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Abstract: We study the nonconvex integral
∫ b

a L(x(t) , x ′ (t)) dt, defined in the class of the absolutely continuous
functions x : [a, b] → R having x(a) = A & x(b) = B, using a superlinear L ⊗B-measurable nonconvex lagrangian
L :R×R→ [0, ∞] freely taking∞ values and having L(s, ·) lower semicontinuous. Our aim is to look for weak hypotheses
under which true minimizers still exist. In previous papers we have shown that 0-convexity L∗∗ ( · , 0) = L( · , 0) suffices
provided L∗∗ ( · , ·) is lower semicontinuous at velocity zero, namely lsc at (s, 0) ∀s. In this paper we present sufficient
conditions for existence of true minimizers in the 0-nonconvex case instead, i.e. L∗∗ ( · , 0)< L( · , 0). This is important
because when a relaxed minimizer is not a true minimizer then there exists another relaxed minimizer y(·) which has a
non-singleton constancy interval where y(·)≡ s ′ with L∗∗ (s ′, 0)< L(s ′, 0). Our simplest hypothesis to avoid this is that
sublevel sets of L∗∗ ( · , 0) contain no singletons, provided L∗∗ ( · , ·) and (L−L∗∗)( · , ·) are both lsc at velocity zero. We
also prove new necessary conditions.

Keywords: calculus of variations, optimal control, pointwise state and velocity constraints, general nonconvex lagrangians,
Lipschitz regularity, DuBois-Reymond necessary condition

MSC: 49J05, 49J30, 49K05, 49K30

1. Introduction
Wewish to find weak hypotheses under which the following single nonconvex integral, defined for scalar Absolutely

Continuous (AC) functions x(·), still has true minimizers:

J (x(·)) :=
∫ b

a
L
(
x(t) , x ′ (t)

)
dt on X :=

{
x(·) ∈W 1, 1 ([a, b]) : x(a) = A & x(b) = B

}
. (1)

We allow L( · , ·) to take ∞ values freely and assume it to be a Basic Hypotheses function (BH-function), i.e. to
satisfy our
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Basic Hypotheses : L : R×R→ [0, ∞] is L ⊗B−measurable

with L( · , 0) Borel and L(s, ·) lsc (lower semicontinuous) ∀s

superlinear, i.e.
infL(R, ξ )

|ξ |
→ ∞ as |ξ | → ∞.

(2)

As usual, we define its bipolar L∗∗ ( · , ·) by epiL∗∗ (s, ·) := co epiL(s, ·) ∀s, where co epi denotes the closed-convex
hull of the epigraph; and say that a function yc (·) is a relaxed minimizer of the integral in (1) if it minimizes the convexified
integral

∫ b

a
L∗∗ (x(t) , x ′ (t)

)
dt on X . (3)

Our basic hypothesis (2) ensures Lebesgue-measurability of the integrands L(x(·) , x ′ (·)) and L∗∗ (x(·) , x ′ (·)), so
that the Lebesgue integrals in (1) and (3) always exist, with values in [0, ∞]. On the other hand, the growth condition
in (2) allows one to apply Tonelli’s direct method to prove existence of a relaxed minimizer yc (·), using the results of
[1, 2], which weakened Tonelli’s lsc hypothesis on L∗∗ ( · , ·) in the scalar case. In [3] we further generalized these results,
proving existence of relaxed minimizers whenever L∗∗ ( · , ·) is 0-lsc-convex, whose definition appears below, in (9).
Three interesting special cases of this definition are the following, it suffices to have: either L( · , ·) lsc; or

L∗∗ ( · , ·) lsc at ξ = 0 (or, more precisely, at (s, 0) ∀s); (4)

or else integrability in s of the slopes of L∗∗ (s, ·) near velocity zero, in the sense that

L∗∗ ( · , 0) is lsc and ∃ l, M : R→ (0, ∞) with (l ×M)(·) ∈ L1
loc (R)

such that L∗∗ (s, ξ )≤ l (s) ∀|ξ | ≤ 1
M (s)

∀s.

(5)

Once we ensure existence of a relaxed minimizer yc (·), our aim is to smartly change yc (·) in order to obtain a new
relaxed minimizer y(·) which moreover truly minimizes the nonconvex integral in (1). A crucial hypothesis for this is

0-convexity: L∗∗ ( · , 0) = L( · , 0) . (6)

Indeed, several papers (see the paragraph starting after (8)) have weakened the hypotheses on L( · , ·) through
assuming (6).

However, desiring here to avoid imposing (6), we introduce the concept of 0-relaxed minimizer y0 (·) for the integral
in (1). Its precise definition appears below (in (13), using (11), (12), (14)) but it means a minimizer of the 0-convexified
integral, whose lagrangian L0 ( · , ·) is L( · , ·) changed only at velocity zero, namely at the points (s, 0), to equal L∗∗ ( · , ·)
there. Clearly this is a true minimizer whenever (6) holds true. Moreover, by [3, theorem 1], such y0 (·) can always be
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taken bimonotone, which means, at least, that apart from an interval (a ′, b ′ )⊂ [a, b] where y0 (·) has a constant value s ′,
along the remaining subintervals (a, a ′ ) and (b ′, b) it is strictly monotone with derivative y ′

0 (t) ̸= 0 a.e.. Both extreme
cases a ′ = b ′ and (a ′, b ′ ) = (a, b) are possible.

So, why do we wish to avoid here the hypothesis (6)? Because while existence of a 0-relaxed minimizer y0 (·) is
known under quite general hypotheses, such y0 (·) frequently is not a true minimizer because it stops at a point s ′ where
(6) fails, namely L∗∗ (s ′, 0) < L(s ′, 0). Here is a simple intuitive example of this situation: L(s, ξ ) := s2 +

(
ξ 2 −1

)2,
in which, obviously, L∗∗ (s, ξ ) turns out to equal L(s, ξ ) for |ξ | ≥ 1 and be s2 for |ξ | ≤ 1 (why?), while L0 (s, ξ ) equals
L(s, ξ ) for ξ ̸= 0 (why?) and is s2 at ξ = 0; then, with A = 0 = B, obviously y0 (·) ≡ 0 is a relaxed minimizer and a
0-relaxed minimizer, but it is not a true minimizer, since L0 (y0 (·) , y ′

0 (·)) ≡ 0 while L(y0 (·) , y ′
0 (·)) ≡ 1. Indeed, it is

well-known that true and relaxed minimizers give the same value to their respective integrals. In reality, there is no true
minimizer, in this case (why?), however if we change s2 to become the positive part of s2 − ε , for a small ε > 0 then, as
we show in Theorem 4 below, one can modify a 0-relaxed minimizer y0 (·) along the interval (a ′, b ′ ) where it stops, so
as to obtain a true minimizer y(·) which makes small oscillations there, instead of stopping.

We present (below, in (23)) a general extra hypothesis that allows such modification to be made. Provided
(L−L∗∗)( · , ·) is lsc at velocity zero, this extra hypothesis is satisfied whenever

∀s ′ ∈ R ∃s′ ′ ̸= s ′ : L∗∗ (·, 0) decreases along co
{

s′, s′ ′
}
as the distance from s′ increases. (7)

Intuitively, (7) means that sublevel sets of L∗∗ ( · , 0) have no singletons. Notice that the intuitive example above
does not satisfy (7) at s ′ = 0 when ε = 0, but satisfies it when ε > 0 (why?).

Here is our simplest, yet powerful, result:
Theorem 1 Let L( · , ·) be a BH-function (as in (2)) with L∗∗ ( · , ·) and (L−L∗∗)( · , ·) both lsc at ξ = 0. If (7)

holds true then there exists a true minimizer for the fully nonconvex integral in (1).
This result is much simpler and stronger (by having much weaker hypotheses) than those existing in the literature.

However, its hypotheses may still be much weakened. Indeed, as we show in section 3, our general extra hypothesis (23)
is much weaker than (7). Indeed, (23) is much weaker than replacing the word “decreases” in (7) by “mean-decreases”
and allows oscillations, as our final Example 2 shows. Moreover, the only points s ′ that matter in (7) are those satisfying
the following:

L∗∗ (s ′, 0
)
= minL∗∗ (co

{
s ′, A, B

}
, 0

)
< L

(
s ′, 0

)
.

Several authors have previously published results proving existence of true minimizers for the nonconvex integral
(1). To begin with, [4–12] have considered sum-type lagrangians, namely

L(s, ξ ) := ψ (s)+ρ (s) h(ξ ) (8)

without ρ (·), having ψ (·) lsc, h(·) lsc and with ψ (·) satisfying specific geometries. For example, [7] treated, more
generally, the time-dependent vectorial case ψ (t, s)+h(t, ξ ) with ψ (t, ·) concave; while [9] imposed (7) ∀s ′ ∈ R (but
assuming strictly decrease in case h∗∗ (0)< h(0)) and in [10] ψ (·) is assumed concave-monotone, namely concave (resp.
monotone) along each interval of an open set C (resp. M ) with C

⋃
M = R. On the other hand, [13, 14] treated the

general case L(s, ξ ), imposing geometric constraints, at least (7).
Moreover, the papers [3, 9, 15–19] considered weaker hypotheses on L( · , ·) but under the extra hypothesis (6).

While the first four papers dealt mainly with the sum case, [18] treated completely the affine case (8) with ψ (·), ρ (·),
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h(·) all lsc, after preliminary results in [16]. Finally, [3] considered superlinear BH-functions L( · , ·) under (6) and (9)
below (in particular under (4) or (5)). The paper [19] also considered Lipschitz minimizers.

For a broader mathematical audience, here are some classical books on relaxation and lower semicontinuity in
variational problems: [20–22].

We finish the Introduction by explaining the organization of this paper. Its section 2 is devoted to present known
definitions and results from our previous papers; and, using these, to prove a new result, Theorem 2, on existence of
0-relaxed minimizers. Section 3 is dedicated to our main result, Theorem 4, and to further considerations.

2. Basic definitions and existence of 0-relaxed minimizers
Here we recall definitions and results established in our previous papers [3, 17–19, 23, 24], we prove a new result,

Theorem 2, on existence of 0-relaxed minimizers, and improve our DuBois-Reymond necessary condition.
Definition 1 Let L( · , ·) be a BH-function (as in (2)). We say that the function L∗∗ ( · , ·) is 0-lsc-convex whenever

L∗∗ ( · , ·) is approximable by integrable slopes at zero, in the sense that these two conditions are satisfied:

∀n ∈ N ∃φn : R→ [0, n] lsc with (φn (s))↗ L∗∗ (s, 0) ∀s

∃mn (·) ∈ L1
loc (R) : L∗∗ (s, ξ )≥ φn (s)+mn (s)ξ ∀s, ξ .

(9)

Notice that any superlinear lsc function L : R×R→ [0, ∞] must have L∗∗ ( · , ·) 0-lsc-convex, because in such case
L∗∗ ( · , ·) has to be lsc; indeed, more generally, for any BH-function L( · , ·), if L∗∗ ( · , ·) satisfies (4) or (5) then it satisfies
also (9) (see [3, Theorem 1]). In particular (in contrast with (5), which is the special case of (9) for constant sequences) a
0-lsc-convex function L∗∗ ( · , ·) may have L∗∗ (s, 0) = ∞. Notice that there are 0-lsc-convex functions which are not lsc
at ξ = 0, an example appears below, in (26).

Proposition 1 (See [3, theorem 1]) Let L( · , ·) be a BH-function with L∗∗ ( · , ·) 0-lsc-convex. Then there exists a
relaxed minimizer yc (·), as defined before (3). Moreover, yc (·) may be taken bimonotone, i.e. satisfying Definition 3 (b)
below.

In what follows, considering the subdifferential ∂ L∗∗ (s, ξ ) of L∗∗ (s, ·) at ξ (see e.g. [25, p.20]), we define the
1-dim (or 0-dim, why?) faces of epiL∗∗ (s, ·) adjacent to ξ = 0,

F (s) := (∂ L∗∗ (s, ·))−1 (∂ L∗∗ (s, 0)) = {ξ ∈ R : ∂ L∗∗ (s, ξ )∩∂ L∗∗ (s, 0) ̸= /0} ,

so that: {0}∪F (s) is an interval [α (s) , β (s) ] with α (s)≤ 0 ≤ β (s) ;

L∗∗ (s, ·) is affine along each interval [α (s) , 0 ], [0, β (s)];

L∗∗ (s, α (s)) = L(s, α (s)) , L∗∗ (s, β (s)) = L(s, β (s)) ;

L∗∗ (s, ·) is affine along [α (s) , β (s) ] at those s where L∗∗ (s, 0)< L(s, 0) .

(10)

Definition 2 Considering any BH-function L( · , ·) and its bipolar L∗∗ ( · , ·), define its 0-convexified lagrangian by

Volume 7 Issue 1|2026| 555 Contemporary Mathematics



L0 (s, ξ ) :=

{
L(s, ξ ) for ξ ̸= 0 ∀s

L∗∗ (s, 0) at ξ = 0 ∀s.
(11)

Definition 3
(a) We call yc (·) a relaxed minimizer provided yc (·) minimizes (3).
(b) We call yc (·) bimonotone whenever

(i) ∃a ′, b ′ with a ≤ a ′ ≤ b ′ ≤ b and yc (·) constant on [a ′, b ′ ];

(ii) yc (·) is strictly monotone along [a, a ′ ] and is strictly monotone along [b ′, b], with

y ′
c (t) /∈ {0}∪ (α (yc (t)) , β (yc (t))) for a.e. t ∈ [a, a ′ ]∪ [b ′, b].

(12)

We say that yc (·) stops if a ′ < b ′; otherwise we say that it does not stop. Notice that a bimonotone relaxed minimizer
may increase strictly along one of the subintervals of non-constancy and decrease strictly along the other one.

(c) We call y0 (·) a 0-relaxed minimizer provided y0 (·) is a relaxed bimonotone minimizer satisfying

(i) L∗∗ (y0 (t) , y ′
0 (t)

)
= L

(
y0 (t) , y ′

0 (t)
)
a.e. on [a, a ′ ] and on [b ′, b];

(ii) s ′ := y0
(
a ′ )= y0

(
b ′ ) =⇒ L∗∗ (s ′, 0

)
= min L∗∗ (y0 ([a, b]) , 0) ;

(iii)
∫ b

a
L0 (y0 (t) , y ′

0 (t)
)

dt =
∫ b

a
L∗∗ (y0 (t) , y ′

0 (t)
)

dt;

(13)

so that, in particular, y0 (·) also minimizes the 0-convexified integral

∫ b

a
L0 (x(t) , x ′ (t)

)
dt on X . (14)

Theorem 2 (There exist 0-relaxed minimizers)
Let L( · , ·) be a BH-function with L∗∗ ( · , ·) 0-lsc-convex. Then the nonconvex integral in (1) has a 0-relaxed

minimizer y0 (·), as in Definition 3 (c) and (b).
Proof. From L∗∗ ( · , ·) ≤ L0 ( · , ·) ≤ L( · , ·), it follows L∗∗ ( · , ·) =

(
L0

)∗∗
( · , ·) ≤ L0 ( · , ·) ≤ L( · , ·); and since,

from (11), L∗∗ ( · , 0) = L0 ( · , 0), one gets L∗∗ ( · , 0) =
(
L0

)∗∗
( · , 0) = L0 ( · , 0) ≤ L( · , 0) . Clearly L0 ( · , ·) is a 0-

convex BH-function (as in (2)): it is L ⊗B-measurable, L0 (s, ·) is lsc ∀s (since L∗∗ ( · , 0) ≤ L( · , 0) and L(s, ·) is
lsc ∀s) and L0 ( · , ·) ≥ 0 (since L∗∗ ( · , ·) ≥ 0). Moreover,

(
L0

)∗∗
( · , 0) = L0 ( · , 0) = L∗∗ ( · , 0) is lsc (by (9)) and(

L0
)∗∗

( · , ·) = L∗∗ ( · , ·) is 0-lsc-convex. Therefore, Proposition 1 guarantees existence of a minimizer yc (·) for the
integral

∫ b

a

(
L0)∗∗ (x(t) , x ′ (t)

)
dt on X
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satisfying Definition 3 (b). Notice that since
(
L0

)∗∗
( · , ·) = L∗∗ ( · , ·), such yc (·) also minimizes (3), i.e. it is a relaxed

minimizer, as in Definition 3 (a).
Assuming first that

∃x(·) ∈ X :
∫ b

a
L∗∗ (x(t) , x ′ (t)

)
dt < ∞, (15)

let us prove that yc (·) also satisfies (ii) in (13). In case a ′ = b ′, we only need to prove it if yc (·) is non-monotone (in
which case a ′ is the point where yc (·) changes from increasing to decreasing or vice-versa). Suppose, by contradiction,
L∗∗ (s ′, 0)> min L∗∗ (yc ([a, b]) , 0), let s ′0 be the point in yc ([a, b]) closer to s ′ where

L∗∗ (s ′0, 0
)
= min L∗∗ (yc ([a, b]) , 0) ;

and, just to fix ideas, let yc (·) increase on [a, a ′ ], decrease on [a ′, b], with s ′0 ≥ max{A, B}, the other cases being similar.
Set

a ′
0 := min

{
t ∈ [a, b] : yc (t) = s ′0

}
, b ′

0 := max
{

t ∈ [a, b] : yc (t) = s ′0
}
,

obtaining a ′
0 < b ′

0 and L∗∗ (yc (t) , 0)> L∗∗ (s ′0, 0) ∀t ∈ (a ′
0, b ′

0 ). Defining

z(t) :=


yc (·) for t ∈ [a, a ′

0 ]∪ [b ′
0, b]

s ′0 for t ∈ [a ′
0, b ′

0 ],

by (9) we have (see [3, proof of Theorem 1])

∫ b ′
0

a ′
0

L∗∗ (yc (t) , y ′
c (t)

)
dt ≥

∫ b ′
0

a ′
0

φn (yc (t))dt +
∫ b ′

0

a ′
0

mn (yc (t))y ′
c (t)dt =

∫ b ′
0

a ′
0

φn (yc (t))dt,

hence, letting n → ∞, by monotone convergence,

∫ b ′
0

a ′
0

L∗∗ (yc (t) , y ′
c (t)

)
dt ≥

∫ b ′
0

a ′
0

L∗∗ (yc (t) , 0)dt >
∫ b ′

0

a ′
0

L∗∗ (z(t) , 0)dt =
∫ b ′

0

a ′
0

L∗∗ (z(t) , z ′ (t)
)

dt.

Therefore

∫ b

a
L∗∗ (z(t) , z ′ (t)

)
dt <

∫ b

a
L∗∗ (yc (t) , y ′

c (t)
)

dt. (16)

Similarly, if a ′ < b ′ and L∗∗ (s ′, 0) > min L∗∗ (yc ([a, b]) , 0) then we may transform yc (·) into a new function
z(·) ∈ X stopping at some s ′z ∈ co{A, B, s ′} satisfying L∗∗ (s ′z, 0

)
= min L∗∗ (z([a, b]) , 0) and yielding (16).
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Moreover, by [23, proposition 4], the relaxed minimizer yc (·) can be changed so as to obtain another relaxed
minimizer y0 (·) satisfying: (b) (i), with the same a ′, b ′, s ′ hence (b) (ii), (c) (ii) and

L∗∗ (y0 (t) , y ′
0 (t)

)
=
(
L0)∗∗ (y0 (t) , y ′

0 (t)
)
= L0 (y0 (t) , y ′

0 (t)
)

a.e. on [a, b],

so that (c) of Definition 3 also holds true.
Assume, finally, that (15) is not true. Then clearly any function in X is a relaxed minimizer; and we redefine yc (·)

so as to become the affine function in X . In case A = B then clearly this affine yc (·)≡ A satisfies (ii) in (13). Moreover,
since

∫ b

a
L∗∗ (yc (t) , y ′

c (t)
)

dt =
∫ b

a
L∗∗ (A, 0) dt = ∞ ,

we must have L∗∗ (A, 0) = ∞ hence also L(A, 0) = ∞; so that this constant yc (·) is a 0-relaxed and true minimizer for the
fully nonconvex integral in (1).

On the other hand, if A ̸= B then the affine function yc (t) :=
B−A
b−a

(t −a)+A is a monotone relaxed minimizer
from which we can obtain, following the proof of [3, proposition 1] and using [23, proposition 4], a bimonotone relaxed
minimizer which is a 0-relaxed and true minimizer.

Similarly one proves the next
Corollary 1 (There exist monotone 0-relaxed minimizers)
Let L( · , ·) be a BH-function with L∗∗ ( · , ·) 0-lsc-convex and take a 0-relaxed minimizer y0 (·) given by Theorem 2.
If min L∗∗ (y0 ([a, b]) , 0) = min L∗∗ (co {A, B} , 0) then y0 (·) may be taken monotone.
This is true e.g. whenever either y0 ([a, b]) = co {A, B} or min L∗∗ (co {A, B} , 0)≤ L∗∗ (s, 0) ∀s ∈ R.
Theorem 3 (Generalized DuBois-Reymond necessary condition)
Let L( · , ·) be a BH-function with L∗∗ ( · , ·) 0-lsc-convex satisfying (15). Consider a relaxed (in particular, a 0-

relaxed) minimizer y(·) for the nonconvex integral in (1). Defining the domain of L∗∗ (s, ·) by

DL∗∗ (s) := {ξ ∈ R : L∗∗ (s, ξ )< ∞}

then clearly y ′(t) ∈ DL∗∗ (y(t)) a.e. on [a, b], by (15).
(a) In case

y ′ (t) ∈ interior DL∗∗ (y(t)) a.e. on [a, b] (17)

(e.g. if DL∗∗ (y(t)) is open a.e. on [a, b]) then surely y(·) satisfies the classical DuBois-Reymond (DB-R) inclusion,
namely

∃q ∈ R : L∗∗ (y(t) , y ′ (t)
)
∈ q+ y ′ (t) ∂ L∗∗ (y(t) , y ′ (t)

)
a.e. on [a, b]. (18)

(b) In case y(·) does not satisfy (17), y(·) may still satisfy (18), even in the extreme case where
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y ′(t) ∈ boundary DL∗∗ (y(t)) a.e. on [a, b]. (19)

(c) However, if y(·) does not satisfy (18) then y ′ (t) ̸= 0 a.e. on [a, b] and (19)must hold true (in particular, obviously,

L∗∗ (y(t) , y ′ (t)
)
= L

(
y(t) , y ′ (t)

)
a.e. on [a, b]

hence y(·) is a true minimizer of the nonconvex integral in (1)) while y ′ (·)must be either a.e. maximal or else a.e. minimal
or, more precisely,

either L∗∗ (y(t) , y ′ (t) · r
)
= ∞ ∀r ∈ (1, ∞) a.e. on [a, b]

or else L∗∗ (y(t) , y ′ (t) · r
)
= ∞ ∀r ∈ (0, 1) a.e. on [a, b].

(20)

(d) Finally (recalling a ′, b ′, s ′ in (12) and (13)) if y(·) is bimonotone with a ′ < b ′ then (18) must be satisfied; and
if, moreover, y(·) is a 0-relaxed minimizer and 0 is on the boundary of DL∗∗ (s ′ ) (so that L∗∗ (s ′, 0) = L(s ′, 0)) then y(·)
is a true minimizer for the nonconvex integral in (1).

Proof. In [24] we have extended previous results of [26, theorem 4] and of [27, theorem 6.10]. Following with
attention the proof of [24, theorem 1], one notices that y ′ (·) ̸= 0 a.e. whenever (18) is not true. On the other hand, in [24]
we have proved that, in such case, y ′ (·) is either a.e. maximal or else a.e. minimal, i.e. the alternative in (20).

3. Existence of true minimizers
After the above preliminaries, finally in this section we present our main result (Theorem 4) together with one Remark

and two Examples. Let us begin with a new definition, namely a modification of Definition 3 (b), see (12).
Definition 4 Recalling (10), we say that y(·)∈X is a non-stopping finitely-monotone function provided ∃N ∈N for

which: the interval [a, b) can be partitioned into N subintervals [ai, bi) satisfying the following: y(·) is strictly monotone
along each subinterval [ai, bi), with derivative y ′ (t) /∈ {0}∪ (α (y(t)) , β (y(t))) a.e..

To present our main result, we also need the following definitions:

φ (s) := minL∗∗ (co {s, A, B} , 0) , Smin := {s ∈ R : φ (s) = L∗∗ (s, 0)}

S< := {s ∈ R : L∗∗ (s, 0)< L(s, 0)} ,

µ : R→ (0, ∞] , µ (s) :=


1

|α (s) |
+

1
β (s)

for s ∈ S<

∞ for s /∈ S<.

(21)

Moreover, for s ′ ∈ Smin ∩ S< and s ′ ′ ̸= s ′ having µ (·) ∈ L1 (co {s ′, s ′ ′}) we define the moving average φ :
co {s ′, s ′ ′ }→ [0, ∞],
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φ
(
s ′
)

:= L∗∗ (s ′, 0
)
, φ (s) :=

∫
co{s ′, s}

L∗∗ (σ , 0)µ (σ) dσ∫
co{s ′, s}

µ (σ) dσ
for s ∈ co

{
s ′, s ′ ′

}
\
{

s ′
}
. (22)

Theorem 4 (There exists a true minimizer)
Consider a BH-function L( · , ·) having L∗∗ ( · , ·) 0-lsc-convex and let y0 (·) be a 0-relaxedminimizer (as in Definition

3 (c), (b)) given by Theorem 2.
If y0 (·) is not a true minimizer of the nonconvex integral in (1) then certainly (15) holds true and we have a ′ < b ′,

y0([a ′, b ′ ]) = {s ′}, s ′ ∈ Smin ∩S< (see (13) and (21)) and y0 (·) satisfies (18).
Moreover, if

either (L−L∗∗)( · , ·) is lsc at
(
s ′, 0

)
or else ∃s ′ ′ ̸= s ′ with µ (·) ∈ L1 (co

{
s ′, s ′ ′

})
;

and φ (·) in (22) satisfies φ (s)≤ φ
(
s ′
)
∀s ∈ co

{
s ′, s ′ ′

}
(23)

then we canmodify y0 (·) along (a ′, b ′ ) so as to reach a non-stopping finitely-monotone (as in Definition 4) trueminimizer
y(·) of the nonconvex integral in (1); and if y(·) does not satisfy (18) then it satisfies (19) hence (20).

In case y0 (·) is Lipschitz and α (·), β (·) are both locally bounded then also y(·) is Lipschitz.
Remark 1 In case y0 (·) is not a true minimizer and one is unable to verify (23) by lack of knowledge about the

point s ′ where y0 (·) stops then: in case we know that y0 (·) is monotone (see Corollary 1 above) it suffices to check that
(23) is satisfied by some s ′ ∈ Smin ∩S<∩co {A, B}; while if we know that y0 (·) is not monotone then one should ensure
that (23) is satisfied by every s ′ ∈ (Smin ∩S<)\ co {A, B}. If one does not know whether y0 (·) is monotone or not then
one should ensure both these conditions.

Notice that one way to guarantee the inequality in line 3 of (23) is when L∗∗ (σ , 0) ≤ L∗∗ (s ′, 0) for a.e. σ ∈
co {s ′, s ′ ′}. Indeed, for s ̸= s ′, with M (s) :=

∫
co{s ′, s} µ (σ) dσ ,

φ (s) = M (s)−1
∫

co{s ′, s}
L∗∗ (σ , 0)µ (σ) dσ ≤ M (s)−1

∫
co{s ′, s}

L∗∗ (s ′, 0
)

µ (σ) dσ = L∗∗ (s ′, 0
)
= φ

(
s ′
)
.

Clearly the difference (L−L∗∗)( · , ·) is well-defined as soon as we set (L−L∗∗)(s, ξ ) := 0 wherever L∗∗ (s, ξ ) =
L(s, ξ ) = ∞, because then (L−L∗∗)(s, ξ ) ∈ [0, ∞) where 0 ≤ L∗∗ (s, ξ )≤ L(s, ξ )< ∞; while again (L−L∗∗)(s, ξ ) =
∞ is well-defined where L∗∗ (s, ξ )< L(s, ξ ) = ∞.

Notice that while Theorem 1 cannot be applied in our example (26) below with 1 < δ < 2, because L∗∗ ( · , ·) and
(L−L∗∗)( · , ·) are not lsc at velocity zero; on the contrary Theorem 4 can indeed be applied since lines 2 and 3 of (23)
both hold true in this case. While we could have included in (23) only its lines 2 and 3, we feel that in explicit examples
it is in general easier to check for the truth of its line 1, which anyway is much simpler to express, as we have done before
(7).

In case (L−L∗∗)( · , 0) is lsc at s ′ ∈ S<, we may assume that co {s ′, s ′ ′} ⊂ S<, because otherwise there would
exist a sequence (sk)⊂ co {s ′, s ′ ′} with L∗∗ (sk, 0) = L(sk, 0) and (sk)→ s ′, yielding an absurd: 0 < (L−L∗∗)(s ′, 0)≤
liminf

k→∞
(L−L∗∗)(sk, 0) = liminf

k→∞
0 = 0. Notice also the following: if (L−L∗∗)( · , 0) is lsc at each s ′ ∈ S<∩Smin (so that

each such s ′ ∈ interiorS<) and µ (·) ∈ L1
loc (S

<) then line 2 of (23) holds true.
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We claim that if in (23) (L−L∗∗)( · , ·) is lsc at (s ′, 0) then we can move s ′ ′ towards s ′ until reaching µ (·) ∈
L1 (co {s ′, s ′ ′}). To prove this, setting ε (s) := min{|α (s) |, β (s)} ≥ 0 and S0 := co {s ′, s ′ ′}\{s ′}, we show that

∃s0 ∈ S0 : ε0 := inf
{

ε (s) : s ∈ co
{

s ′, s0
}}

> 0 , so that min{|α (s) |, β (s)} ≥ ε0

and µ (s)≤ 2/ε0 ∀s ∈ co
{

s ′, s0
}

hence µ (·) ∈ L1 (co
{

s ′, s0
})

.

Indeed, if such s0 did not exist then it would ∃(sk)⊂ S0 with (sk)→ s ′ for which εk := inf{ε (s) : s ∈ co {s ′, sk}}= 0
hence ∃σk ∈ co {s ′, sk} \ {s ′} with 0 ≤ ε (σk) ≤ 1/k , so that (σk) ⊂ S0, (σk) → s ′, (ε (σk)) → 0, in particular either
(α (σk)) → 0 or (β (σk)) → 0; and if e.g. (β (σk)) → 0 hence (σk,β (σk)) → (s ′, 0), we would reach an absurd: 0 <

(L−L∗∗)(s ′, 0) ≤ liminf
k→∞

(L−L∗∗)(σk, β (σk)) = liminf
k→∞

0 = 0. This absurd proves the claim, showing that in the next

proof, by moving s ′ ′ towards s ′, one may always use µ (·) ∈ L1 (co {s ′, s ′ ′}).
The reasonings in the three previous paragraphs show, in (23), how much more general is its line 2, relative to its

line 1. Indeed, one may weaken the hypothesis in its line 1 to the point of allowing (L−L∗∗)( · , 0) to be non-lsc at
s ′, thus leaving open the possibility of a sequence (sk) ⊂ co {s ′, s ′ ′} to have (sk) → s ′ with (L−L∗∗)(sk, 0) = 0, and
α (sk) = 0 = β (sk) hence µ (sk) = ∞, ∀k ∈ N; while still allowing satisfaction of line 2 of (23). But of course, such
satisfaction implies that α (·) and β (·) cannot be affine near anyone of the points sk, on the contrary they must at least
have infinite slope at each sk; while r (·) in (24) below will be undefined at each sk, which does not affect the construction
of y(·) along (a ′,b ′ ), in the proof of Theorem 4, because (sk) has zero measure.

Since one may always assume µ (·)∈ L1 (co {s ′, s ′ ′}) in (23), we have, for a.e. s in co {s ′, s ′ ′}, µ (s)∈ (0, ∞) hence
α (s)< 0 < β (s). Moreover the definitions of s ′ and φ (·) in (22) and the inequality in (23) yield 0 ≤ φ (s)≤ φ (s ′ )< ∞,
i.e. φ : co {s ′, s ′ ′ }→ [0, ∞).

Clearly the hypothesis (23) is satisfied whenever µ (·)∈ L1 (co {s ′, s ′ ′}) and (7) holds true; but it cannot be satisfied
e.g. at a unique global minimum point s ′ ∈ S< of L∗∗( · , 0). However, (23) is much more general than allowing the
“decreases” in (7) to be replaced by “a.e. decreases” or “average-decreases”. Indeed, please check our final Example 2
in which both L∗∗( · , 0) and φ (·) oscillate frenetically near s ′ = 0 but still satisfy (23).

Proof. Take a 0-relaxed minimizer y0 (·) given by Theorem 2. Then: either y(·) := y0 (·) is already a bimonotone
true minimizer; or else we change y0 (·) so as to construct a non-stopping finitely-monotone true minimizer y(·).

Indeed, clearly y0 (·) satisfies (a), (b), (c) of Definition 3, in particular

∃s ′ : L∗∗ (s ′, 0
)
= min L∗∗ (y0([a, b]), 0) = φ

(
s ′
)

and y0 ([a, b]) = co
{

s ′, A, B
}
.

In case (15) is not true or a ′ = b ′ or L∗∗ (s ′, 0) = L(s ′, 0) we may set y(·) := y0 (·), thus obtaining a bimonotone
true minimizer of the integral in (1).

Otherwise we have a ′ < b ′ and L∗∗ (s ′, 0) < L(s ′, 0), so that s ′ ∈ Smin ∩ S< hence ∃s ′ ′ ≠ s ′ as in (23), according
to Remark 1. In this case we construct a non-stopping finitely-monotone (see Definition 4) true minimizer y(·) for the
integral in (1). We do it by changing y0 (·) only along its constancy interval, so as to oscillate there, instead of stopping
(A simple intuitive example of a situation in which this construction could be applied appears above, in the paragraph
preceding the paragraph containing (7)). Let us start by moving s ′ ′ in (23) towards s ′ until obtaining, for some N ∈ N,

b ′−a ′∣∣∣∣∫ s ′ ′

s ′
µ (s) ds

∣∣∣∣ = N.
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By Remark 1 we have, for a.e. s in co {s ′, s ′ ′},

α (s)< 0 < β (s) , (L−L∗∗)(s, α (s)) = 0, (L−L∗∗)(s, β (s)) = 0 and

L∗∗ (s, 0) = (1− r (s)) L ∗∗ (s, α (s))+ r (s) L∗∗ (s, β (s)) with r (s) :=
|α (s) |

|α (s) |+β (s)
.

(24)

Let us assume, say s ′ < s ′ ′, just to simplify the following discussion. Set

θ :=
N

b ′−a ′

∫ s ′ ′

s ′

1
|α (s) |

ds , so that 1−θ =
N

b ′−a ′

∫ s ′ ′

s ′

1
β (s)

ds; (25)

and define

τ+ : [s ′, s ′ ′ ]−→
[

a ′, a ′+(1−θ)
b ′−a ′

N

]
, τ+ (s) := a ′+

∫ s

s ′

1
β (σ)

dσ ,

τ− : [s ′, s ′ ′ ]−→
[

a ′+(1−θ)
b ′−a ′

N
,a ′+

b ′−a ′

N

]
, τ− (s) := a ′+

b ′−a ′

N
+

∫ s

s ′

1
α (σ)

dσ .

Since 1/α (·), 1/β (·) ∈ L1 ((s ′, s ′ ′ )), these functions τ+(·), τ−(·) are monotone AC with nonzero derivative a.e..
Indeed,

τ+(·) increases with τ ′
+ (s) = 1/β (s)> 0 a.e. and τ− (·) decreases with τ ′

− (s) = 1/α (s)< 0 a.e..

Moreover, by (25),

τ+
(
s ′
)
= a ′, τ−

(
s ′
)
= a ′+

b ′−a ′

N
, τ−

(
s ′ ′

)
= a ′+(1−θ)

b ′−a ′

N
= τ+

(
s ′ ′

)
.

The inverse functions of τ+ (·), τ− (·), respectively

x+ :
[

a ′, a ′+(1−θ)
b ′−a ′

N

]
→ [s ′, s ′ ′ ] , x− :

[
a ′+(1−θ)

b ′−a ′

N
, a ′+

b ′−a ′

N

]
→ [s ′, s ′ ′ ] ,

are well-defined and are AC, x+ (·) increases and x− (·) decreases (both with derivative ̸= 0 a.e.); and

x+
(
a ′ )= s ′ = x−

(
a ′+

b ′−a ′

N

)
, x+

(
a ′+(1−θ)

b ′−a ′

N

)
= s ′ ′ = x−

(
a ′+(1−θ)

b ′−a ′

N

)
.

We may therefore define the function
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x1 :
[

a ′, a ′+
b ′−a ′

N

]
−→ [s ′, s ′ ′ ] , x1 (t) :=


x+ (t) for t on

[
a ′, a ′+(1−θ)

b ′−a ′

N

]

x− (t) for t on
[

a ′+(1−θ)
b ′−a ′

N
, a ′+

b ′−a ′

N

]
.

Clearly x1(a ′ ) = s ′ = x1

(
a ′+

b ′−a ′

N

)
, x1

(
a ′+(1−θ)

b ′−a ′

N

)
= s ′ ′ and

x ′
1 (t) =


β (x1 (t)) for a.e. t on

[
a ′, a ′+(1−θ)

b ′−a ′

N

]

α (x1 (t)) for a.e. t on
[

a ′+(1−θ)
b ′−a ′

N
, a ′+

b ′−a ′

N

]
.

Therefore, by (24),

∫ s ′ ′

s ′
L∗∗ (s, 0) µ (s) ds =

∫ s ′ ′

s ′

[
L(s, α (s))

1
|α (s)|

+L(s, β (s))
1

β (s)

]
ds

=
∫ s ′ ′

s ′
L(s, β (s))

1
β (s)

ds+
∫ s ′ ′

s ′
L(s, α (s))

1
|α (s)|

ds

=
∫ a ′+(1−θ) b ′−a ′

N

a ′
L
(
x+ (t) , x ′

+ (t)
)

dt +
∫ a ′+ b ′−a ′

N

a ′+(1−θ) b ′−a ′
N

L
(
x− (t) , x ′

− (t)
)

dt

=
∫ a ′+ b ′−a ′

N

a ′
L
(
x1 (t) , x ′

1 (t)
)

dt,

using [3, proposition 3].
Repeating this construction N −1 times more we obtain

x2 (·) on
[

a ′+
b ′−a ′

N
, a ′+2

b ′−a ′

N

]
, . . . , xN (·) on

[
a ′+(N −1)

b ′−a ′

N
, b ′

]

in the same way as we did above for x1 (·) in
[

a ′, a ′+
b ′−a ′

N

]
. Then, glueing such N pieces we get an AC funtion
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y : [a, b]−→ [s ′, s ′ ′ ] , y(t) :=



y0 (t) for t on [a, a ′]

x1 (t) for t on
[

a ′, a ′+
b ′−a ′

N

]
·
·
·

xN (t) for t on
[

a ′+(N −1)
b ′−a ′

N
, b ′

]
y0 (t) for t on [b ′, b]

having y ′ (t) ̸= 0 a.e. and y(a ′ ) = s ′ = y(b ′ ). For this y(·) we have (by (23)):

∫ b ′

a ′
L
(
y(t) , y ′ (t)

)
dt = N

∫ s ′ ′

s ′
L∗∗ (s, 0) µ(s) ds ≤

(
b ′−a ′)L∗∗ (s ′, 0

)
=

∫ b ′

a ′
L∗∗ (y0 (t) , y ′

0 (t)
)

dt,

so that

∫ b

a
L
(
y(t) , y ′ (t)

)
dt ≤

∫ b

a
L∗∗ (y0 (t) , y ′

0 (t)
)

dt.

But then such inequality ≤ will have to be an equality, otherwise a contradiction would be reached, since y0 (·) is
already a relaxed minimizer. Therefore y(·) is the desired non-stopping finitely-monotone true minimizer for the fully
nonconvex integral in (1).

Example 1 (Application to a wild lagrangian) Consider the BH-function

L(s, ξ ) :=



(
1+ξ s |s|−δ

)+
for s ̸= 0 and

(
|ξ |= 1 or |ξ |= min

{
1, |s|δ−1

})
1 for s = 0 and |ξ |= 1

∞ for other s, ξ ,

(26)

where ( f ( · , ·))+ := max{0, f ( · , ·)}. We have

L∗∗ (s, ξ ) =



(
1+ξ s |s|−δ

)+
for s ̸= 0 and |ξ | ≤ 1

1 for s = 0 and |ξ | ≤ 1

∞ for other s, ξ .

Whenever δ < 2, L∗∗ ( · , ·) is 0-lsc-convex. Indeed, L∗∗ ( · , ·) satisfies (9) with constant sequences
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φn (·) := L∗∗ ( · , 0) , mn (s) :=


s |s|−δ for s ̸= 0

0 at s = 0.

Moreover S< = R since L∗∗ ( · , 0) ≡ 1 < ∞ ≡ L( · , 0). Notice that if 1 < δ < 2 then L∗∗ ( · , ·) is not lsc at ξ = 0
(since L∗∗ ( · , ·) is not lsc at (0, 0)).

As an application of Theorem 4, let us show that for δ < 2 there exists a true minimizer. Indeed, since

α (s) =


−1 for min

{
1, |s|δ−1

}
= 1 or

(
min

{
1, |s|δ−1

}
= |s|δ−1 and s ≤ 0

)

−|s|δ−1 for min
{

1, |s|δ−1
}
= |s|δ−1 and s > 0

β (s) =


1 for min

{
1, |s|δ−1

}
= 1 or

(
min

{
1, |s|δ−1

}
= |s|δ−1 and s ≥ 0

)

|s|δ−1 for min
{

1, |s|δ−1
}
= |s|δ−1 and s < 0 ,

hence µ (·) ∈ L1
loc (R) in (21), (22), (23), all the hypotheses of Theorem 4 hold true in this case δ < 2.

Notice that the graph of L(s, ·) consist only of: either two points, over−1 and 1, in case−1 = α (s)< 0 < β (s) = 1;
or else four points, over −1, 1 and either ±α (s) or ±β (s), in case either α (s) or β (s) equal their second lines, more
precisely in case either −1 < α (s) < 0 or 0 < β (s) < 1. This ensures that its bipolar L∗∗ (s, ·) is indeed given by the
above expression. Notice also that for 1 < δ < 2 and s → 0 we have either α (s)→ 0 or β (s)→ 0, yielding zero-values
of L∗∗ (s, ξ (s)) with ξ (s)→ 0, thus contradicting lower semicontinuity at (0, 0), since L∗∗ (0, 0) = 1. Finally, we leave
two questions to those readers who read carefully this example. Can one change, in the first line of (26), (1 + ...)+ to
(γ + ...)+ with γ ̸= 1? Can one apply Theorem 4 when δ ≥ 2?

Example 2 Let L(s, ξ ) = ψ (s)+h(ξ )with ψ (s) := [s. sin(1/s)+1−2s]+ and h : R→ [0, ∞) superlinear lsc with
h∗∗ (0) = 0 < h(0), |α (·) |= β (·)≡ 2, so that µ (·)≡ 1, L∗∗ ( · , 0) = ψ (·) and φ (s) = (s− s ′)−1 ∫ s

s ′ ψ (σ) dσ for s ̸= s ′.
Clearly ψ (·) does not satisfy (7) with s ′ = 0 since, for any s ′ ′ > 0, ψ (·) does not decrease in (s ′, s ′ ′ ). However,

ψ (·) does satisfy (23) because ψ (s) < ψ (s ′) = ψ (0) = 1 ∀s > 0 so that φ (s) < φ (s ′) = ψ (0) = 1 ∀s > 0. Thus
(23) is strictly weaker than (7). More precisely, as one easily checks, ψ (s) ∈ co {1−3s, 1− s} ∀s ∈ R =⇒ φ (s) ∈
co {1−3s/2, 1− s/2} ∀s ∈ R.

Let us apply this information to answer two questions on the problem of minimizing the nonconvex integral in
(1) with this L( · , ·) and A = 0 = B. First, could y0 (·) ≡ 0 be a 0-relaxed minimizer? The answer is clearly no, since
φ (s) ≤ 1− s/2 < φ (s ′ ) = ψ (0) = 1 for s > 0. Indeed, otherwise one could change y0 (·) ≡ 0 along (a ′, b ′ ) so as to
reach a true minimizer y(·) of the nonconvex integral in (1) which oscilates (as in the proof of Theorem 4) and gives to
the nonconvex integral in (1) a value strictly lower than the value b−a given to the convexified integral by the supposed
0-relaxed minimizer y0 (·)≡ 0, absurd.

Second, notice that the set S0 of local min points of ψ (·) in (0, ∞) consists of a sequence (sk) ↘ 0 (with s1 ≈
0.25) plus an interval [s0, ∞) = ψ −1 (0) (with s0 ≈ 0.90). Certainly there exists a 0-relaxed non-monotone minimizer
y0 (·), by Theorem 2; and if y0 (·) is not a true minimizer then (15) holds true and y0 (·) is a constant s ′ > 0 along some
subinterval (a ′, b ′ ). We claim that s ′ ∈ S0. To prove this, notice first that if s ′ ∈ ψ −1 (0) then clearly (23) holds true
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hence, by Theorem 4, there exists a true minimizer y(·). Otherwise s ′ ∈ (0, s0 ) and, to prove that s ′ ∈ (sk), set s ′k :=

min{s ∈ (sk, s0 ) : ψ (s) = ψ (sk)} and notice that s ′ ∈ Smin ∩ (0, s0 ) =
∞⋃

k=1

[
s ′k+1, sk

]⋃
[s ′1, s0).

But s ′ cannot be in
∞⋃

k=0

[
s ′k+1, sk

)
because otherwise one could apply Theorem 4 to prove existence of a true minimizer

y(·) since, as one easily checks, ∀k ∈N ∃s ′ ′k ∈
(
s ′k, sk−1

)
: ψ (s)< ψ

(
s ′k
)
∀s ∈

(
s ′k, s ′ ′k

)
; and this strict inequality would

lead to an absurd, because y(·) would give to the nonconvex integral a value strictly lower than the value given by y0 (·)
to the convexified integral.

We have thus proved our claim that the point s ′ where y0 (·) stops must belong to the set S0 of local min points of ψ (·)
in (0, ∞). On the other hand, as one easily checks, if s ′ ∈ ψ −1 (0) then there exists a true minimizer; while if s ′ ∈ (sk)

then no true minimizer exists, unless b− a has a very special value. However, one may easily enforce existence of true
minimizers simply by flattening ψ (·) near each sk, as we have done above, in the example presented in the paragraph
before (7).

4. Conclusions
This paper deals with existence of scalar minimizers for nonconvex single integrals of the Calculus of Variations and

with necessary conditions that these minimizers must satisfy, thus helping one to understand their behavior. Since our
lagrangians are freely allowed to take ∞ values, the results here presented can easily be applied to minimization problems
under pointwise state and/or velocity constraints, in particular to Optimal Control problems.

Our main result, Theorem 4, proves existence of true minimizers even without 0-convexity, namely allowing
L∗∗ ( · , 0)< L( · , 0). This is important because frequently relaxed minimizers fail to be true minimizers by remaining a
constant s ′ along a subinterval (a ′, b ′ ) with L∗∗ (s ′, 0)< L(s ′, 0). One sufficient condition for such existence is that the
sublevel sets of L∗∗ ( · , 0) contain no singletons. This suffices if L∗∗ ( · , ·) and (L−L∗∗)( · , ·) are both lsc at velocity zero.
More generally, one may relax “sublevel” to “average-sublevel”; or, still more generally (23). Theorem 4 also presents a
Lipschitz continuity result.

Concerning necessary conditions, we describe our previous results of bimonotonicity of minimizers in Definition 3;
and prove in Theorem 3 a much more informative version of our own generalized DuBois-Reymond differential inclusion,
as compared with the one appearing in our paper [24]. Namely: if a 0-relaxed minimizer y0 (·) does not satisfy the classical
DuBois-Reymond necessary condition (18) then y0 (·) cannot stop (i.e. a ′ = b ′ in (13)) hence it must be a true minimizer;
and, moreover, its derivative must be either a.e. maximal or else a.e. minimal or, more precisely (20).
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