
Contemporary Mathematics
https://ojs.wiserpub.com/index.php/CM/

Research Article

On the Application of Complex Delta Function Leading to New Fracti-
onal Calculus Formulae Involving the Generalized Hypergeometric
Function and Kinetic Equation

Sara Saud1, Rekha Srivastava2, Azza M. Alghamdi3, Rabab Alharbi4, Asifa Tassaddiq1*

1Department of Computer Science, College of Computer and Information Sciences, Majmaah University, Al Majmaah, 11952, Saudi
Arabia

2Department of Mathematics and Statistics, University of Victoria, Victoria, BC, V8W 3R4, Canada
3Department of Mathematics, Faculty of Sciences Al-Baha University, P.O. Box-7738, Alaqiq, Al-Baha, 65799, Saudi Arabia
4Department of Mathematics, College of Science, Qassim University, Buraydah, 51452, Saudi Arabia
E-mail: a.tassaddiq@mu.edu.sa

Received: 25 June 2025; Revised: 31 October 2025; Accepted: 5 November 2025

Abstract: The sun is a vital component of our natural environment, and kinetic equations are important mathematical
models that show how quickly a star’s chemical composition changes. Taking inspiration from these facts, we develop and
solve a novel fractional kinetic equation by calculating the Laplace transform of hypergeometric functions in the complex
coefficient parameter. This was a challenging task because the function cannot be integrated concerning the coefficient
parameters using classical methods due to the infinite number of singular points of the gamma function involved in it.
We achieved it using the distributional representation of the generalized hypergeometric function. Moreover, on the
one hand, the role of the delta function is vital to represent the electromotive forces, and on the other, the solution of
differential equations of engineering and mathematical physics led to a class of hypergeometric functions. This article
is the confluence of both. Therefore, innovative characteristics concerning the Fox-Wright and several related important
functions are applied for the simplification of the obtained outcomes. A popular class of fractional transforms involving
generalized hypergeometric functions are evaluated using the delta function, and as a distribution, numerous additional
features of this function are described.
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1. Introduction
Current hypotheses of gases and astrophysics have greatly enhanced environmental sciences because the role of the

sun is crucial in the realm of global warming and a system of differential equations can model the evolution of stars like
the sun [1]. Three factors-temperature, pressure, and mass-can be used to characterize stars’ internal structure, which is
formed completely of gases [2]. In fact, the conversion from the cloud to a star requires a greater gravitational strength as
compared with the inside pressure. A protostar is formed and the cloud produces light when fusion of nuclear matter takes
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place [1]. Mathematical models to describe the nuclear compositions in these types of stars are used in [1–3]. The basic
kinetic equation [2] to study this composition K(t) using the amount of production P(K) and destruction D(K), described
as follows:

dK
dt

=−D(Kt)+P(Kt) ; Kt (t∗) = K (t − t∗) , t∗ > 0. (1)

Then ignoring the species disparity and inhomogeneity of K(t), the subsequent equation is formulated, K j(t = 0) =
K0.

dK j

dt
=−c jK j(t). (2)

The following is the result of integrating this equation while ignoring the subscript j,

K(t)−K0 =−dI−1
0+K(t). (3)

Using the Riemann-Liouville (R-L) fractional integral, subsequent non-integer order kinetic equation can be
produced,

K(t)−K0 =−dε Iε
0+K(t), (4)

where is a constant. The next generalised non-integer kinetic equation [1–4] employing a wide-ranging integrable function
f (t) have been studied by various researchers,

K(t)− f (t)K0 =−dε Iε
0+K(t). (5)

Numerous researchers have made significant contributions to fractional calculus [4]. The literature contains previous
studies on a large number of generic families of fractional kinetic equations [5]. Unlike the Hurwitz-Lerch and
Mittag-Leffler functions, which have several multi-parameter extensions, Srivastava looked at significantly more general
functions in [6, 7]. Moreover, a significant class of general hybrid-type kinetic equations is also considered in the recent
research [8, 9]. The link between kinetic equations of fractional order and the theory of continuous-time random walks
have recently been discovered, which has led to an increased interest in these equations [10]. The purpose of examining
these equations is to identify and then understand certain physical phenomena that are known to control processes such as
anomalous propagation, diffusion in porous media, and so forth. According to this review of literature, such an equation

with regard to the pth parameter cp of the generalized hypergeometric function Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
has not been

studied so far. The reason behind it that the function cannot be integrated with respect to the coefficient parameter cp due
to the poles of gamma function. Therefore, main goal of this work is to fill this gap.

Considering the aforementioned, we offer the plan of this study: Basic concepts are given in Section 1.1. New

modified representation of the hypergeometric function Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
as well as the implication to the

required kinetic equation is provided in Section 2. Sections 2.1 and 2.2 contain new identities or formulas for fractional
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calculus employing a hypergeometric function. Section 3 discusses the new distributional representation and its different
features. Section 4 discusses further uses of this representation. The last Section 5 concludes this researchwith suggestions
for future directions.

1.1 Preliminaries

R represents the set of real numbers throughout the text. R+ is a set of positive reals, while Z0 is a set of positive
integers that contains 0. ℜ represents real part of a complex number, while C represents set of such numbers.

For complex numbers ω ∈ C with real part ℜ(ω)> 0, the gamma function is defined as [9],

Γ(ω) =
∫ ∞

0
tω−1e−tdt. (6)

Due to the extensive applications and representations of this well-researched special function, the fundamental
Pochhammer symbols (ω)r can be defined in terms of the gamma function

(ω)r =
Γ(ω + r)

Γ(ω)
=

{
1(r = 0),

ω(ω +1) . . .(ω + r−1)(r = n ∈ N; ω ∈ C\{0}).

The generalized Mittag-Leffler case of three variables α, β , γ ∈ C, and ℜ(α)> 0 is defined as [11, 12]

Eγ
α, β (ω) =

∞

∑
k=0

(γ)kωk

k!Γ(αk+β )
, (7)

which is an entire function [13] of type σ = 1 and order ϱ= 1/ℜ(α). However, by taking particular values to parameters
α, β , γ , we can obtain two and one parameter Mittag-Leffler function [11].

By choosing a particular contour which separates the singular points of
{

Γ(1−a j −A js)
}n

j=1 and
{

Γ(b j +B js)
}m

j=1
H-function [14] is defined as follows

Hm, n
p, q (ω) = Hm, n

p, q

[
ω

∣∣∣∣∣ (ai, Ai)

(b j, B j)

]
= Hm, n

p, q

[
ω

∣∣∣∣∣ (a1, A1) , . . . , (ai, Ai)

(b1, B1) , . . . , (b j, B j)

]

=
1

2πi

∫
L

∏m
j=1 Γ(b j +B js)∏n

i=1 Γ(1−a j −A js)

∏q
j=m+1 Γ(1−b j −B js)∏p

i=n+1 Γ(a j +A js)
ω−sds,

((1 ≦ m ≦ q; 0 ≦ n ≦ p, Ai > 0∧B j > 0, ai ∧b j ∈ C(i = 1, · · · , p∧ j = 1, · · · , q)) .

(8)

Meijer G-function [14] follows from (8) at Ap = Bq = 1

Hm, n
p, q

[
ω

∣∣∣∣∣ (a1, 1) , . . . , (ai, 1)
(b1, 1) , . . . , (b j, 1)

]
= Gm, n

p, q

[
ω

∣∣∣∣∣ a1, . . . , ai

b1, . . . , b j

∣∣∣∣∣
]
. (9)
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Moreover, H-function is related with Fox-Wright function pΨq, as follows [14]

pΨq

[
(ai, Ai)

(b j, B j)

∣∣∣∣∣ ω

]
=

∞

∑
m=0

∏p
l=1 Γ(ai +Aim)

∏q
l=1 Γ((b j +B jm)

zm

m!
= H1, p

p, q+1

[
−ω

∣∣∣∣∣ (1−a1, A1) , . . . , (1−ai, Ai)

(0, 1), (1−b1, B1) , . . . , ((1−b j, B j)

]

(
ai ∈ R+(i = 1, . . . p); B j ∈ R+( j = 1, . . .q); 1+

q

∑
i=1

Bi −
p

∑
j=1

A j > 0

)
.

(10)

The generalized hypergeometric function is defined as [15]

Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
=

∞

∑
r=0

(c1)r (c2)r . . .(cp)r zr

(d1)r (d2)r . . .(dq)r r!
=

∞

∑
r=0

zr ∏p
i=1 (ci)r

r!∏q
j=1 (d j)r

, (11)

(
ci; d j ∈ C; ℜ(ci)> 0; d j /∈ Z−

0 ; i = 1, . . . . p∧ j = 1, . . . . q; p ≤ q+1; cp = v+ ιθ
)
,

which has following relationship with Fox-Wright and G-functions

pΨq

[
(ai, 1)
(b j, 1)

∣∣∣∣∣ ω

]
= pFq

[
ai

b j
; ω

]
Γ(a1) . . .Γ(ai)

Γ(b1) . . .Γ(b j)
= G1, p

p, q+1

[
−ω

∣∣∣∣∣ (1−a1, 1) , . . . , (1−ai, 1)
0, (1−b1, 1) , . . . , (1−b j, 1)

]
,

(
ai > 0; b j /∈ Z−

0
)
.

(12)

Glue et al. [16] defined the Multiple Erdélyi-Kober (M-E-K) integral operators (see also [17–19]) as follows

I(γk), (τk)
(αk), (βk), l f (z) =



f (z); (τk = 0; αk = βk)

∫ 1
0 f (zσ)H l, 0

l, l

σ

∣∣∣∣∣∣∣∣∣
[

γk + τk −
1

αk
+1,

1
αk

)l

1(
γk −

1
βk

+1,
1
βk

)l

1

dσ ; (∑k τk > 0)

= z−1 ∫ z
0 f (ξ )H l, 0

l, l

ξ
z

∣∣∣∣∣∣∣∣∣
(

γk + τk −
1

αk
+1,

1
αk

)l

1(
γk −

1
βk

+1,
1
βk

)l

1

dξ ; (∑k τk > 0) .

(13)

Here, ∑∞
k=1

1
βk

≥ ∑∞
k=1

1
αk

. Order of integration is expressed by τk
′s, γk

′s, are taken as weights while α ′
ks, β ′

ks are

accompanying parameters. Since Hm, 0
m, m vanishes if |σ | > 1 Thus, in equation (13) the upper limit as infinity becomes

worthless. However, [18, 19] also provide a clear definition of the corresponding appropriate R-L type derivative with
order (τk ≥ 0, . . . , τ1 ≥ 0) = τ .
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I(γk), (τk)
(αk), (βk), l [ f (z)] := Dη I(γk+τk), (ηk−τk)

(αk), (βk), l f (z) = Dη

∫ 1

0
f (zσ)H l, 0

l, 1

σ

∣∣∣∣∣∣∣∣∣
(

γk +ηk +1− 1
αk

,
1

αk

)l

1(
γk +1− 1

βk
,

1
βk

)l

1

dσ , (14)

where Dη , is defined as a following polynomial

Dη =
m

∏
r=1

ηr

∏
j=1

1
βr

z
d
dz

+ γr + j; ηk =

{
[τk]+1; τk /∈ Z

τk; τk ∈ Z
(15)

and the corresponding Caputo type multiple Erdélyi-Kober (E-K) derivative operators are stated as [19]

∗D(γk), (τk)
(αk), (βk), l f (z) = I(γk+τk), (ηk−τk)

(βk), l Dη f (z). (16)

Table 1. Popular forms of M-E–K fractional operators [19] when αk = βk

Variations in Equation (11) Integrand of fractional integral operators [19]

Marichev-Saigo-Maeda (M-S-M) [20–22]
(l = 3; αk = βk = 1)

H3, 0
3, 3

( t
x

)
=G3, 0

3, 3

[
t
x

∣∣∣∣ γ1
′+ γ2

′, τ − γ1, τ − γ2
γ1

′, γ2
′, τ − γ1 − γ2

]

=
x−γ1

Γ(τ)
(x− t)τ−1t−γ1

′
F3

(
γ1, γ1

′, γ2, γ2
′, τ; 1− t

x
; 1− x

t

)

Saigo [23, 24]
(l = 2; αk = βk = 1)

H2, 0
2, 2

[
σ
∣∣∣∣ (γ1 + τ1, 1) , (γ2 + τ2, 1)

(γ1, 1) , (γ2, 1)

]

=G2, 0
2, 2

[
σ
∣∣∣∣ γ1 + τ1, γ2 + τ2

γ1, γ2

]

=
σ γ2 (1−σ)τ1+τ2−1

Γ(τ1 + τ2)
2F1 (τ2 − γ1 + γ2, τ; τ1 + τ2; 1−σ)

Erdélyi-Kober (E-K) [19]
(l = 1; αk = βk = α > 0) H1, 1

1, 0

σ

∣∣∣∣∣∣∣∣
(

τ,
1
α

)
(

0,
1
α

)
= ασ α−1G1, 1

1, 0

[
σα |τ0

]
=

ασ α−1 (1−σα )τ−1

Γ(τ)

Riemann-Liouville (R-L) [19]
(l = 1 = αk = α) H1, 1

1, 0

[
σ

∣∣∣∣∣ (τ, 1)

(0, 1)

]
= G1, 1

1, 0

[
t
x

∣∣∣τ
−

]
=

(x− t)τ−1

Γ(τ)
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Following the work of [20], fractional calculus operators with the Gauss hypergeometric function kernel were
successfully applied in [21, 22] and similarly, the Saigo fractional operators [23, 24] were also used for the significant
applications [25, 26].

Delta function is the most popular distibution defined for a suitable function℘ as follows [27, 28]

∫ ∞

−∞
δ (x−a)℘(x)dx =℘(a), (17)

and δ (ax) =
δ (x)
|a|

, a ̸= 0. Because it cannot be formed from a locally integrable function and instead acts as a continuous

linear functional on a set of test functions, this is one of the greatest examples of a singular distribution. The derivatives

〈
δ (i)(ω), ℘(ω)

〉
= (−1)i℘(i)(0), (18)

of delta function behave same like a singular distribution. Delta functions, or singular distributions, are also the Fourier
transformations for the frequently used functions, for instance sinω, cosω, sinhω, and coshω [27]. The exponential
function’s Fourier transform is also computed in Volume I of [27].

F
[
eαt ; ξ

]
= 2πδ (ξ − ια), (19)

belongs to Z
′ therefore, for ∀g ∈ Z

′ [27, 28]

g(ω +a) =
∞

∑
k=0

ak

k!
g(k)(ω) (ω, a ∈ C), (20)

and the subsequent expansion follows which is also computed in Volume I of [27]

δ (ω +a) =
∞

∑
k=0

ak

k!
δ (k)(ω). (21)

Convolution of the delta function with an appropriate function produces

δ (x−a)∗g(x) = g(x−a); δ (k)(x−a)∗g(t) = g(k)(x−a). (22)

For this research we consider the following representation [29, 30]

Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
= 2π

∞

∑
n, r=0

(−1)n(s)r (c1)r (c2)r . . .(cp−1)r
n!r!(d1)r (d2)r . . .(dq)r

δ (u− ι(t +n+ r));

(
ci; d j ∈ C;ℜ(ci)> 0; d j /∈ Z−

0 ; i = 1, . . . . p∧ j = 1, . . . . q; p ≤ q+1; cp = v+ ιθ
)
.

(23)
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We derive numerous new and innovative results using this representation (see [31–35]) for additional such investigat-
ions of other special functions. The parameter values, as described in section 2, will be considered normal unless otherwise
noted in this article.

2. Distributional representation of the generalized hypergeometric function and
generalized kinetic equation
Main results about the generalized hypergeometric function as a complex delta function series are given in this section.

This is quite helpful in solving the new integral equation using this function by computing its Laplace transformation in
upper parameter cp. Here and what follows (ci−1)r are the Pochhammer symbols.

Theorem 1 The generalized hypergeometric function has a distributional representation specified as

Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
= 2π

∞

∑
n, r=0

(−1)n(s)r ∏p
i=1 (ci−1)r

n!r!∏q
j=1 (d j)r

δ (cp + r+n)

(
i = 1, . . . . p; j = 1, . . . . q; p ≤ q+1; ci; d j ∈ C; ℜ(ci)> 0; d j /∈| Z−

0 ; v+ ιθ
)
.

(24)

Proof. The modification of (23) that follows is presented as

δ (θ − ι(v+ r+n)) = δ
[

1
ι
(ιθ +(v+ r+n))

]
= 2π|ι |δ (v+ ιθ +n+ r) = 2πδ (cp + r+n) . (25)

This means that by substituting (25) in (23), the specified form (24) can be produced.
Corollary 1 The distributional representation of the generalized hypergeometric function is

Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
= 2π

∞

∑
n, r, m=0

(−1)nsr(n+ r)m ∏p
i=1 (ci−1)r

n!r!m!∏q
j=1 (d j)r

δ (m) (cp) (26)

(
i = 1, . . . . p; j = 1, . . . . q; p ≤ q+1; ci; d j ∈ C; ℜ(ci)> 0; d j /∈ Z−

0 ; cp = v+ ιθ
)
.

Proof. By using (20) in (24)

δ (cp +n+ r) =
∞

∑
m=0

(n+ r)m

m!
δ (m) (cp) , (27)

the stated form (26) is obtained.
Equations (24) and (26) can be used at s=0 to derive the distributional representation of the gamma function. Thus,

for the generalized hypergeometric function with respect to the new representation, it is evident that the concepts related
to the Dirac delta function do exist. It provides fresh insights into more recent findings in diverse fields. For instance,
applying Laplace transform [23] i-e L

{
δ (r)(γ); ξ

}
= ξ r, on (26) yields
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L

{
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
; ξ

}
= 2π

∞

∑
n, r, m=0

(−1)nsr(n+ r)m ∏p
i=1 (ci−1)r

n!r!m!∏q
j=1 (d j)r

ξ m. (28)

Taking s = 0 it provides Equation (48) of [36]

L{Γ(cp) ; ξ}= 2π exp
(
−eξ

)
,

and for a constant γ ,

L

(
Γ(cp −σ) pFq

[
c1, . . .cp−1, cp −σ

d1, . . .dq
; s

]
; ξ

)

=2π
∞

∑
n, r, m=0

(−1)nsr(n+ r)m ∏p
i=1 (ci−1)r

n!r!m!∏q
j=1 (d j)r

L
{

δ (r) (cp −σ) ; ξ
}

=2π
∞

∑
n, r, m=0

(−1)nsr(n+ r)m ∏p
i=1 (ci−1)r

n!r!m!∏q
j=1 (d j)r

ξ re−ξ σ .

(29)

Moreover, one can compute that

L{Γ(cp −σ) ; ξ}= 2πe−ξ σ exp
(
−eξ

)
. (30)

Theorem 2Considering the p-th parameter of the generalized hypergeometric function in a non-integer order kinetic
equation

K (cp)−K0Γ(cp) pFq

[
c1, cp

d1, dq
; s

]
=−dε Iε

0+K (cp) ; cp ∈ R+∧d, ε > 0, (31)

results in the solution that follows

K (cp) =
2πK0

cp

∞

∑
n, r, m=0

(−1)nsr
(

n+ r
cp

)m

∏p
i=1 (ci−1)r

n!r!m!∏q
j=1 (d j)r

Eε, −l (−dε cpε) (32)

(
i = 1, . . . . p; j = 1, . . . . q; p ≤ q+1; ci; d j ∈ C; ℜ(ci)> 0; d j /∈ Z−

0 ; cp = v+ ιθ
)

Proof. First, let’s apply the Laplace transform (see [1–3]) to (31)
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L{K (cp) ; ξ}−K0L

{
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
;s

]
; ξ

}
= L

{
−dε Iε

0+K (cp) : ξ
}
, (33)

wherever

K(s) = L[K(t) : ξ ] =
∫ ∞

0
e−ξ tK(t)dt, ℜ(ξ )> 0 (34)

L
{

Iε
0+K (cp) ; ξ

}
= ξ−ε K(ξ ). (35)

Then, by employing (24) in (33), we get

K(ξ ) = 2πK0

∞

∑
n, r, m=0

(−1)nsr(n+ r)m ∏p
i=1 (ci−1)r

n!r!m!∏q
j=1 (d j)r

ξ m −
(

ξ
d

)−ε
K(ξ ), (36)

and then expresses equation (36) above as follows

K(ξ )

[
1+
(

ξ
d

)−ε
]
= 2πK0

∞

∑
n, r, m=0

(−1)nsr(n+ r)m ∏p
i=1 (ci−1)r

n!r!m!∏q
j=1 (d j)r

ξ m. (37)

After doing a quick calculation, the outcome can be ascertained as

K(ξ ) = 2πK0

∞

∑
n, r, m=0

(−1)nsr(n+ r)m ∏p
i=1 (ci−1)r

n!r!m!∏q
j=1 (d j)r

ξ m
∞

∑
l=0

[
−
(

ξ
d

)−ε
]l

. (38)

Furthermore, let εm− p > 0; ε > 0; L−1 {ω−ε ; cp}=
(cp)

ε−1

Γ(ε)
; we compute L−1 of (38) given by

K (cp) = 2πK0

∞

∑
n, r, m=0

(−1)nsr(n+ r)m ∏p
i=1 (ci−1)r

n!r!m!∏q
j=1 (d j)r

c−m−1
p ×

∞

∑
l=0

(
−dε cε

p
)l

Γ(εl −m)
. (39)

At last, we can obtain (32) by applying (7) in (39).
Remark 1 Response rate or the solution K (cp) is a function of the fractional parameter ε , and it is noteworthy that

the solution approach is traditional [1–3]. Usually, K (cp) is expressed in closed form using the Mittag-Leffler function,
which can be observed in (39). This leads to a well-defined and finite sum over the coefficients in (32).

∞

∑
n,r=0

(−1)n
(

n+ r
cp

)p

∏p
i=1 (ci−1)r

n!r!∏q
j=1 (d j)r

= exp
(
−e1/cp

)
p−1Ψq

[
(ci−1, 1)
(d j, 1)

∣∣∣∣∣ e
1

cp

]
. (40)
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In the same way, limcp→∞ leads to the following

lim
cp→∞

exp
(
−e1/cp

)
p−1Ψq

[
(ci−1, 1)
(d j, 1)

∣∣∣∣∣ e
1

cp

]
= exp(−1)p−1Ψq

[
(ci−1, 1)
(d j, 1)

∣∣∣∣∣ 1

]
. (41)

2.1 M-E-K fractional integral operators and the generalized hypergeometric function

Lemma 1 By means of the Laplace transform of generalized hypergeometric function, prove the following identity

∞

∑
n, r=0

0Ψ0
[−
− | (n+ r)ξ

] (−1)nsr

n!r!m!
∏p

i=1 (ci−1)r

∏q
j=1 (d j)r

= exp
(
−eξ

)
p−1Ψq

[
(cp−1, 1)
(dq, 1)

∣∣∣∣∣ s eξ

]
. (42)

Proof. Equation (28) gives us the following result.

L

(
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
; ξ

)
=2π

∞

∑
n, r, m=0

(−1)nsr(n+ r)m ∏p
i=1 (ci−1)r

n!r!m!∏q
j=1 (d j)r

ξ m

=2π
∞

∑
n, r=0

0Ψ0
[−
− | (n+ r)ξ

] (−1)nsr ∏p
i=1 (ci−1)r

n!r!∏q
j=1 (d j)r

,

(43)

then

L(Γ(cp)) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
; ξ =2π

∞

∑
n, r, m=0

(−1)nsr(n+ r)mΠp
i=1 (ci−1)r

n!r!m!Πq
j=1 (d j)r

ξ m

=
∞

∑
n, r=0

(
−eξ

)n

n! p−1Ψq

[
(cp−1, 1)
(dq, 1)

∣∣∣∣∣ s eξ

]

=exp
(
−eξ

)
p−1Ψq

[
(cp−1, 1)
(dq, 1)

∣∣∣∣∣ s eξ

]
.

(44)

Therefore, from both of the above Equations (43-44), the required result is established.
Remark 2 Note that the following general conclusion can be drawn from (42):

∞

∑
n, r=0

(−1)nsr

n!r!m!
∏p

i=1 (ci−1)r

∏q
j=1 (d j)r

pΨq

[
(ai, Ai)

(b j, B j)

∣∣∣∣∣ (n+ r)ξ

]
= exp

(
−eξ

)
pΨq+1

[
(ci−1, 1) (ai, Ai)

(d j, 1) (b j, B j)

∣∣∣∣∣ s eξ

]
. (45)

Theorem 3M-E-K fractional transform including the generalized hypergeometric function is
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I(γk), (τk)
(αk), (βk), l

(
ξ χ−1L

(
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
; ξ

))

=2πξ χ−1 exp
(
−eξ

)
l+p−1Ψl+q


(ci−1, 1)

(
γk +1+

χ −1
βk

,
1
βk

)l

1

(d j, 1)
(

γk + τk +1+
χ −1

αk
,

1
αk

)l

1

∣∣∣∣∣∣∣∣∣s eξ

 (46)

([−βk (1+ γk)]< p; δk ≥ 0; k = 1, . . . , l; i = 1, . . . p; j = 1, . . . . q) .

Proof. Consider the following:

I(γk), (τk)
(αk), (βk), l

(
ξ χ−1L

(
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
; ξ

))

=I(γk),(τk)
(αk), (βk), l

(
ξ χ−12π

∞

∑
n, r, m=0

(−1)nsr(n+ r)m ∏p
i=1 (ci−1)r

n!r!m!∏q
j=1 (d j)r

ξ m

)
,

(47)

then due to the uniform convergence of the integral, we exchange the role of sum and integration to obtain

I(γk), (τk)
(αk), (βk), l

(
ξ χ−1L

(
Γ(s)pFq

[
c1, . . .cp

d1, . . .dq
; s

]
; ξ

))

=2π
∞

∑
n, r, m=0

(−1)nsr(n+ r)m

n!r!m!
∏p

i=1 (ci−1)r

∏q
j=1 (d j)r

I(γk), (τk)
(αk), (βk), l

(
ξ χ−1ξ m) ,

(48)

and the following action of multiple E-K operators [16, 17] is a key step of this proof

I(γk), (τk)
(αk), (βk), l (z

c) =
l

∏
k=1

Γ
(

γk +1+
c
βk

)
Γ
(

γk + τk +1+
c

αk

) zc; q(k = 1, . . . , l ∧ c > [−βk (1+ γk)] ; τk ≥ 0) , (49)

which gives
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I(γk), (τk)
(αk), (βk), l

(
ξ χ−1L

(
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
; ξ

))

=2π
∞

∑
n, r, m=0

(−1)nsr(n+ r)m ∏p
i=1 (ci−1)r

n!r!m!∏q
j=1 (d j)r

l

∏
k=1

Γ
(

γk +1+
χ + p−1

βk

)
Γ
(

γk + τk +1+
χ + p−1

αk

)ξ m+χ−1,

(50)

and then applying Equation (10) to Equation (50) yields the following outcome

I(γk), (τk)
(αk), (βk), l

(
ξ χ−1

(
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
; ξ

))

=2πξ χ−1
∞

∑
n, r, m=0

(−1)nsr ∏p
i=1 (ci−1)r

n!r!m!∏q
j=1 (d j)r

lΨl


(

γk +1+
χ −1

βk
,

1
βk

)l

1(
γk + τk +1+

χ −1
αk

,
1

αk

)l

1

∣∣∣∣∣∣∣∣∣(n+ r)ξ



([−βk (1+ γk)]< p; τk ≥ 0; k = 1, . . . , l) .

(51)

Applying Lemma 1 thus produces the correct simplified form.
Corollary 2 For (i = 1, . . . . p; j = 1, . . . . q; p ≤ q+1; ci∧d j ∈C; ℜ(ci)> 0; d j /∈ Z−

0 )M-S-M fractional integral
operator including the generalized hypergeometric function is

Iγ1, γ1
′, γ2, γ2

′, τ
0+

(
ξ x−1L

{
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
; ξ

})
= 2πξ τ+χ−γ1−γ1

′−1 exp
(
−eξ

)

p+2Ψq+3

[
(ci−1, 1) (χ, 1) (χ + τ − γ1 − γ1

′− γ2, 1) (χ + γ2
′− γ1

′, 1)
(d j, 1) (χ + γ2

′, 1) (χ + τ − γ1 − γ1
′, 1) (χ + τ − γ1

′− γ2, 1)

∣∣∣∣∣s eξ

]
.

Proof. This can be achieved by using (αk = βk) in (46) and then using the case l = 3 from Table 1.
Corollary 3 For (i = 1, . . . . p; j = 1, . . . . q; p ≤ q+1; ci ∧d j ∈ C; ℜ(ci)> 0; d j /∈ Z−

0 ) Saigo fractional integral
operator including the generalized hypergeometric function is

Iγ1, γ2, τ
0+

(
ξ χ−1L

{
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
; ξ

})
= 2πξ τ+χ−γ1−γ1−1 exp

(
−eξ

)

p+2Ψq+3

[
(ci−1, 1) (χ, 1) (χ + γ2 − γ1, 1)
(d j, 1) (χ − γ2, 1) (χ + τ + γ2, 1)

∣∣∣∣∣ s eξ

]
.
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Proof. This can be achieved by using (αk = βk) in (46) and then using the case l = 2 from Table 1 .
Corollary 4 For (i = 1, . . . . p; j = 1, . . . . q; p ≤ q+1; ci ∧d j ∈C; ℜ(ci)> 0; d j /∈ Z−

0 ) Erdélyi–Kober fractional
integral operator including the generalized hypergeometric function is

Iγ, τ
0+

(
ξ χ−1L

{
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
; ξ

})
= 2πξ χ−1 exp

(
−eξ

)
pΨq+1

[
(ci−1, 1) (χ + γ, 1)
(d j, 1) (χ + γ + τ, 1)

∣∣∣∣∣ s eξ

]
.

Proof. This can be achieved by using (αk = βk) in (46) and then using the case l = 1 from Table 1 .
Corollary 5 For (i = 1, . . . . p; j = 1, . . . . q; p ≤ q+ 1; ci ∧ d j ∈ C; ℜ(ci) > 0; d j /∈ Z−

0 ) R-L fractional integral
operator including the generalized hypergeometric function is

Iτ
0+

(
ξ χ−1L

{
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
; ξ

})
= 2πξ χ−1 exp

(
−eξ

)
pΨq+1

[
(ci−1, 1) (χ, 1)
(d j, 1) (τ +χ, 1)

∣∣∣∣∣ s eξ

]
.

Proof. This can be achieved by using (αk = βk) in (46) and then using the case l = 1 from Table 1 . Similarly, the
corresponding left side formulae for

(
i = 1, . . . . p; j = 1, . . . . q; p ≤ q+1; ci ∧d j ∈ C; ℜ(ci)> 0; d j /∈ Z−

0

)
are listed

as follows:

Iγ1, γ1
′, γ2, γ2

′, τ
0−

(
ξ χ−1

{
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
;

1
ξ

})
= 2πξ τ+χ−γ1−γ1

′−1 exp
(
−eξ

)

p+2Ψq+3

[
(ci−1, 1) (1−χ − τ + γ1 + γ1

′, 1) (1−χ + γ1 + γ2
′− τ, 1) (1−χ − γ1, 1)

(d j, 1) (1−χ, 1) (1−χ + γ1 + γ1
′+ γ2 + γ2

′− τ, 1) (1−χ + γ1 − γ2, 1)

∣∣∣∣∣s e
1
ξ

]

Iγ1, γ2, τ
−

(
ξ χ−1L

{
pFq

[
c1, . . .cp

d1, . . .dq
; s

]
;

1
ξ

})

=2πξ χ−γ1−1 exp
(
−eξ

)
p+1Ψq+2

[
(ci−1, 1) (γ1 −χ +1, 1) (γ2 −χ +1, 1)
((d j, 1) (1−χ, 1) ((γ1 + γ2 + τ −χ +1, 1)

∣∣∣∣∣ s e
1
ξ

]

Iγ, τ
0−

(
ξ χ−1L

{
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
;

1
ξ

})

= 2πξ χ−1 exp
(
−eξ

)
pΨq+1

[
(ci−1, 1) (1−χ + γ, −1)
(d j, 1) (τ −χ +1+ γ,−1)

∣∣∣∣∣se
1
ξ

]

Iτ
−

(
ξ χ−1L

{
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
;

1
ξ

})
= 2πξ χ+τ−1 exp

(
−eξ

)
pΨq+1

[
(ci−1, 1) (1− τ −χ −1)
(d j, 1) (1−χ, −1)

∣∣∣∣∣ s e
1
ξ

]
.
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2.2 Multiple E-K derivatives including the generalized hypergeometric function

Using the method from Theorem 1 and the distributional representation of the generalized hypergeometric function,
we may deduce the new derivative formulae involving a generalized hypergeometric function. Here, we deduce them
directly while altering the overall outcome using Theorem 4 of [19], which is

D(γk), (τk)
(αk), (βk), l

{
zc

pΨq

[
(ai,αi)

p
1

(b j,β j)
q
1

; λ zµ

]}
= zc

p+lΨq+l

∣∣∣∣∣∣∣∣
(ai, αi)

p
1 ,

(
γk + τk +1+

c
αk

,
1

αk

)l

(b j, β j)
q
1 ,

(
γk +1+

c
βk

,
1
βk

)l

1

; λ zµ


 , (52)

(µ > 0; ℜ(τi)> 0, ℜ(γi)>−1; λ ̸= 0; |λ zµ |< 1 when q+1 = p) .

M-E-K fractional derivatives containing generalized hypergeometric function are computed using first (52) on (28)
and then using (42)

(
D(γk), (τk)
(αk), (βk), lξ

χ−1L

{
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
; ξ

})

=2πξ χ−1 exp
(
−eξ

)
mΨm+1


(ci−1, 1)p

i=1

(
γk + τk +1+

c
αk

,
1

αk

)l

1

(d j, 1)q
j=1

(
γk +1+

c
βk

,
1
βk

)l

1

∣∣∣∣∣∣∣∣∣s eξ

 (53)

(
µ > 0; ℜ(τi)> 0, ℜ(γi)>−1; λ ̸= 0; |λ zµ |< 1 when q+1 = p; p ≤ q+1; ci; d j ∈ C; ℜ(ci)> 0; d j /∈ Z−

0
)
.

Hence, the following special cases of the result (53) for l = 3 (M-S-M derivative); l = 2 (Saigo fractional derivative);
l = 1 (E-K and R-L fractional derivatives) are listed as follows:

Dγ1, γ1
′, γ2, γ2

′, τ
0+ ξ χ−1L

{
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
; ξ

}
= 2πξ τ+χ−γ1−γ1

′−1 exp
(
−eξ

)

p+2Ψq+3

[
(ci−1, 1) (χ, 1) (χ − γ2 + γ1, 1) (χ + γ1+γ1

′+ γ2
′− τ, 1)

(d j, 1) (χ − γ2, 1) (χ − τ + γ1 ++γ2
′, 1) (χ − τ + γ1

′+ γ1, 1)

∣∣∣∣∣ s eξ

]
;

Dγ1, γ2, τ
0+ ξ χ−1L

{
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
; ξ

}
= 2πξ χ−γ1−1 exp

(
−eξ

)

p+1Ψq+2

[
(ci−1, 1) (χ, 1) (χ + τ + γ2 + γ1, 1)
(d j, 1) (χ + γ2, 1) (χ + τ, 1)

∣∣∣∣∣ s eξ

]
;
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Dγ, τ
0+ ξ χ−1L

{
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
; ξ

}
= 2πξ χ−1 exp

(
−eξ

)
pΨq+1

[
(ci−1, 1) (γ + τ +χ, 1)
(d j, 1) (γ +χ, 1)

∣∣∣∣∣ s eξ

]
;

Dτ
0+ξ χ−1L

{
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
; ξ

}
= 2πξ χ−1 exp

(
−eξ

)
pΨq+1

[
(ci−1, 1) (χ, 1)
(d j, 1) (χ − τ, 1)

∣∣∣∣∣ s eξ

]
,

and the corresponding left hand formulae are given as:

Dγ1, γ1
′, γ2, γ2

′, τ
− ξ χ−1L

{
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
;

1
ξ

}
= 2πξ τ+χ−γ1−γ1

′−1 exp
(
−eξ

)

p+2Ψq+3

[
(ci−1, 1) (1−χ + γ2

′, 1) (1− γ1
′−χ − γ2 + τ1, 1) (1−χ − γ1−γ1

′+ τ, 1)
(d j, 1) (1−χ, 1) (1−χ − γ1

′+ γ2
′, 1) (1−χ +δ − γ1

′− γ1 − γ2, 1)

∣∣∣∣∣s e
1
ξ

]
;

Dγ1, γ2, τ
− ξ χ−1L

{
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
;

1
ξ

}
= 2πξ χ−γ1−1 exp

(
−eξ

)

p+1Ψq+2

[
(ci−1, 1) (1−χ − γ2, 1) (1−χ + τ + γ1, 1)
(d j, 1) (1−χ + τ − γ2, 1) (1−χ, 1)

∣∣∣∣∣ s e
1
ξ

]
;

Dγ, τ
− ξ χ−1L

{
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
;

1
ξ

}
= 2πξ χ−1 exp

(
−eξ

)
pΨq+1

[
(ci−1, 1) (1−χ + γ + τ, 1)
(d j, 1) (1−χ + γ, 1)

∣∣∣∣∣ s e
1
ξ

]
;

Dτ
−ξ χ−1L

{
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
;

1
ξ

}
= 2πξ χ−1 exp(−eω) pΨq+1

[
(ci−1, 1) (τ −χ +1, 1)
(d j, 1) (1−χ, 1)

∣∣∣∣∣ s e
1
ξ

]
.

3. Behaviour of distributional representation of the generalized hypergeometric
function
It is important whether the delta function used to build the new series representation of the generalized hypergeometric

function is accurately described in terms of the distributional idea. The results may hold over complex domain due to the
fact stated at page 200 of [28],

⟨ f (ω), χ(ω)⟩= ⟨ f (t + ıu), χ(t + ıu)⟩= ⟨ f (t), χ(t + ıu− ıu)⟩= ⟨ f (t), χ(t)⟩.

Moreover, a class of test functions closed under the Fourier transform contains infinitely differentiable and fastly decreasing
functions isS (spaceS ′ is its dual which contains functions of slow growth). Essentially, the Fourier transforms of dual
space D ′ (D is the space of test functions with compact support) do not belong to D ′ but they belong to a different space
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Z ′ that is a space of complex functions. We remark that the Fourier transforms of are the elements ofD , which are entire
functions and do not vanish but only on a specific interval ω1 < t < ω2, that yields the subsequent enclosure

Z ⊂ S ⊂ S ′ ⊂ Z ′∧Z ∩D ≡ 0∧D ⊂ S ⊂ S ′ ⊂ D ′,

and

|ωσ℘(ω)| ≤ Aσ eη |ℑ(ω)|; (∀℘∈ Z ; σ ∈ Z0) .

It involves the imaginary part u of ω and the constants η and Aσ , which are determined by℘. Hence, we prove the
following theorem.

Theorem 4 Generalized hypergeometric function Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
is a singular distribution (generalized

function) over Z .
Proof. For℘1 (cp) , ℘2 (cp) ∈ Z ∧C1, C2 ∈ C, we take the subsequent combination

〈
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
, C1℘1 (cp)+C2℘2 (cp)

〉

=

〈
2π

∞

∑
n, r=0

(−1)n(s)r ∏p
i=1 (ci−1)r

n!r!∏q
j=1 (d j)r

δ (cp +n+ r) , C1℘1 (cp)+C2℘2 (cp)

〉
. (54)

⇒

〈
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
, C1℘1 (cp)+C2℘2 (cp)

〉

=C1

〈
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
, ℘1 (cp)

〉
+C2

〈
pFq

[
c1, . . .cp

d1, . . .dq
; s

]
, ℘2 (cp)

〉
. (55)

Then, we choose an arbitrary sequence. {℘ℓ}ℓ=∞
ℓ=1 → 0 using {⟨δ (cp +n+ r)) , ℘ℓ⟩}ℓ=∞

ℓ=1 → 0 .

⇒

{〈
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
, ℘ℓ (cp)

〉}ℓ=∞

ℓ=1

= 2π
∞

∑
n, r=0

(−1)n(s)r ∏p
i=1 (ci−1)r

n!r!∏q
j=1 (d j)r

{⟨δ (cp +n+ r)) , ℘ℓ (cp)}ℓ=∞
ℓ=1 → 0.

(56)

In order to examine how new representations converge, take into account the following

Volume 6 Issue 6|2025| 8879 Contemporary Mathematics



〈
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
, ℘(cp)

〉
=2π

∞

∑
n, r=0

(−1)n(s)r ∏p
i=1 (ci−1)r

n!r!∏q
j=1 (d j)r

⟨δ (cp +n+ r)) , ℘(cp); (∀℘(cp) ∈ Z )

=2π
∞

∑
n, r=0

(−1)n(s)r ∏p
i=1 (ci−1)r

n!r!∏q
j=1 (d j)r

℘(−(n+ r)), (57)

wherever

sum over the coefficients =
∞

∑
n, r=0

(−1)n(s)r ∏p
i=1 (ci−1)r

n!r!∏q
j=1 (d j)r

= e−1
p−1Ψq

[
(ci−1, 1)p

i=1
(d j, 1)q

j=1

∣∣∣∣∣s
]
. (58)

Consequently, Equation (57) displays that
〈
Γ(cp) pFq ((c)p; (d)q; s) , ℘(cp)

〉
; ∀℘(z) ∈ Z is the inner product of

the two types of functions that increase slowly and diminish swiftly, and it is convergent. It’s also corroborated by the
Abel theorem. Consequently, the behavior of a generalized hypergeometric function is similar to a distribution over Z .

To help our grasp the previous topic, consider the example that follows.
Example 1 For℘(cp) = tcpξ (ξ > 0; cp ∈ C), consider the following

〈
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
, ℘(γ)

〉
=

〈
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
, tcpξ

〉

=2π
∞

∑
n, r=0

(−1)n(s)r ∏p
i=1 (ci−1)r

n!r!∏q
j=1 (d j)r

t−nξ−rξ

=2π exp
(
−t−ξ

)
p−1Ψq

[
(ci−1, 1)
(d j, 1)

∣∣∣∣∣ s t−ξ

]
.

(59)

For s = 0, it leads to

∫ +∞

−∞
tcpξ Γ(cp)dcp = 2π

∞

∑
n=0

(
−t−ξ

)n

n!
= exp

(
−t−ξ

)
. (60)

These findings offer fresh insights into the possibility of additional findings of this kind. For instance, based on

τ = e−1 in Equation (60), one can obtain the Laplace transform of Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq

]
.
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3.1 Validation of the distributional representation of generalized hypergeometric function using
classical Fourier transform

Verifying the stability of the new identities attained by innovative representation is the main objective of this part.
A generalized hypergeometric function’s Fourier transform representation is obtained by taking ui = vi = 1 in Equation
(2.1) of [30]

Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
=
√

2πF

[
eℜ(cp)x exp(−ex) p−1Fq

[
c1, . . .cp−1

d1, . . .dq
; sex

]
; ξ

]
. (61)

Since the duality condition is preserved by the Fourier transform, any function u(t)

F [
√

2πF [u(t); s]; ξ ] = 2πu(−ξ ). (62)

Equation (61) yields the following result when this characteristic is applied.

F

{
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
; ξ

}
=F

[
√

2πF

[
eℜ(cp)x exp(−ex)p−1 Fq

[
c1, . . .cp−1

d1, . . .dq
; sex

]]
; ξ

]

= f (−ξ ) = 2π exp
(
−e−ξ

)
e−ℜ(cp)ξ

p−1Fq

[
c1, . . .cp−1

d1, . . .dq
; se−ξ

]
.

(63)

For cp = v+ ιθ , the matching form of the above identity is provided as

∫ +∞

−∞
eiθξ Γ(v+ ιθ)pFq

[
c1, . . .cp−1, v+ ιθ

d1, . . . . . .dq
; s

]
dθ

= 2πe−ℜ(cp)ξ exp
(
−e−ξ

)
p−1Fq

[
c1, . . .cp−1

d1, . . .dq
; se−ξ

]
.

(64)

By substituting τ = e; γ = ν + ιθ , this is the particular form of (57). These specifics show th representation agree
with those obtained using more conventional techniques. Furthermor can be obtained by assuming ξ = 0 in (64):

∫ +∞

−∞
Γ(v+ ιθ)pFq

[
c1, . . .cp−1, v+ ιθ

d1, . . . . . .dq
; s

]
dθ = 2πe−1

p−1Fq

[
c1, . . .cp−1

d1, . . .dq
; se−ξ

]
. (65)

3.2 Distributional (generalized) properties of the generalized hypergeometric function

New distribution features, based on the ideas and methodology presented in chapter 7 of [28], are offered here for a
generalized hypergeometric function as a consequence of its new relation with delta function [28, 29].
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Theorem 5 For any test function℘(z) ∈ Z , the generalized hypergeometric function has the following properties
as a generalized function (distribution), where γ is an arbitrary real or complex constants.

P-1) Any distribution g being an element of the dual space Z ′ and a generalized hypergeometric function together
have the following combined effect:

〈
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
+g, ℘(cp)

〉
=

〈
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
, ℘(cp)

〉
+ ⟨g, ℘(cp)⟩ .

P-2) The following is obtained by multiplying the generalized hypergeometric function by an arbitrary constant, γ

〈
γ Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
, ℘(cp)

〉
=

〈
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
, γ ℘(cp)

〉
.

P-3) Shifting property of the generalized hypergeometric function using any complex constant γ

〈
Γ(cp − γ) pFq

[
c1, . . .cp−1, cp − γ

d1, . . .dq
; s

]
, ℘(cp)

〉
=

〈
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
, ℘(cp + γ)

〉
.

P-4) Generalized hypergeometric function is transposed as

〈
Γ(−cp) pFq

[
c1, . . .cp−1, −cp

d1, . . .dq
; s

]
, ℘(cp)

〉
=

〈
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
, ℘(−cp)

〉
.

P-5) A positive constant γ multiplied by the independent variable cp

〈
Γ(cpγ) pFq

[
c1, . . .cp−1, cpγ

d1, . . .dq
; s

]
, ℘(cp)

〉
=

〈
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
,

1
γ

℘
(

cp

γ

)〉
.

P-6) Differentiating a generalized hypergeometric function as a distribution

〈
dm

dcpm

(
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

])
, ℘(cp)

〉
= 2π

∞

∑
n, r=0

(−1)n(s)r ∏p
i=1 (ci−1)r

n!r!∏q
j=1 (d j)r

(−1)m℘m(−n− r).

P-7) The distributional Fourier transform of a generalized hypergeometric function

〈
F

[
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]]
, ℘(cp)

〉
=

〈
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
, F [℘] (cp)

〉
.

P-8) Dual characteristic of Fourier transforms for the generalized hypergeometric function
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〈
F

[
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]]
, F [℘(cp)]

〉
= 2π

〈
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
, ℘(−cp)

〉
.

P-9) Parseval’s characteristic of Fourier transform for the generalized hypergeometric function

〈
F

[
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]]
, F [℘(cp)]

〉
=

〈
F

[
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]]
, F [℘(cp)]

〉

=2π
〈

Γ(cp) pFq ((c)p; (d)q; s) , [℘(ℜ(cp))]
〉
.

P-10) The generalized hypergeometric function and differentiation property of the Fourier transform

〈
F

[
dm

dcpm

(
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

])
, ℘(cp)

]〉
=

〈
(−ιt)mΓ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
, F [℘] (cp)

〉
.

P-11) Generalized hypergeometric function s’ Taylor series

〈
Γ(cp + γ) pFq

[
c1, . . .cp−1, cp + γ

d1, . . .dq
; s

]
, ℘(cp)

〉
=

〈
∞

∑
n=0

(c1)
n

n!
dn

dcn
p

(
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

])
, F [℘] (cp)

〉
.

P-12) Generalized hypergeometric function has the property of convolution

Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
∗ f (cp) = 2π

∞

∑
n, r, m=0

(−1)nsr(n+ r)m ∏p
i=1 (ci−1)r

n!r!m!∏q
j=1 (d j)r

dm

dcm
p
( f (cp)) .

P-13) Suppose f is a distribution with bounded support, then we have the following identity

F
[
e−ℜ(cp)ξ exp

(
−e−ξ

)
p−1Fq

(
(c)p−1; (d)q; se−ξ

)
∗ f (s)

]
= F [ f (z); cp]Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
.

Proof. Theorem 4’s methodology and the characteristics of the delta function can be utilized to accomplish P-1)-P-5).
Similarly, Equation (18) is used to show the property P-6)

〈
dm

dcm
p

(
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

])
, ℘(cp)

〉
=

∞

∑
n, r=0

(−1)n(s)r ∏p
i=1 (ci−1)r

n!r!∏q
j=1 (d j)r

(−1)m℘m(−n− r).
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According to Theorem 4, the above is a finite sum of functions that are of slow growth and fast decay. Alternatively,
the Fourier transform of delta function features can be used to demonstrate outcomes P-7)-P-8). Consequently, result P-8)
is confirmed by the following:

〈
F

[
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]]
, ℘(cp)

〉
=2π

∞

∑
n, r=0

(−1)n(s)r ∏p
i=1 (ci−1)r

n!r!∏q
j=1 (d j)r

⟨F [δ (cp +n+ r)] , ℘(cp)⟩

=2π
∞

∑
n, r=0

(−1)n(s)r ∏p
i=1 (ci−1)r

n!r!∏q
j=1 (d j)r

⟨δ (cp +n+ r) , F [℘(cp)]⟩

=

〈
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
, F [℘(cp)]

〉
.

Similarly, Parseval’s identity P-9) for the Fourier transform is determined and provided as

〈
F [Γ(cp) pFq ((c)p; (d)q; s)] , F [℘(γ)]

〉
=
〈
F [Γ(cp) pFq ((c)p; (d)q; s)], F [℘(cp)]

〉

=2π

〈[
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]]
, [ℜ(cp)]

〉
.

It is possible to demonstrate property P-10) by taking into account the following

〈
F

[
d

dcp

(
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

])]
, ℘(cp)

〉

=2π
∞

∑
n, r=0

(−1)n(s)r ∏p
i=1 (ci−1)r

n!r!∏q
j=1 (d j)r

〈
F
[
δ (1) (cp +n+ r)

]
, ℘(cp)

〉
;

〈
F

[
d

dcp

(
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

])]
, ℘(cp)

〉

=2π
∞

∑
n, r=0

(−1)n(s)r ∏p
i=1 (ci−1)r

n!r!∏q
j=1 (d j)r

〈
F [δ (cp +n+ r)] , ℘(1) (cp)

〉
;

〈
F

[
d

dcp

(
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

])]
, ℘(cp)

〉

=2π
∞

∑
n, r=0

(−1)n(s)r ∏p
i=1 (ci−1)r

n!r!∏q
j=1 (d j)r

〈
δ (cp +n+ r) ,F

[
℘(1) (cp)

]〉
;
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〈
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
, F

[
℘(1) (cp)

]〉
=
〈
Γ(cp) pFq ((c)p; (d)q; s) , (−ιt)℘(cp)e−icpt〉 ;

〈
F

[
d

dcp

(
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

)]
, ℘(cp)

〉
=

〈
(−ιt)F

[
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]]
, ℘(cp)

〉
;

and so forth, it results

〈
F

[
dm

dcpm

(
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

])]
, ℘(cp)

〉
=

〈
(−ιt)mF

[
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]]
, ℘(cp)

〉
.

Equation (17) makes it possible to demonstrate the outcome number P-11) as follows:

〈
Γ(cp + γ) pFq

[
c1, . . .cp−1, cp + γ

d1, . . .dq
; s

]
, ℘(cp)

〉

=2π
∞

∑
n, r=0

(−1)n(s)r ∏p
i=1 (ci−1)r

n!r!∏q
j=1 (d j)r

⟨δ (cp +n+ r+ γ) , ℘(cp)⟩

=2π
∞

∑
n, r=0

(−1)n(s)r ∏p
i=1 (ci−1)r

n!r!∏q
j=1 (d j)r

⟨δ (cp +n+ r) , ℘(cp − γ)⟩

= lim
v→∞

〈
2π

∞

∑
n, r=0

(−1)n(s)r ∏p
i=1 (ci−1)r

n!r!∏q
j=1 (d j)r

δ (cp +n+ r) ,
v

∑
m=0

(−γ)n

n!
℘(m) (cp)

〉

= lim
v→∞

〈
v

∑
m=0

(γ)m

m!
dm

dcpm

(
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

])
, ℘(cp)

〉
,

as required. Next, result P-11) can be demonstrated using Equation (22), which is further explained by the example that
follows [28].

Example 2 Consider f (cp) = exp(acp) then

Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
∗ exp(acp) = 2π

∞

∑
n, r, m=0

(−1)nsr(n+ r)m ∏p
i=1 (ci−1)r

n!r!m!∏q
j=1 (d j)r

δ (m) (cp)∗ exp(acp) ; a > 0

Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
∗ exp(acp) = 2π

∞

∑
n, r, m=0

(−1)nsr(n+ r)m ∏p
i=1 (ci−1)r

n!r!m!∏q
j=1 (d j)r

dm

dcm
p
(exp(acp))
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Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
∗ exp(acp) = 2π

∞

∑
n, r, m=0

(−1)nsr (acp(n+ r))m ∏p
i=1 (ci−1)r

n!r!m!∏q
j=1 (d j)r

= 2π exp(−acp) pFq

[
c1, . . .cp−1

d1, . . .dq
; seacp

]
.

The following identities can also be further computed using the definitions of sinhacp and coshacp

Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
∗ sinhacp = 2π

∞

∑
n, r, m=0

(−1)nsr(n+ r)m ∏p
i=1 (ci−1)r

n!r!m!∏q
j=1 (d j)r

dm

dcm
p
(sinhacp)

Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
∗ coshacp = 2π

∞

∑
n, r, m=0

(−1)nsr(n+ r)m ∏p
i=1 (ci−1)r

n!r!m!∏q
j=1 (d j)r

dm

dcm
p
(coshacp) .

Since Fourier (F ) and inverse Fourier (F−1) act like continuous linear functionals from D ′ → Z ′ therefore, next

result P - 12) is demonstrated [23]. Thus, in light of Equation (60),

[
exp
(
−e−ξ

)
e−ℜ(cp)ξ

p−1Fq

[
c1, . . .cp−1

d1, . . .dq
; se−ξ

]]
∈

D ′. The proof of property P-13) is therefore completed in the light of Theorem 7.9.1 as given and proved in [23]. This
will be further demonstrated with the aid of the example that follows.

Example 3 Analyze the following distribution f (cp) with bounded support

f (cp) =

{
1 |cp|< 1
0 |cp| ≥ 1

.

Therefore, with the previously stated data, we arrive at

F

[
f (cp)∗2πe−ℜ(cp)ξ exp

(
−e−ξ

)
p−1Fq

[
c1, . . .cp−1

d1, . . .dq
; se−ξ

]]

=F [ f (cp)]F

[
2πe−ℜ(cp)ξ exp

(
−e−ξ

)
p−1Fq

[
c1, . . .cp−1

d1, . . .dq
; se−ξ

]]

=
sinξ

ξ
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
.

Utilizing the new representation, the obtained result is novel and useful.
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4. Further applications and discussion

The above explanation focuses on the convergent behavior of Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
and the presence of delta

function ensures this fact for a wider range of functions. This topic is further discussed in this conversation. The Dirac
delta function transfers all functions to their zero value in a linear fashion. Therefore, (18) can be used to obtain the
subsequent results for a real t:

〈
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
, ℘(cp)

〉

=2π
∞

∑
n, r, m=0

(−1)nsr(n+ r)m ∏p
i=1 (ci−1)r

n!r!m!∏q
j=1 (d j)r

〈
δ (m) (cp) , ℘(cp)

〉

=2π
∞

∑
n, r, m=0

(−1)nsr(n+ r)m ∏p
i=1 (ci−1)r

n!r!m!∏q
j=1 (d j)r

(−1)m℘(m)(0).

(66)

Example 4 Consider℘(cp) = eacp then℘(p)(0) = ap

〈
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
, eacp

〉

=2π
∞

∑
n, r, m=0

(−1)nsr(n+ r)m ∏p
i=1 (ci−1)r

n!r!m!∏q
j=1 (d j)r

(−1)mam

=2π
∞

∑
n, r=0

(−1)n(s)r ∏p
i=1 (ci−1)r

n!r!∏q
j=1 (d j)r

e−an−ar

=2π exp
(
−e−a)

p−1Fq

[
c1, . . .cp−1

d1, . . .dq
; se−a

]
.

(67)

Example 5 Consider℘(cp) = sinacp, then℘(m)(0) = (−a)2m+1; ℘(m)(0) = 0; m = 0, 2 ,4, . . .

〈
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
, ℘(cp)

〉

=2π
∞

∑
n, r, m=0

(−1)nsr(n+ r)2m+1Πp
i=1 (ci−1)r

n!r!(2m+1)!Πq
j=1 (d j)r

(−a)2m+1
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=2π
∞

∑
n, r=0

(−1)n(s)rΠp
i=1 (ci−1)r

n!r!Πq
j=1 (d j)r

sina(−n− r)

=ℑ

(
2π

∞

∑
n, r=0

(−1)n(s)rΠp
i=1 (ci−1)r

n!r!Πq
j=1 (d j)r

eι(a(−r−n))

)

=ℑ

(
2π exp

(
−e−ιa)

p−1 Fq

[
c1, . . .cp−1

d1, . . .dq
; se−ιa

])
. (68)

Likewise, if℘(cp) = cosacp then℘(m)(0) = (−a)2m; ℘(m)(0) = 0; m = 1, 3, 5, . . .

〈
Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
, cosaccp

〉
= ℜ

(
2π exp

(
−e−ιa)

p−1Fq

[
c1, . . .cp−1

d1, . . .dq
; se−ιa

])
. (69)

Hence, the distributional representation is capable of producing more creative outcomes in several ways. A fractional
kinetic Equation was previously solved in Section 2. Take note that when evaluating the following findings regarding the
products of a broad class of special functions, (42) and (46) are taken into account.

∫ 1

0
ξ χ−1 exp

(
−eξ

)
p−1Fq

[
c1, . . .cp−1

d1, . . .dq
; s eξ

]
H l, 0

l, l

ξ

∣∣∣∣∣∣∣∣∣
(

γk +1+
χ −1

βk
,

1
βk

)l

1(
γk + τk +1+

χ −1
αk

,
1

αk

)l

1

dξ

=2πξ χ−1 exp
(
−eξ

)
p+m−1Ψq+m+1

s eξ

∣∣∣∣∣∣∣∣∣
(ci−1, 1)

(
γk +1+

χ −1
βk

,
1
βk

)l

1

(d j, 1)
(

γk + τk +1+
χ −1

αk
,

1
αk

)l

1

 .
(70)

Consequently, we also obtain

∫ 1

0
Γ(ξ cp) pFq

[
c1, . . .cp−1, ξ cp

d1, . . .dq
; s

]
H l, 0

l, l

cp

∣∣∣∣∣∣∣∣∣
(

γk +1+
χ −1

βk
,

1
βk

)l

1(
γk + τk +1+

χ −1
αk

,
1

αk

)l

1

dcp

=2π
∞

∑
n, r=0

(−1)n(s)r ∏p
i=1 (ci−1)r

n!r!∏q
j=1 (d j)r

∫ 1

0
δ (cpξ +n+ r)H l, 0

l, l

cp

∣∣∣∣∣∣∣∣∣
(

γk +1+
χ −1

βk
,

1
βk

)l

1(
γk + τk +1+

χ −1
αk

,
1

αk

)l

1

dcp
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=2πξ−1
∞

∑
n, r=0

(−1)n(s)r ∏p
i=1 (ci−1)r

n!r!∏q
j=1 (d j)r

H l, 0
l, l

−n+ r
ξ

∣∣∣∣∣∣∣∣∣
(

γk +1+
χ −1

βk
,

1
βk

)l

1(
γk + τk +1+

χ −1
αk

,
1

αk

)l

1

∣∣∣∣∣∣∣∣∣



=2πξ−1 exp
(
−eξ

)
H l,0

l+p−1, l+q

s e1/ξ

∣∣∣∣∣∣∣∣∣
(ci−1, 1)

(
γk +1+

χ −1
βk

,
1
βk

)l

1

(d j, 1)
(

γk + τk +1+
χ −1

αk
,

1
αk

)l

1

 , (71)

and

∫ 1

0
Γ(ξ cp) pFq

[
c1, . . .cp−1, ξ cp

d1, . . .dq
; s

]
Gm, 0

m, m

[
cp

∣∣∣∣∣ (γk + τk)
m
1

(γk)
m
1

]
dcp

=2π
∞

∑
n, r=0

(−1)n(s)r ∏p
i=1 (ci−1)r

n!r!∏q
j=1 (d j)r

∫ 1

0
δ (cpξ +n+ r)Gm, 0

m, m

[
cp

∣∣∣∣∣−− (γk + τk)
m
1

(γk)
m
1

]
dcp

=2πξ−1
∞

∑
n, r=0

(−1)n(s)r ∏p
i=1 (ci−1)r

n!r!∏q
j=1 (d j)r

Gm, 0
m, m

[
−n+ r

ξ

∣∣∣∣∣ (γk + τk)
m
1

(γk)
m
1

]

=2πξ−1 exp
(
−eξ

)
Gm, 0

m+p−1, m+q

[
s eξ

∣∣∣∣∣ ((c)p−1, 1) (γk + τk)
m
1

(dq, 1) (γk)
m
1

]
.

(72)

5. Conclusion and future directions
The new fractional transformations of a generalized hypergeometric function have been computed by applying

multiple E-K operators form fractional calculus. Consequently, as special examples for the many other well-known
fractional transforms, equivalent new images are created. More general kinetic Equation in parameter cp is designed
and solved using the distributional representation, which is also applied to examine the Laplace transformation of the

generalized hypergeometric function Γ(cp) pFq

[
c1, . . .cp

d1, . . .dq
; s

]
. Particular examples involving the original Mittag-

Leffler function are given as corollaries. The purpose of this work was made possible in large part by a recently derived
formulation of the generalized hypergeometric function as well as the associated Laplace transform. We can therefore
draw the conclusion that this finding is important for extending the use of the generalized hypergeometric function [37, 38]
beyond its original context [39].
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