).

Lemma 4 Suppose Z be a norm linear space and V # 0 closed and convex subset of 2. If % : V — V is SGNEM
satisfying Fiy # 0. Assume that {0;} is a sequence of Picard-P iterative process (3). Then for each ¢ € Fy, it follows that,
lim; 0 |[9; —1]| exists.

Proof. Lett € F(% ) and z € V. Since % satisfies condition (C), so

1
3 |t —%t|| =0 < |t —z|| implies that | %t —%z|| < ||t —z]|

Co iporary Math tics 776 | Kifayat Ullah, et al.




So by Lemma 1 (iii) with (3), we have

[1bi —t] = ||(1 — ;)0 + 0% O — 1|

= ||(1 —(x,-)19[+a,-t—(x,»t+oci%19,~—z\|

< (1—a0)||% —1]| + || —1]|

< 1% —1l.

Similarly by Lemma 1 (iii) with (3), we have

|lci —t] = [|(1 = Bi)bi + Bi% bi — ||

= [|(1 = Bi)bi + Bit — Bit + Bi% bi — 1|

< (1= Bi) [0 —t]| + Bil[bi —1]]

< b —1].

Using (4) and Lemma 1 (iii), we have

ldi —t| = || (1 = %)% bi+ 3% ci — 1]

= [|(1 = %)% bi+ yit — it + ¥, U ci —1t||

< (L=w)lIbi — 2[4l [bi — 1]

[|di —t| < |bi —1]],

and

D1 —t]| = [|% di — ]| < [0 —1]].

4)

©)

(6)

(7

It can be observed from (7) that ||+ —¢|| < || —¢||. It follows that {||¥; —¢||} is bounded and non-increasing.

Thus lim;_,. || — #|| exists for each element 7 of Fy, .
Now we proof the following theorem which is important for the existence of F.P.
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Theorem 1 Suppose V # ¢ be a convex closed subset of a UCB space 2. Assume that % : V — V be a SGNEM and
Fy # 0. Let {0;} is a sequence of Picard-P iterative process (3). Consequently {9;} is bounded in 2 with the property
]im,'_>°o ||19, — 02/19,” =0.
Proof. Since Fy # 0. So we may choose any ¢ € Fy, Lemma 2 indicates that {%;} is bounded and lim;_,. || — ¢||
exists. Consider

lim | — 1] = g.
i—oo
Need to prove that lim;_. || — % ;|| = 0. From (4) we have

||di —1]| <[]0 —1]]

=limsup||d; —¢t|| < limsup||d; —t|| = ¢q.

i—oo i—oo0

Since ¢ € Fy, we can apply Lemma 1 (iii) to get
% 0 —t|| <[]0 —1|

= limsup ||% ¥; —t|| < limsup||¥; —¢||.

Now from (7), we have

D1 —1]| < |ldi —1]l.
Using this together with (8), we obtain
g < liminf||d; 1]
i—o0
From (9) and (11), we obtain
lim [|d; —1][ = g.
j—oo

Since ||d; —t|| = im0 || (1 — %) 0: + ¥ % O — t]].

g =tim (1= 3)| (% — )|+ 4l1(2% 0~ )]

Considering (8), (10) and (13) along with the Lemma 1 (iii), one gets

iporary Math tics

®)

©

(10)

(11)

(12)

(13)
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lim || — % ]| = 0.
i—soo0

Conversely, assume that {9;} is bounded with the property lim;_,« || — % ;|| = 0. Need to prove that F, # 0. Let
t € A(E, {0%}). By Lemma 1 (iii),

r(%t, {9;}) =limsup||; — % t|| < limsup(3||Z O; — || + |8 —¢]|)

i—yoo i—yoo

= limsup || —¢||

1—yo0
= V(t, {191})
Thus %t € o7 (E, {0;}. We have %t =t. It is proved that t € Fy i.e Fy # 0. O

Following is the weak convergence theorem.

Theorem 2 Suppose 2 be a UCB space with the Opial property and V # ¢ be a convex closed subset of 2. Assume
that 7 : V — V be a SGNEM and Fy # 0. Let {0;} is a sequence of Picard-P iterative process (3). Then {0;} converges
weakly to an element of Fy, .

Proof. By Theorem 1, the sequence {%;} is bounded. Since & is UCB space. Thus a subsequence {0;, } of {9;}
exists. S.t {0;, } converges weakly to some ¢’ € V. From Theorem 1, limy, e, |0, — % pj || = 0. It is suffice to show that
the given sequence converges weakly to . Indeed if {1%;} does not converges weakly to #’. Then there exist a subsequence
{0;,} of {8}, which converges weakly, namely, ¢ # . From Theorem 1, it is annotated that limy_,e. ||;, — % ;|| = 0.
Applying Lemma 1, we get px’ € Fy. By Theorem 2 together with Opial’s condition, we have

fim lpi =11 = Jim |18, el < ey |19,
= lim || —¢| = lim ||, —¢|
r—o0 §—o0
< lim ||®; —7'|| = lim || —¢'|].
s—>00 ’ i—o0

Thus, we get lim;_e || 0 — || < lim; e ||0; — |, this is a contradiction. Hence proved. O

Finally we provide some strong convergence results defined by Picard-P iterative scheme (3) for the sequence {¥;}
with the help of SGNEM.

Theorem 3 Suppose Z is any UCB space and V C & is non empty convex and compact. If % : V — V is SGNEM
with Fy # 0 and {0;} is a sequence of Picard-P iterates (3). Then consequently, {9;} converges strongly to a F.P of Fy.

Proof. Since the domain V is convex and compact subset of & and {;} C V. It follows that a subsequence {¥;, }
of {¥;} with a strong limit s* € V i.e lim;, ||, —s*|| = 0. Then applying Lemmal (iii) for % = ¢, and 6 = s*,

|0y, — Hs™|| < 3[[H;,, — O, || +[[B, —s7[| forall &, 6 € V. (14)

m

Volume 7 Issue 1]2026| 779 Contemporary Mathematics



By Theorem 1, lim,-q%oo||19,-q — %ﬂqu = 0 and also lim;, e ||;
My, oo U s* =USs* = Us* =s".

By Lemma 4 lim;_,. || 9; — s*|| exist. Hence we have proved that s* € Fy and ¥; — p*. O

The strong convergence theorem without the compactness assumption is established as follows.

Theorem 4 Let 7 # 0 be convex closed subset of UCB space Z and % : V — V be a SGNEM and Fy, # (. Assume
that {1;} is a sequence of Picard-P iterative process (3). Then {¥;} convergence strongly to an element Fy, . If and only
if liminf; ;e d(%;, Fgz ) =0.

Proof. By Using Lemma 4, one has lim;_, || — s*|| exists for every s* € Fy,. It follows that liminf; . d(0;, Fy )
} and

— |l < - We need to prove that {0,,} is Cauchy in Fy . By looking into the

— % p;, || = 0. Accordingly Lemma 4 provide

m

exists. Accordingly liminfj . d(9;, Fz) = 0. The above limit provide us two subsequences of ¥ namely {;

{0} exists in Fy with property || 0

m

proof of Lemma 4, we can see that {3} is nonincreasing. Therefore,

1 1

— Ol < o +

1Om+1 = Ol < (|1 7ﬂim+l”+”ﬂi om+1 " om*

m+1

Consequently, we obtain that limy e || On+1 — On|| = 0. Which shows that {0,,} is cauchy in Fy. According
to the Lemma 3 we get that Fy, is closed. Thus, {t%;} converges to a point go € Fy5 . From Lemma 4, it follows that
lim;_ || 0 — 5*|| exists, so s* is the strong limit of {;}. O

Following strong convergence results defined by Picard-P iterative scheme (3) using condition (I) [16].

Theorem 5 Suppose ¥ # 0 closed convex subset of a UCBS & and suppose % : V — V satisfies SGNEM and
Fy # 0. If % is endowed with condition (1), then {1;} defined by (3) converges strongly to a point of % .

Proof. From the proof of Theorem 4. From the Theorem 1, we have liminf;_,. ||% p; — pi|| = 0. Condition (1) for
% provides liminf; . d(9;, Fz) = 0. Now all the requirements of the Theorem 4 are available, so we concludes that
{9} has a strong limit in Fy, . O

4. Numerical examples

With the help of numerical example, we observe that the Picard-P iteration process indubitably exhibit faster
convergence rate as compare to other iteration process in the setting of mapping with SGNEM.

Example Suppose V = [0, 5] C & and norm on V be defined as ||¥|| = || V O € V. Defined function% : V —»V
as

4
ﬁ% if9 €0, 3)
U — (15)
? if9 €3, 5.

Then, % is SGNEM. But not NEM.

Proof. We show that given mapping is not nonexpensive, having % = 2.9 and 6 = 3, then it is not nonexpensive
mapping.

Now we show that given mapping is Suzuki generalized nonexpensive.

Case (I): When ¢, 0 € [0, 3), we take % =0 and 6 = 2.8, then
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4 68
\u%o—u6| = ‘5—5 =0.56

9 —6]l =28,
which shows that,
% ®—u6| <|[0—8||
1 2
—||0—%||=—-=04.
1D -9 =2
This implies that,
1
S0 —zv| <|0-6ll=[|[zv-%8| <o -8l

Case (I): If ¥, 0 € [3, 5], we take ¥ = 3 and 6 = 5, then

5
%S — 0| = ‘22‘ =0.5

|0 —6]|=2

which shows that,
%0 — w6 <[00
Lio—ao|=L=0s
2 2 7
This implies that,
1
Sl —zv| <|0-6ll=[|[zv-%8| <o -8l

Case (III): If ¥ € [0, 3), and O € [3, 5] we take ¥ = 0 and 6 = 3, then
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4
|%0—%6|:’5—2‘:1.2
[|%— 8] = 3.
which shows that,
%0 — w6 <[5 6]
1 2
—||9 =% =—-=04.
SlIo -2 0]| =
This implies that,
1
Sl —2v| <0 -6ll=[[Zv-%6|l <|lv-6l.
Case (IV): If 8 € [0, 3), and ¥ € [3, 5] we take ¥ =5 and 6 = 2, then

5 6
US—UB||=|=—=|=13
I [ ]2 5\
[ 0] =3.
which shows that

%0 —%6| <|[d—6

1 5
S||9 - w9l =2 =125

This implies that

1
Sl —zv] <|[0 -6l =[|[zv-%8| <o -8l

Hence 7% is a SGNEM. O

The Table shows the tabular comparison of Picard-P iteration scheme with Abbas [17], Picard-Noor [18], P [11]
iteration process for initial value 0.5 respectively with o; = 0.22, B; = 0.66, %; = 0.25 and the graphical comparison is
given in Figure 1, which shows that Picard-P iteration process moving fast to the f.p of % as compared to other iterations
process.
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Table 1. Numerical results produced by Picard-P, Abbas, Picard-Noor and P iterative schemes for % of the Example 1

n Picard-P Abbas Picard-Noor P
1 0.5 0.5 0.5 0.5
2 0.98569536  0.96885920  0.92003936  0.91369280
3099959075  0.99806050  0.98721259  0.98510213
4 0.99998829  0.99987920  0.99795502  0.99742841
5 0.99999966  0.99999247  0.99967296  0.99955610
6 0.99999999  0.99999953  0.99994770  0.99992337
7 0.99999999  0.99999997  0.99999163  0.99998677
8 1 0.99999999  0.99999866  0.99999771
9 1 0.99999999  0.99999978  0.99999960
10 1 1 0.99999996  0.99999993
1.0000 |- 1
o Picard-P
0.9998 - = Abbas ]

_0.9996 -
+

% 0.9994
0.9992

0.9990

mp

I Picard-Noor

0.965 0.970

0.975 0.980

0.985

n

0.990  0.995

1.000

Figure 1. Graphical analysis of iteration schemes towards the fixed point of % in Example 1

We evaluate how closely the iterates x,, approach the fixed point 1 using arbitrary-precision calculations with different
parameter sequences. The graphs display the logarithm of the error, log(|x, — 1]), which highlights the magnitude of
convergence. For instance, a value of —d on the log scale indicates that the error is approximately 10~

As shown in Figure 2, the Picard-P and Abbas iterations exhibit rapid convergence, with steep error reductions
achieved within about 8-9 iterations. This observation is consistent with the iteration counts reported in Table 1. By
contrast, the Picard-Noor and standard P iterations converge more slowly, as reflected by the gentler decline in their
log-error curves, indicating comparatively weaker convergence rates.
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(a) Picard-P iteration (b) Abbas iteration
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Tteration number Iteration number
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(©) P iteration (d) Picard-noor iteration
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0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
ITteration number ITteration number
P Picard-Noor

Figure 2. Error analysis of Picard-P, Abbas, Picard-Noor and P iterative schemes

5. Application

In this section, the space Z([a, b]), is taken to be the set of all continuous real-valued functions on [a, b], with

Chebyshev norm |le — 8||., = max,e(,, 5| [e(u) — O(u)|. Clearly (Z([a, b]), |‘|..) is a BS, see [19]. Now, let a delay
differential equation s.t

e'(u) =« u, e(u), e(u—1)), u€ [ug, bl, (16)

with initial condition

S(u) =p(u), u € [up—, up). (17)

Some conditions are below:
() uy, beR, 7>0.

(i) % € 9([u0, b] x R?, R).
(ii)) p € 2([uo — 7, b, R).
(iv) There exist Ly > 0, s.t
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2
|% (u, uy, up) — % (u, vi, v2)| < Loy <Z|ui—vi|> Vi, vie R i=1, 2, u € [ug, b). (18)

(V) 2Ly (b —up) < 1.
By a solution of problem (16)-(17) we means the function p € 2([ug — T, b], nR)N 2" ([u, b], R).
The problem (16)-(17) can be reconstituted in the following form of integral equation:

p(u), u € [up— 7, uo)
e(u) = (19)
p(uo) + [ % (s, e(s), e(s—1))ds, u € [ug, b].

We can now present the following result.
Theorem 6 Assume that conditions (i) — (v) are satisfied. Then the problem (16)-(17) possesses a unique solution
p, in @([uo — 1, b], R)N 2 ([ug, b], R) and Picard-P LP (3.1) with real sequence {&}3, {Bi}o and {1}, in [0, 1]

satisfying Z o, B;y; = oo, converges to 7.

=0
Proof Let {0}, be a iterative sequence generated by V 1.P (2) for the operator % : Z([up — 7, b], R) —
@([ up—T, b]? )sdeﬁned byy

p(u), u€ up— T, up)
p(uo)JrfoO%(s, e(s), e(s—1))ds, u€ [up, b).

Denote ¢ as a F.P of % . We will prove that ¥; — 7 as i — eo. For u € [ug — 7, ug], clearly ¥; — t as i — co.
Next we show that u € [ug, b], then

1bi =t = [[(1 — 04) % + % O — U1,
< (1—04) |0 —t]|o, + 0 || %0 — Ut

=(1—0) [0 —t]o+ 0 [maX |% (1) — U t(u)]

T

:(1—(11')”19,'—[”004‘(%[ max
u€ug—7, b

\p<uo>+ / %( 8(6), V(s —7)ds —puo) — | %( ((s), t(s—7))ds

:(lfa,-)||19,'7t||w+oc, max
0 T, b

/ U (s, Oi(s), (s — 1)) —U s, 1(s), t(s— 7))ds

Volume 7 Issue 1]2026| 785 Contemporary Mathematics



< (1—0) |0 =1l + 04
u

<(-a) |3t [
U

0

max
€ [u()ff, b]

u
Loy

s€lug—7, b

/u:Lf(It%(s> —t(s)|+[0i(s — 1) —t(s — 7)|) ds

(Ae[max [9(s) —t(s)|+ max |19;(s—7)—t(s—r)>ds

s€ug—1, b

t
— (1= o) |8l + 05 [ Loy (19—t + 195 —r]..) ds
uo

< (1—04) |0 =1, +20Ley (b —10) || — 1],

= (1= 01 =2Ly (b—uo))) |0 — 1o -

Also

llci —tll.. = |(1 = Bi)b; + Bi% by — %'t

C

< (1=B) 1bi —tllo + Bi| % bi — %1,

=(1-p) Hbi—f||w+ﬁiue[

=(1=Bi) |bi —tllo+Bi max
u€lug—t,
= (1=B)lIbi—tllo+Bi max
u€up—71

<(1-8) Hbi*t||oo+ﬁiue[

max
uy—"7T

max
ug—7T

b;
» % bi(u)

b]

. bl

—Ut(u)|

/”:@/(s, bils), bils — 1)) — % (s, 1(s), t(s— T))ds

(20)

%wm+LEWam@»m@stpwwL&wxwwn@wws

"Ly (1bi(s) — 1()| + bi(s — 7) — 1(s — 7)) ds

s b] Jug

su—&>m—mm+&ly@( max

s€[up—7, b)

|bi(s) —t(s)|+ max

s€lup—1, b

!
= (1=PB) i —t||w+l3i/ Ly (I1bi =l + Ibi — l].) ds
up

< (1=Bi) 1bi =t +2BiLay (b —t0) ||b; — ]|,

= (1= Bi(1 = 2Ly (b—up))) |b: — |, -

iporary Math tics

|bi(s—1)—t(s— ’L’)|> ds

1)
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Similarly

ldi = tllow =[|(V = %) bi+ Y% ci = 1|

=(1—17%) max

=(1-7) max

S =) % bi— Ut oo+ vi|% ci — 1|

=(1—%) max |%bi(u)—Xt(u)|+7y max |%ci(u)—Ut(u)

u€ug—r, b u€lup—7, b)

p (o) +/M:@/(s, bis), bi(s—7))ds — p(uo) /; U (s, 1(s), t(s— 7))ds

u€up—1, b

+ max
yue[uo T, b|

plun)+ [ (s, afs), s —)ds —pluo) = [ % (. 1(5). tls— )

/ U (s, bil — D)) = U (s, 1(s), t(s —7))ds

u€lug—1, b

Y% max
u€lup—7, b)

/ U (s, ci(s), cils— ) — % (s, 1(s), t(s — 7))ds

§(l%)/“L%<€[max |bi(s) —t(s)|+ max |bi(sr)t(s1)>ds

ug s€lup—7, b s€[up—7, b)

o max [ L (jeils) ~ 1) +leils — 7) —1(s — 7)) ds

u€lug—7, b Jug

g(l—y,-)|\b,-—t||m+y,-/ La;/( max |c;i(s) —#(s)|+ max |ci(s—’c)—t(s—r)|)ds
uo SE[Mo—T,b]

s€[up—1, b

°t !
~=1) [ L (b=t t b=l )ds+ 3 [ La (et +llei—1ll)ds
ug

o

<(1=%) [1bi =l oo + 2%l (b —10) [|ci — 1]

=(1=%)(1 =2Ly (b—wuo))) [lci — 1| (22)

By using (20), (21), (22) together and also use assumption (v), we get,

1041 = 1] < (1= @iBi¥%(1 — 2Ly (b—uo))) |0 — 1] - (23)

Volume 7 Issue 1]2026| 787 Contemporary Mathematics



Therefore, inductively
i
1811 — 1]l < [0 — 0Bivi(1 = 2L (b — u0))) |90 — 1]l - (24)
k=0

From assumption (v), it follows that 1 — o;8;% (1 — 2L (b —up)) < 1. Since 1 — ¥ < e~ ? forall ¥ € [0, 1], (24)
yields

190 —t]l..

o(1=3Lg (b—u0)) Lo Bt

[[Bir1 =1, < (25)

By taking limit (25) on both sides,we get, lim;_,o || —¢t]|., =0, i.e. ¥ — ¢ for i — oo, hence V iterations converges
to the solution of problem (16)-(17). O

6. Comparison via polynomiography

Bahman Kalantari devised polynomiography, a digital art form and visual analytic technique for root-finding [20,
21]. It involves the visualization of complicated polynomials, frequently with the use of mathematical concepts and
iterative algorithms. The word polynomiography is a portmanteau of polynomial and graph with the emphasis on graphical
representation of polynomial functions.

Numerous types of iteration processes are compared and analyzed using polynomiography techniques [22-26]. In
polynomiography, convergence properties of a iteration process is used to generate a polynomiograph. The iteration
function is use to approximate the root of a polynomial. One well-known root-finding algorithm is Newton’s iteration
method, also known as the Newton-Raphson method. Its definition is:

vit = vy — ) 26)
g/("n)

where vg € C is the starting point and g is a polynomial with complex coefficients. Now, writing (26) in terms of a fixed
point iteration process as follows:

Vat1 = T (Vn), 27)

where T (v) =v— 8(v) . If the iteration process (27) converges to any fixed point p € C of .7, then one has

g'v)

8(p)
p=Jx)=p— (28)
) g'(p)
Thus, g/(p ) = 0, which means that p is a root of g. Finding the fixed points of T is therefore equal to solving the

problem of finding the roots of g. This enables us to use different fixed point iteration processes, such as the suggested
Picard-S,, iteration.
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Now, we apply the algorithm given as a pseudocode in Algorithm 1 to produce a polynomiograph. We color the points
using the so called iteration coloring [21]. In this coloring technique, color assigning to each starting point is accomplished
on the basis of number of iterations completed. As a result, the generated polynomiograph provides information about
the speed of convergence of the iteration process, recorded as Average Number of Iterations (ANI) [27].

Algorithm 1 Creation of a polynomiograph.

Input: g € C[Z], degg > 2-polynomial; L-iterative method; S C C-region; K-maximum number of iterations;

e-precision; colors-color map.

Output: Polynomiograph of the complex-valued polynomial g over the region S.

1 for vop € S do

2 n=0

3 while |g(v,)| >€eandn <K do

4 Vit :L(Vna g)

5 n=n+1

6  Assign a color to n from the color map colors and apply it to vg.

In the considered example, we use three sets of iterations’ parameters

*a=0.05,3=0.05,y=0.05;

ca=05,4=05v=0.5;

ca=09,=09,y=0.9.

For each of the three sets of iteration parameters, we created polynomiographs for the polynomial g(v) =1° — 1
using the Picard-P, Picard-Noor, Abbas, and P iterations found in the literature. We used the following parameters: area

S =[5, 5]?, maximum number of iterations K = 25, € = 0.001 and a color map given in Figure 3.
0 5 10 15 20 25

Figure 3. Colour map used in the examples

The produced polynomiographs for each of the three parameter values are shown in Figures 4-6 while the Table 2
contains the ANI values that were recorded from the polynomiographs. We can note distinct convergence rate for each
iteration. Visual examination reveals that the proposed Picard-P iteration achieves the fastest speed of convergence,
followed by the iterations of Picard-Noor, P, and Abbas. The ANI values in Table 2 support these observations. For
the parameter values @ = 0.05, B = 0.05, ¥y = 0.05, we can note that the Picard-P iteration yields the lowest ANI value
0f 4.94981. The ANI values for other iterations are given as: Abbas (5.09126), Picard-Noor (7.35969) and P (8.84724).

Table 2. ANI values of the polynomiographs given in Figures 4-6

Iteration a=B=y=005 a=B=y=05 a=Bf=y=09

Picard-P 4.94981 3.63054 2.91260
Picard-Noor 7.35969 4.51131 3.23865
P 8.84724 5.64512 4.08255
Abbas 5.09126 4.65075 4.53038

The polynomiographs for the parameter setting @ = 0.5, f = 0.5, y=0.5 are shown in the Figure 5. We can notice that
the P iteration yields the slowest speed of convergence. The Picard-P iteration method is the fastest of the other iterations
that have been studied. The Picard-P iteration produces the lowest NAI value of 3.63054. In terms of convergence speed,
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the Picard-Noor iteration is the second best with the value 4.51131, followed by the Abbas (4.65075), and P (5.64512)
iterations.

We use high values for the parameters in the third parameter setting. The fastest convergence rate is once more
attained by the Picard-P iteration. We can see that unlike for the other two parameter choices, in the high parameter
settings, all iterations require fewer iterations to required less number of iterations to reach the roots of the polynomial.
The obtained NAI values from these generated polynomiographs for high parameter setting are shown in the Table 2.

—5.00 — —5.00 - . =
—5.00 -1.70 1.70 5.00 —5.00 —-1.70 1.70 5.00

Figure 4. Polynomiographs generated by various iteration processes with the parameters o« = 0.05, § = 0.05, y = 0.05

Picard-P

5.00 b ‘ Picard-Noor

1.70

2500 -1.70 1.70 5.00
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(©) P (d) Abbas

~5.00 — 5.00 A
25.00 -1.70 1.70 5.00 25.00 -1.70 1.70 5.00

Figure 5. Polynomiographs generated by various iteration processes with the parameters o« = 0.5, § = 0.5, y=0.5

Picard-P

(b) Picard-Noor

—=5.00
-5.00 -1.70 1.70 5.00
(©) P (d) Abbas
5.00 5.00

~5.00 ab g LA
—=5.00 -1.70 1.70 5.00 -5.00 —-1.70 1.70 5.00

Figure 6. Polynomiographs generated by various iteration processes with the parameters o = 0.9, § = 0.9, y=0.9

7. Conclusions

In view of the above discussion, we noted that the main theorems and outcome of this paper the convergence
performance of Picard-P iterative scheme is examined using numerical tabulation and graphs in relationship with SGNE
mappings. Strong and weak F.P convergence results using Picard-P iteration scheme for SGNE mappings are proved.

Moreover, iterative schemes find extensive applications beyond fixed-point theory, notably in the generation of
fractals [28—30] and artistic patterns [27]. Consequently, a promising direction for future research lies in exploring the
potential of the Picard-P iteration process for fractal formation and artistic design.

Volume 7 Issue 1/2026] 791 Contemporary Mathematics



Acknowledgement

The author sincerely expresses his profound gratitude to Dr. Krzysztof Gdawiec for his invaluable guidance,
insightful suggestions, and continuous encouragement throughout this research. The author also extends heartfelt thanks
to Prof. Dr. Maggie Aphane for her generous financial support, which made this work possible. The author further
wishes to thank the anonymous reviewer for their insightful comments and valuable suggestions, which helped improve
the quality of this paper.

Funding

The authors did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit
sectors.

Confilict of interest

The authors declare no conflict of interest.

References

[1] Zhang J, Yang G. Low-complexity tracking control of strict-feedback systems with unknown control directions.
IEEE Transactions on Automatic Control. 2019; 64(12): 5175-5182. Available from: https://doi.org/10.1109/TAC.
2019.2910738.

[2] Browder FE. Nonexpansive nonlinear operators in a Banach space. Proceedings of the National Academy of Sciences.
1965; 54(4): 1041-1044.

[3] Gohde D. Zum prinzip der kontraktiven abbildung. Mathematische Nachrichten. 1965; 30(3-4): 251-258. Available
from: https://doi.org/10.1002/mana.19650300312.

[4] Kirk WA. A fixed point theorem for mappings which do not increase distances. The American Mathematical Monthly.
1965; 72(9): 1004-1006. Available from: https://doi.org/10.2307/2313345.

[5] Suzuki T. Fixed point theorems and convergence theorems for some generalized nonexpansive mappings. Journal of
Mathematical Analysis and Applications. 2008; 340(2): 1088-1095. Available from: https://doi.org/10.1016/j.jmaa.
2007.09.023.

[6] Mann WR. Mean value methods in iteration. Proceedings of the American Mathematical Society. 1953; 4(3): 506-
510. Available from: http://dx.doi.org/10.1090/S0002-9939-1953-0054846-3.

[7] Ishikawa S. Fixed points by a new iteration method. Proceedings of the American Mathematical Society. 1974; 44(1):
147-150. Available from: https://doi.org/10.2307/2039245.

[8] Noor MA. New approximation schemes for general variational inequalities. Journal of Mathematical Analysis and
Applications. 2000; 251(1): 217-229. Available from: https://doi.org/10.1006/jmaa.2000.7042.

[9] Agarwal RP, O’Regan D, Sahu DR. Iterative construction of fixed points of nearly asymptotically nonexpansive
mappings. Journal of Nonlinear and Convex Analysis. 2007; 8(1): 61-79.

[10] Abbas M, Nazir T. Some new faster iteration process applied to constrained minimization and feasibility problems.
Matematicki Vesnik. 2014; 66(2): 223-234.

[11] Sainuan P. Rate of convergence of P-iteration and S-iteration for continuous functions on closed intervals. Thai
Journal of Mathematics. 2015; 13(2): 449-457.

[12] Clarkson JA. Uniformly convex spaces. Transactions of the American Mathematical Society. 1936; 40(3): 396-414.
Available from: https://doi.org/10.2307/1989630.

[13] Sahu DR, O’Regan D, Agarwal RP. Fixed Point Theory for Lipschitzian-Type Mappings with Applications. New
York: Springer; 2009. Available from: https://doi.org/10.1007/978-0-387-75818-3.

[14] Schwartz JT. Nonlinear Functional Analysis. Vol. 4. USA: CRC Press; 1969.

Co iporary Math tics 792 | Kifayat Ullah, et al.



https://doi.org/10.1109/TAC.2019.2910738
https://doi.org/10.1109/TAC.2019.2910738
https://doi.org/10.1002/mana.19650300312
https://doi.org/10.2307/2313345
https://doi.org/10.1016/j.jmaa.2007.09.023
https://doi.org/10.1016/j.jmaa.2007.09.023
http://dx.doi.org/10.1090/S0002-9939-1953-0054846-3
https://doi.org/10.2307/2039245
https://doi.org/10.1006/jmaa.2000.7042
https://doi.org/10.2307/1989630
https://doi.org/10.1007/978-0-387-75818-3

[15] Opial Z. Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bulletin of
the American Mathematical Society. 1967; 73(4): 591-597.

[16] Senter HF, Dotson WG. Approximating fixed points of nonexpansive mappings. Proceedings of the American
Mathematical Society. 1974; 44(2): 375-380. Available from: https://doi.org/10.2307/2040440.

[17] Ullah K, Arshad M. Numerical reckoning fixed points for Suzuki’s generalized nonexpansive mappings via new
iteration process. Filomat. 2018; 32(1): 187-196. Available from: https://doi.org/10.2298/FIL1801187U.

[18] Panwar A, Reena. Approximation of fixed points of a multivalued p-quasi-nonexpansive mapping for newly defined
hybrid iterative scheme. Journal of Interdisciplinary Mathematics. 2019; 22(4): 593-607. Available from: https:
//doi.org/10.1080/09720502.2019.1651013.

[19] Himmerlin G, Hoffmann K. Numerical Mathematics. Heidelberg: Springer; 2012. Available from: https://doi.org/
10.1007/b9888S5.

[20] Kalantari B. Polynomiography: From the fundamental theorem of algebra to art. Leonardo. 2005; 38(3): 233-238.
Available from: https://doi.org/10.1162/0024094054029010.

[21] Kalantari B. Polynomial Root-Finding and Polynomiography. Singapore: World Scientific; 2009. Available from:
https://doi.org/10.1142/6265.

[22] Nawaz B, Ullah K, Gdawiec K. Convergence analysis of Picard-SP iteration process for generalized -
nonexpansive mappings. Numerical Algorithms. 2025; 98(4): 1943-1964. Available from: https://doi.org/10.1007/
s11075-024-01859-z.

[23] Nawaz B, Ullah K, Gdawiec K. Convergence analysis of a Picard-CR iteration process for nonexpansive mappings.
Soft Computing. 2025; 29(2): 435-455. Available from: https://doi.org/10.1007/s00500-025-10515-0.

[24] Panigrahy K, Mishra D. A note on a faster fixed point iterative method. The Journal of Analysis. 2023; 31(1): 831-
854. Available from: https://doi.org/10.1007/s41478-022-00485-z.

[25] Yu TM, Shahid AA, Shabbir K, Shah NA, Li YM. An iteration process for a general class of contractive-like
operators: Convergence, stability and polynomiography. AIMS Mathematics. 2021; 6(7): 6699-6714. Available
from: https://doi.org/10.3934/math.2021393.

[26] Usurelu GI, Postolache M. Algorithm for generalized hybrid operators with numerical analysis and applications.
Journal of Nonlinear and Variational Analysis. 2022; 6(3): 255-277. Available from: https://doi.org/10.23952/jnva.
6.2022.3.07.

[27] Gdawiec K, Kotarski W, Lisowska A. On the robust Newton’s method with the Mann iteration and the artistic
patterns from its dynamics. Nonlinear Dynamics. 2021; 104(1): 297-331. Available from: https://doi.org/10.1007/
s11071-021-06306-5.

[28] Nawaz B, Ullah K, Gdawiec K. Generation of Mandelbrot and Julia sets by using M-iteration process. Chaos,
Solitons and Fractals. 2024; 188: 115516. Available from: https://doi.org/10.1016/j.chaos.2024.115516.

[29] Nawaz B, Ullah K, Gdawiec K. Analyzing complex dynamics of Mandelbrot and Julia sets generated using Picard-
SP iteration scheme. The European Physical Journal Special Topics. 2025. Available from: https://doi.org/10.1140/
epjs/s11734-025-01579-y.

[30] Nawaz B, Gdawiec K, Ullah K, Aphane M. A study of Mandelbrot and Julia Sets via Picard-Thakur iteration with
s-convexity. Plos One. 2025; 20(3): 1-34. Available from: https://doi.org/10.1371/journal.pone.0315271.

Volume 7 Issue 1]2026| 793 Contemporary Mathematics


https://doi.org/10.2307/2040440
https://doi.org/10.2298/FIL1801187U
https://doi.org/10.1080/09720502.2019.1651013
https://doi.org/10.1080/09720502.2019.1651013
https://doi.org/10.1007/b98885
https://doi.org/10.1007/b98885
https://doi.org/10.1162/0024094054029010
https://doi.org/10.1142/6265
https://doi.org/10.1007/s11075-024-01859-z
https://doi.org/10.1007/s11075-024-01859-z
https://doi.org/10.1007/s00500-025-10515-0
https://doi.org/10.1007/s41478-022-00485-z
https://doi.org/10.3934/math.2021393
https://doi.org/10.23952/jnva.6.2022.3.07
https://doi.org/10.23952/jnva.6.2022.3.07
https://doi.org/10.1007/s11071-021-06306-5
https://doi.org/10.1007/s11071-021-06306-5
https://doi.org/10.1016/j.chaos.2024.115516
https://doi.org/10.1140/epjs/s11734-025-01579-y
https://doi.org/10.1140/epjs/s11734-025-01579-y
https://doi.org/10.1371/journal.pone.0315271

	Introduction
	Preliminaries
	Main result
	Numerical examples
	Application
	Comparison via polynomiography
	Conclusions

