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Abstract: The structural identifiability (SI) problem considers for dynamical systems with multiple nonlinearities 
under uncertainty. It shows the widely used paradigm based on a priori parametric identifiability is not applicable in this 
case. The geometric framework (GF) is derivate from the system phase portrait and reflects the system nonlinear part 
properties under uncertainty. GF gives a conception of the system nonlinear part. The SI analysis problem interprets as 
a solution to the structural identification problem. The concept of S-synchronizability, which is the basis for estimation 
structural identifiability, introduce. Conditions of identifiability and structural identifiability are obtained. The constant 
excitation impact of input is studied on structural identifiability of the system. It shows that the input, which is 
constantly excited, can give the insignificant GF. Conditions are obtained for the existence of insignificant frameworks. 
Approaches are proposed to the estimation of structural identifiability systems with two nonlinearities and difficulties 
are noted. It is shown that a priori information is critical about the relation of variables. The approach is proposed to SI 
estimation based on the analysis of the influence graph.

Keywords: structural identifiability, structure, geometric framework, nonlinearity, excitation constancy, importance 
graph, S-synchronizability, degree of non-identifiability

1. Introduction
The problem of identifying dynamic systems is one of the most relevant areas of study. Foundational results on the 

parametric identification of systems are obtained. At the same time, research is continuing to evaluate the parametric 
identifiability of dynamic systems. Identifiability is a condition for obtaining adequate models. Many studies have 
devoted to solving this problem [1-7]. Various approaches and methods are used to estimate identifiability: Taylor 
expansion [7]; series generation method [8]; similarity transformation [9] and differential algebra. The possibility of 
further application of parametric identification procedures is the result of applying these methods and approaches. The 
requirement of identifiability is reduced to estimating the non-degeneracy of the information matrix formed from the 
input and output data of the system. In identification theory, this requirement is equivalent to the condition of constant 
excitation. Call this direction parametric identification (IP).

This parametric paradigm is the main direction of research in identification theory and transformed into nonlinear 
systems. Many authors study parametric identification of nonlinear systems [1-2, 5-7, 10-11]. In [1], the approach based 
on the analysis of the system’s output sensitivity is used to study identifiability. The effectiveness of this approach is 
shown for estimating the identifiability of the system parameter combination. In [11], local IP conditions are obtained for 
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various types of experimental data. A critical analysis of the approaches used to estimate the identifiability of biological 
models is given in [7]. Methods for identifiability estimating nonlinear systems are based on the approaches described 
in the first paragraph of this section. The requirements for the data analysis used in the IP task solution is considered in 
[5]. The study of various types of identifiability (global, local, structural, and practical) is described in many works [1, 5]. 
Most studies on IP are associated with a priori identifiability.

Note that the identifiability problem of nonlinear systems has its peculiarities and relevance. To show this, consider 
the second-order system with hysteresis
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Show the impact of the input u(t) on the nonlinear properties of the system (1). This influence reflects on the 
system of identifiability. Let u6, -4(t) = 6 - 4sin(0.1πt). The phase portrait of the system and the hysteresis are shown in 
Figure 1. We see that the system (1) is identifiable.
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Figure 1. Results of structure estimation for u6, -4(t)

Figure 2 presents the system properties for u6, -0.5(t) = 6 - 0.5sin(0.1πt). Such input does not guarantee the 
identifiability of the system based on experimental data. We cannot conclude about the properties of the system from the 
phase portrait. Nonlinearity has a form that complicates decision-making. Presented results show that the identifiability 
problem of nonlinear systems is relevant. The input plays a significant role in solving the identifiability problem. 
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This problem is complicated when multiplicity nonlinearities are in the system. As a rule, parametric identification 
methods are approximation and level the influence of nonlinearity. The example shows that the structural identifiability 
estimation is possible only if the system structure is known. The structural identifiability problem is not solved by 
parametric methods under uncertainty.

2,50 2,55 2,60 2,65 2,70 2,75
-0,06

-0,04

-0,02

0,00

0,02

0,04

0,06
S

e
y'

y 2,4 2,6 2,8 3,0 3,2 3,4

1,6

1,8

2,0

2,2

y

6, 0.5 ( )yϕ -

(a) phase portrait

y'

e

S

y
(b) nonlinearity

1.6

1.8

2.0

2.2

φ6, -0.5( y)

2.6 2.8 3.0 3.2 3.42.4
y

-0.06

-0.04

-0.02

0.00

0.06

0.02

0.04

2.55 2.60 2.65 2.70 2.752.50

Figure 2. Results of structure estimation for u6, -0.5(t)

Works on IP problems do not consider the estimation problem of the system structure. Therefore, the concept 
of structural identifiability does not reflect the essence of the identifiability problem. But this terminology is used in 
problems of assessing identifiability. Therefore, in this section, we adhere to this terminology to continue analyzing the 
results obtained.

The concept of identifiability and smooth identifiability are introduced for nonlinear systems in [12]. In [13], there 
is a relationship studied between the identifiability and observability of nonlinear biological systems. The structural 
identifiability of time series is described by nonlinear regression and autoregressive equations studied in [14]. In [15], 
the observability controllability and reachability joint estimate for nonlinear processes were obtained. The identification 
problem of parameters is considered for systems with several nonlinearities in [16-18]. The structure of nonlinearity 
specify a priori is not studied.

So, the system identifiability is understood as the possibility to estimate its parameters. Methods are based on 
the information matrix nondegeneracy estimation. Similar results are obtained in the parametric estimation theory. 
They are based on checking the constant excitation (CE) condition of the input and output of the system. As a rule, the 
model structure specifies a priori, and the essence of the structural identifiability is not always clear. The identifiability 
of nonlinear system is reduced to the IP problem in the following sense: how the nonlinear system structure (form, 
dependence) to estimate under uncertainty. The SI problem is not studied in this form. But these are the structural 
aspects of the system identifiability. The question: input provides the structural identifiability of the system as structural 
identification, is not be considered. This formulation is proposed in [19]. In [20], results presented for systems with a 
single nonlinearity gives the solution to this problem.

In this paper, we consider the structural identifiability problem of the dynamical system with nonlinearities under 
uncertainty. It is very complex problem since the methods for formalizing the system structure have not been developed. 
The concept of SI (h-identifiability) is introduced in [19]. The proposed approach solves the problem of estimating the 
nonlinear system structure. It is based on the analysis of geometric frameworks that the state of the nonlinear system 
reflected. Below we give the summary and generalization of the results obtained in [19-20].

2. Problem statement
Consider the system
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( ) ,uX AX B Y B Uϕ= + Φ +

,TY C X= (2)

where X ∈ Rn, U ∈ Rp, Y ∈ Rk are state vector, input and output; A ∈ Rn×n, Bu ∈ Rn×p, Bφ ∈ Rn×q, C ∈ Rk×n are matrices 
of corresponding dimensions; Φ(Y) ∈ Rq is nonlinear vector function. A is Hurwitz matrix.

The nonlinear function φi (ξ) ∈ Φ is smooth and satisfies the condition

{ }2 2
1, 2, 1, 2,( ) , 0, (0) 0, 0, ,i i i i i iϕχ γ ξ ϕ ξ ξ γ ξ ξ ϕ γ γ∈ = ≤ ≤ ≠ = ≥ < ∞F (3)

where ξ ∈ R is the input of a nonlinear element. ξ is a linear combination of state variables. For the system (2), the 
information set is known 

[ ]{ }0I ( ),  ( ),  ,  .o kU t Y t t J t t= ∈ = (4)

Problem: analyze the set Io and estimate the structural identifiability of the system (2).
Apply the approach to structural identification proposed in [17]. It is based on the transition into a structural space 

and the construction of Sey framework. Sey reflects the properties of the nonlinear part (2). The analysis Sey is related to 
solving the SI problem of the system. To distinguish the approach described from IP, we use the h-identifiability term (HI).

Let q = 1, C = [1, 0, …, 0]T, Bφ = Bu = I = [0, 0, …, 0, 1]T, u ∈ R, Y = y, y ∈ R, Φ(Y) = φ(Y) . Denote the system (2), 
(3) with the specified parameters as Syφ. 

Next statements are given for the system Syφ. Syφ is the particular case of the system (2), (3). We will denote Syφ as (2) 
further.

3. Method of constructing ey-framework
The construction of the Sey-framework requires the formation of a set IN, g, containing information about the 

function φ(y). Sey is described by a function fey : y → e, where e ∈ R is a variable that reflects the change in the 
nonlinearity φ(y) under uncertainty. Describe the method of obtaining IN, g [18]. Apply the differentiation operation to 
y(t) and denote the obtained variable as x1. Obtain the information set Ient = {Io, x1}.

Remark 1 If the variables measured with an error apply filtering or smoothing procedures.
Select the subset Ig ⊂ Ient corresponding to the partial solution of system (2) (steady state). Apply the mathematical 

model

(5)[ ]1̂ ( ) 1 ( ) ( ) ,Tl Tx t H u t y t=

to the selection of the linear component in x1, where H ∈ R3 is parameters vector. The variable x1 is defined on the 
interval Jg = J \ Jtr.

We determine the vector H as the solution to the problem

1 1

2
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Find the forecast for the variable x1 by applying the model (5) ∀t ∈ Ig and form the error 1 1ˆ( ) ( ) ( )le t x t x t= - . e(t) is 
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the function of nonlinearity φ(y). We have IN, g = {y(t), e(t) t ∈ Jg}. Apply the notation y(t) supposing y(t) ∈ IN, g.
Remark 2 The choice of model (5) structure is one of the stages for structural identification of the system (2). The 

type model is defined by the input and system information.
The phase portrait S is described by the function Γey : {y} → {e}, ∀t ∈ Jg does not always guarantee the decision-

maker on system nonlinear properties under uncertainty. Go to the structure space Pye = (y, e). Consider the function Γey : {y} 
→ {e}, ∀t ∈ Jg which on the plane ( y, e) describes the change in the framework Sey. IN, g contains the information about 
φ(y). Therefore, Sey describes the change in the nonlinear function in the generalized form. The identification of the form 
φ(y) is based on the use of the input satisfied certain conditions. The input must have the property of constant excitation 
(see below). Such input gives the closed framework Sey.

Apply the model (5) and represent the system S as
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where nX R∈  is the variable describing the general solution of the system (2); ζ ∈ R is a bounded perturbation 
appearing as the analysis result of the variable e.

Consider the identifiability problem of system Sy , Sφ.

4. Structural identifiability of nonlinear system Syφ

Consider the system Sφ and properties of the set IN, g, which allow us to solve the structural identification problem, 
and, consequently, the identifiability estimation.

Let conditions hold.
B1. The input is constantly excited at the interval J.
B2. The analysis of Sey gives the solution to the estimation problem of the nonlinear properties of the system Syφ.
We will state the basic concepts following [20].
Definition 1 If u(t) satisfies В1 and В2 conditions, then the input u(t) is representative.
Let the framework Sey be closed, and the area Sey is not zero. Denote height Sey as h(Sey) where height is the distance 

between two points on the opposite sides of the framework Sey.
Theorem 1 [20]. Let (i) the linear part of the system Syφ is stable; (ii) the nonlinearity φ(·) satisfies the condition (3); 

(iii) the input is bounded, and constantly excited; (iv) h(Sey) ≥ δS, where δS > 0. Then the framework Sey is identified on 
the set IN, g.

Theorem 1 shows conditions in the framework Sey. The framework Sey must be closed, hence, it must have the 
height or distance between opposite points of the framework. It ensures that Sey has a diameter (see below).

Definition 2 The framework Sey is called h-identifiable if theorem 1 holds for Sey.
Let Sey be h-identifiable. h-identifiability features are considered in [19-20].
But a “bad” input existing that is constantly excited. This input gives a so-called “insignificant” Sey-framework 

(NSey-framework). However, the NSey-structure can be h-identifiable. The system (2) identification with the NSey-
framework gives results which are not typical for the system.

Conditions of an existence NSey-structure. Consider a class of nonlinear functions to which the homothety operation 
is applicable [22].

Let 
ey ey

l r
ey = ∪S SS F F , where ,  

ey ey
l r

S SF F  are left and right fragments Sey. Determine for ,  
ey ey

l r
S SF F  secant



Contemporary MathematicsVolume 2 Issue 2|2021| 145

(7),  ,r r l l
S Sa y a yγ γ= =

where al, ar are numbers determined using the least-squares method (LSM).

Theorem 2 [16]. Let (i) the framework Sey is h-identifiable and has the form 
ey ey

l r
ey F F= ∪S SS , where ,  

ey ey
l r

S SF F  is 

the left and right fragment of Sey; (ii) secants for ,  
ey ey

l r
S SF F  are described by equations (7). Then Sey is NSey-framework if

,  0.l r
h ha a δ δ- > > (8)

Remark 3 NSey-frameworks are often the result of inadequate application of input action.

Introduce designations: Dy = dom(Sey) is definition range of the framework Sey, ( ) max ( ) min ( )y y y
tt

D D y t y t= = -D  

is diameter Dy. Let u(t) ∈ U where U is an acceptable set of inputs for the system (2). The set U contains representative 
inputs.

Definition 3 If Dy of the structure Sey has the maximum diameter Dy, the input S-synchronizes the system (2).
Definition 4 The input u(t) ∈ US ⊆ U is the S-synchronizer system Syφ if the definition range Dy of the framework 

Sey has the maximum diameter Dy.

Consider a reference framework ref
eyS . ref

eyS  is the framework Sey reflecting all properties of the function φ(y). 

Designate by the diameter ( )ref
y eyD S  as ref

yD . ref
yD  exists if the input the system (2) is S-synchronizing.

Definitions 2, 3 show if ref
ey ey≅S S , then ref

y y yD D ε- ≤  where εy ≥ 0, ≅ is the proximity sign. Elements of the 

subset US have property

( )( )SU( ) .ref
y ey u y yD u t D ε∈ - ≤S (9)

Synchronization u(t) ∈ U is the choice of the input uh(t) ∈ U such that reflects all features φ(y) in Sey. It is true if 
u(t) ensures max

h
y

u
D  and Sey ≠ NSey. We interpret the choice uh(t) ∈ U as ensuring synchronization between structures of 

the model and the system. , max
h

h y y
u

D=d  is the condition of h-identifiability which can represent as

(10)( )( )SU ,( ) .y ey u h y yD u t ε∈ - ≤S d

The condition for NSey

(11)( )( )SU\U ,( ) .y ey u h y yD u t ε∈ - >S d

(10) can be interpreted as proximity domain

(12)( )SU( ) ,ref
D ey u eyu t ∈= -Q S S

which is understood as ( ) ( )ref
yy t y t ε- ≤   for almost t t∀ ≥ .

We will write δQ D ≤ ε 
y if frameworks under consideration are close. If the condition δQ D ≤ εy is true for Q D for 
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almost ∀t ≥ t* then the domain Q D will be called the S-synchronizability area on the set of inputs {uh(t)} or the structural 
identifiability domain on the set {Sh(uh(t))}, where Sh is the phase portrait of the system Syφ.

So, two criteria (8) and (11) are presented for the existence of the insignificant framework. Structure of systems Sφ 
and Syφ are structurally unidentifiable in this case.

Let the input uh(t) synchronize the system Syφ. If u(t) is S-synchronizing, then we will write uh(t) ∈ S. Note that 
a finite set {uh(t)} ∈ S exists for the system Syφ. The choice of optimal uh(t) depends on dh, y and (10). The hold of the 
condition (10) is one of the prerequisites for SI of the system Syφ.

Definition 5 If framework Sey is h-identified and conditions r r
ha a δ- ≤ , (9) are satisfied, then the framework 

Sey or the system (2) (system Syφ) is structurally identified or hδh
-identifiable.

Definition 5 shows if the system (2) is hδh
-identified then the framework Sey has the maximum diameter of area Dy.

Definition 6 The model (5) is SM-identifying if the framework Sey is hδh
-identifiable.

The framework Sey is defined on uh(t) ∈ S and uh(t)1 satisfies condition B1. Therefore, Sey corresponds to the 
nonlinearity φ(y) defined on the class

{ }( ) ( ) ( , ), , , , ,n
i i i iy y R y Rϕϕ ϕ ϕ α α α αΑ  ∈ = ∈ Α Α ∈ ∈ Α ∈  F

where ,i iα α  are some numbers.
Note that the term SM-identifying does not coincide with the concept proposed in [24].
Theorem 3 [19]. Let (i) the input u(t) ∈ S is constantly excited; (ii) the system Syφ phase portrait have m features; 

(iii) Sey-framework is hδh
-identified and contains fragments corresponding to features of the system Syφ. Then the model (5) 

is SM-identifying.
The theorem 3 shows if the model (5) is not SM-identifying, then model (5) structure or the informational set (4) 

need to change.
Let cS is the center of the framework Sey on the set Jy = {y(t)}, cDy

 is the center of the area Dy.

Theorem 4 [20]. Let the set US given for the system Syφ and (i) exists ε ≥ 0 such that yDс с ε- ≤S ; (ii) 
l r

ha a δ- ≤ , where al, ar are coefficients of secants (8) for ( , )
ey ey

l r
ey⊂S SF F S . Then the system Syφ is hδh

-identifiable 

and the input uh(t) ∈ S, and the structure Sey defines the class Fφ.
Since φ(y) ∈ Fφ the center cDy

 of area Dy cDy
 ∈ JcDy

, where JcDy
 is some interval.

Let some subset {uh, i(t)} ⊂ US ⊆ U (i ≥ 1) whose elements have the property of S-synchronizability exists. The 
framework Sey, i(uh, i) with the diameter Dy, i of area Dy, i corresponds to every uh, i(t). As uh, i(t) ∈ S the diameter Dy, i has 

the property dh, Σ-optimality. Let the hypothetical framework Sey (the framework ref
eyS ) of the system Syφ have diameter 

dh, Σ.
Definition 7 The framework Sey, i has dh, Σ-optimality property on the set Uh if εΣ > 0 such that , ,h y iD εΣ Σ- ≤d  

1, # Uhi∀ = .

Definition 8 If ({uh, i(t)} = Uh ⊂ U) & (uh, i(t) ∈ S), i ≥ 1 and frameworks Sey, i(uh, i) have dh, Σ-optimality property, 
then frameworks Sey, i(uh, i) are structurally indiscernible on sets {uh, i(t)} Jy(u(t) = uh, i(t)).

So, the hδh
-identifiability estimate can be obtained from any input, following definitions 6, 7.

Definition 9 If frameworks Sey, i(uh, i) have dh, Σ-optimality property, then Sey, i(uh, i) is locally structurally identifiable 
on the set Uh.

Denote the framework Sey, i(uh, i) had dh, Σ-optimality property as ,ey i
ΣS , and the locally structurally identified 

framework Sey, i(uh, i) as ,
LSI
ey iS . 
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The framework Sey is locally structurally identifiable on the set Uh ⊆ US if

(13)( ) ( )S , что LSI
h ey ey ey eyu Σ∃ ∈ ≅ → ≅S S S S

Remark 4 We consider nonlinearities satisfying condition (3). Therefore, notes made above are valid.
Definition 10 The framework Sey, i(ui) ∈/ US that does not have the dh, Σ-optimality property is locally structurally 

unidentifiable on the set Uh.
The framework Sey, i(ui ∈/ US) that is structurally unidentifiable on the set Uh defines the class N

ϕ ϕ⊄F F .
Remark 5 The described approach applies to the nonlinear system with the dynamic law of nonlinearity change. In 

this case, the multilevel analysis gives the solution to the identifiability problem.
The identifiability of system S is considered in [21].

5. On excitation constancy effect on identifiability of system
In [23], the excitation constancy influence is studied on the identifiability estimation of the system with hysteresis. 

It shows that not every input with the CE property guarantees the structural identifiability of the system. Below we 
present results that allow estimating the CE impact.

Consider the input u ∈ P Eα, where P Eα is the constant excitation property

P Eα : u2(t) ≥ α

holds for 0α∃ >  and ∀t ≥ t0 on some interval T > 0.
Let input u(t) of the system Syφ have the property u(t) ∈ P EFα, ωk

, where

( ) ( ) ( ) ( )( ) : & & S ,  : ( ) ,
k kk k k k k k ku t u u u u tα ω ω∈ ∈ ∈ = ΩRFPE PF PF (14)

RF(Ωk) is the model for uk(t) based on the Fourier series and given on the set of frequencies Ωk = {ω1, ω2, …, ωk}.
Let uk ∈ Uk, Uk = U\US. Consequently uk ∈/ S. For uh ∈ S holds

( ) ( ) ( ) ( )( ) : & & S ,  : ( ) ,
h hh h h h h h hu t u u u u tα ω ω∈ ∈ ∈ = ΩRFPE PF PF (15)

where Ωh =/  Ωk.
Compare (14), (15) and obtain

(16)( ) ( )( ) .h k k
h h k k ey ey ey eyΩ ≠ Ω ⇒ ≠ ⇒ =RF RF NS S S S

From (16) have

(17)( ) ( )( ) ( ) ( ) .h k h k
y ey y ey y ey y eyD D ≠ ⇒ ≥  

D DS S S S

The definitional domain of frameworks ,h k
ey eyS S  does not coincide, and ,h k

ey eyS S is dh, Σ-optimal on the set Uh. Therefore, 
the fulfillment of the condition (11) follows from inequality (17). Consequently, the structure of the system Syφ nonlinear 
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part with uk has indicators that do not coincide with the structurally identifiable parameters (2) with uh.
So, the CE condition of the input affects the hδh

-identifiability of the Sφ-system, and, consequently, the system Syφ.
The statement is true.
Theorem 5. Let (i) the input uk satisfies condition (14); (ii) the ,h k

ey eyS S -framework corresponds to the input uk; (iii) 
there is the input uh ∈ S such that the condition (15) is satisfied; (iv) conditions (16), (17) hold. Then (a) the Sφ-system is 

structurally unidentifiable by the input uk; (b) structural parameters of the Sφ-system do not correspond to the parameters 

system Syφ with the identifiable structure ,h k
ey eyS S.

Obtain the non-identifiability degree estimate of the Sφ-system. Let the phase portrait S constructed for the system 
Syφ. Definitional domains of S and Sey frameworks are coincident. Therefore, the diameter D(Sey) of the framework Sey 
is known. Consider the set {ui(t)} having the property P Eα. Determine for each ui(t) the structure Sey, i and obtain Dy, i(Sey, i). 

Suppose dh, y = ( )( ), ,max
i

h y y ey i
u

D=d D S|Dy(D
 (Sey, i))| and denote the corresponding input as uh. Determine diameters dy, j = |Dy, j(D

 [Sey, j(uj 

∈ V )])| for all inputs V  = {ui(t)}\{uh}. Since uh ∈ S, therefore dh, y > Dy, j, ∀j ≥ 1. Then evaluate the non-identifiability 

degree as

(18)( ) , ,
,

,

h y y j
j ey j

h y

d-
=

d
SI = SI

d
S

(18) shows that system Syφ is structurally identifiable if SIj → 0. The structural identifiability area Q D is defined by 
the condition (10).

Remark 6 If fragments ,l r
S SF F  select on the phase portrait S, then the estimate for the non-identifiability is defined 

as

( )
( )
( )

,
l l
y

r r
y

d
SI SI

d
==

S

S

F
S

F

where ( ),  ( )l l r r
y yd dS SF F  are diameters of fragments ,l r

S SF F . The system Sφ is structurally identifiable if SI (S) ≤ O (2) 
where O (2) is neighborhood 1.

The input amplitude can influence the SI of nonlinear systems. Modify conditions (14), (15)

(19)( ) ( ) ( ) ( )( ) : & & S ,  : ( ) , ,
k kk h k k k ku t u u u u t Gα ω ω∈ ∈ ∈ = ΩRFPE PF PF

(20)( ) ( ) ( ) ( )( ) : & & S ,  : ( ) , ,
h hh h h h h h h hu t u u u u t Gα ω ω∈ ∈ ∈ = ΩRFPE PF PF

where Gk, Gh are model RFk, RFh parameter vectors. 
Present models RFk, RFh as

( )  ( ) ( )  ( ), , ,  , , ,h h h h h h h k k k k k k kG g G G g GΩ = Ω Ω = Ω RF RF RF RF

where  ( )  ( ), ,  ,h h h k k kG GΩ Ω RF RF  are modifications of models (14), (15); ,max ,  1, #h h i h
i

g g i= = Ω , gh, i is an element 

Gh; ,max ,  1, #k k i k
i

g g i= = Ω . gp ( p = k, h) denotes the generalized amplitude of the input.

Condition (16) is transformed into the form



Contemporary MathematicsVolume 2 Issue 2|2021| 149

 ( )  ( ), , .h h h h k k k kg G g GΩ ≠ Ω RF RF

Since uh ∈ S then gh ≥ gk. This conclusion follows from

( )( ) ( )( )  ( )  ( ), , ,h h k k h h h k k kD u D u G G≥ ⇒ Ω ≥ Ω RF RFS S

and the model  ( )  ( ), ,  ,h h h k k kG GΩ Ω RF RF approximates the input ensuring S-synchronization of the system Syφ.

Obtain dh, Σ-optimality of the diameter Dh( ,h k
ey eyS S) from S (uh) ( ) h

h eyu ⇒S S ,h k
ey eyS S. The framework ,h k

ey eyS S  does not have this property (see 
(20)). Therefore, the input uk ∈/ S, which has a smaller generalized amplitude, gives the diameter Dk(,

h k
ey eyS S ).

Theorem 6 Let (i) the input uk of the system Sφ satisfy the condition (19); (ii) the framework ,h k
ey eyS S  corresponds to 

input uk; (iii) there is an input uh ∈ S such that the condition (20) holds; (iv) conditions (16), (17) hold. Then (a) the Sφ-
system is structurally non-identifiable by the input uk; (b) structural parameters of the system Sφ do not correspond to the 

system Syφ with an identifiable framework ,h k
ey eyS S if gh ≥ gk.

Example 1 Consider the nonlinear system with Bouc-Wen hysteresis (system SBW) [23]

(21)

(22)

(23)

( , , ) ( ),mx cx F x z t f t+ + = 

( , , ) ( ) (1 ) ( ),F x z t kx t kdz tα α= + -

( )1 ( ) ,n nz d ax x z sign z x zβ γ-= - -  

where m > 0 is weight, c > 0 is damping, F(x, z, t) is the restoring force, d > 0, n > 0, k > 0, α ∈ (0, 1), y(t) = x(t), u(t) = 
f(t) is exciting force, α, β, γ are some numbers. 

Let n = 1.5, c = 2, m = 1, β = 0.5, α = 0.7, k = 0.6, d = a = 1. The set Io has the form Io = {u(t), y(t), t ∈ [0; te]}. 
Consider four variant inputs 

(24)

( )0 ( ) 2 2sin 0.15 ,u t tπ= -

( )1( ) 2 2sin 0.35 ,u t tπ= -

( )2 ( ) 2 2sin 0.5 ,u t tπ= -

( ) ( )3( ) 2 2sin 0.15 0.2sin 0.35 .u t t tπ π= - +

Denote phase portraits of the system SBW with inputs (24) as Si( 0,3)i = . Definitional domains the phase portrait and 
hysteresis coincide (see Figure 3 for the case S0).

Calculate diameters for the phase portrait definitional domain

( ),0 0 3.75,yD =S

( ),1 1 1.728,yD =S
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( ),2 2 1.08,yD =S

( ),3 3 3.967.yD =S (25)
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Figure 3. Phase portrait and output of the hysteresis for the system with u0

Diameter calculation is based on the analysis of frameworks. Definitional domains of frameworks Sey, S and the 
hysteresis coincide (see Figures 5, 6). Hence, the diameter is the definitional domain Sey and S. Results are obtained for 
the system SBW steady state. The analysis shows u0(t) ∈ S. We assume that the system SBW with the phase portrait S0 is 
the standard and dh, y = Dy, 0(S0). The degree of non-identifiability of the system SBW for various ui

1 0.549,=SI

2 0.718,=SI

3 0.035.= -SI (26)
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Figure 4. To structural identifiability assessment of system SBW
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We see that the SBW-system with u1, u2 is structurally non-identifiable, and the SBW-system with input u3 is 
structurally indistinguishable from input u0. So, frameworks Sey, 1(u1), Sey, 2(u2) are frameworks of class NSey, and the 

framework Sey, 3(u3) belongs to class LSI
eyS . 

Obtained results are confirmed by Figure 4. It shows system outputs in an integrated form. Rectangular areas 
represent estimates of diameters within the specified limits. They confirm estimates (26).
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Figure 5. Comparison of SBW-system hysteresis with different inputs

So, the frequency properties of the input influence the identifiability of the system significantly. It is relevant for 
nonlinear systems, where the minor change in input properties affects the estimation of structural parameters. This 
conclusion is confirmed by Figure 5, where the Bouc-Wen model (23) output is shown at different inputs. We see that 
u(t) changes the definition domain and the actual range of the hysteresis.

The area Q D, which confirms conclusions, is shown in Figure 6. Notation in Figure 6: 1 is S0, 2 is S2, 3 is S1, 4 is S3.
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Figure 6. Structural identifiability domain

6. On structural identifiability of system with two nonlinearities
Consider the system Syφ with two nonlinearities
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(27),1 1 ,2 2( ) ( ) ( )B y B y B yϕ ϕ ϕϕ ϕ ϕ= + ，

where φi(y) satisfies the condition (3). 
This case is more complex and has features. In this case, the decision-making on the structural identifiability of 

the Sφ-system is based on the approach described in section 4. But the analysis of Sey-framework properties may be 
incomplete. There may be a situation where Sey is partially the NSey-structure. Consider this case.

Consider the Sey-framework (Figure 7 reflects the steady-state) for the second-order system Syφ, (27). Apply 
Theorem 2 and obtain that condition (8) does not hold. Hence, Sey = NSey.
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Figure 7. Example Sey-framework for the system Syφ, (27)

Figure 7 shows that one nonlinearity is identifiable, and the other non-linearity is not identifiable. Consider 
mapping Γyk : {y} → {key'}, ey

ek
y′ =
′
 to the decision making. Γyk corresponds to the Sky-framework (see Figure 8).
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Figure 8. Sky-framework

The analysis Sky shows that the nonlinearity (denote it as φ1) dominates and is identifiable, and the nonlinearity φ2 
is non-identifiable. Present the framework Sey as Sey = id

eyS  ∪ NSey where id
eyS  = Sey(φ1), NSey = Sey(φ2).

Definition 11 The system Syφ, (27) is called partially structurally identifiable or identifiable on the level φ1 under u 
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∈/ S if the fragment id
eyS  of framework Sey is h-identifiable, and unidentifiable at the level φ2 if Sey(φ2) = NSey.

Definition 12 The subsystem Sφ of the system Syφ, (27) is called identifiable under u ∈ S if the fragments Sey(φ1), 
Sey(φ2) of the framework Sey = Sey(φ1) ∪ Sey(φ2) are h-identifiable.

Definition 13 The subsystem Sφ of the system Syφ, (27) called structurally identifiable under u ∈ S if the fragments 
Sey(φ1), Sey(φ2) of the framework Sey = Sey(φ1) ∪ Sey(φ2) are h-identifiable, and the conditions of theorem 4 are satisfied 
for each fragment Sey(φ1), Sey(φ2).

In this case, the estimation of the Sφ-system identifiability is based on the fragmentation of the framework Sey. 
Apply the smoothing operation on the fragment Sey(φ1). Obtain the estimate Ŝey(φ2) of the framework Sey(φ2). The 
estimate of framework Sey(φ1) formed as Ŝey(φ1) = Sey \ Ŝey(φ2). If the condition (27) are not satisfied for nonlinearities, 
then the system (2) structural identifiability analysis is the complicate problem. In this case, the system hδh

-identifiability 
estimate requires an extension of the approach proposed in previous sections. Demonstrate this with the example.

Example 2 Consider the system consisting of the nonlinear actuator and a controlled object. The object has linear 
and quadratic friction. The actuator has saturation. The system of equations has the form

(28)

( )
1 1

1 1 22 2 2

0 00 1
,

( )0 1
x x

c xx x c uϕ ϕ
       

= + +        --       





1,y x=

where φ1(x2) = x2
2sign(x2) is the quadratic friction, φ2(u) = sat(u) is dry friction, x = x1 is the rotation angle of the object 

shaft, u is current excitation winding of the actuator, y is the output, c1 = 2, c = 1, u(t) = 3sin(0.1πt).
Experimental information has the form Io = {u(t), y(t), t = [0, tk]}, tk < ∞. Construct frameworks S, Sey (see Figure 9).
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Figure 9. Frameworks S, Sey

Apply the results of section 4 and obtain the system structural identifiability. The decision-making about the 
nonlinearity structure does not give the analysis of frameworks. It is caused by the nonlinearity of the input. The input 
φ2(u) on the interval yJ  = [4; 8.5] is constant, and the condition CE is not satisfied. We can assume (see Figure 9) that 
φ2(u) = sat(u). The working interval for y is equal to Jy = [2; 4] ∨ [8.5; 10]. The application of model (5) in this case is 
inefficient. Therefore, perform the analysis of the dependence x· 2 on available variables. The coefficient of determination 
between x· 2 and x2, y are 

2 2 2
2 20.995  0.916x x yxr r= =
 

， . Therefore, there is the dependency between x· 2 and x2. Apply the 

method of hierarchical immersion (MHI) to correction structural relationships [23]. Execute the following steps. Let
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2

1.8, 1.8,
ˆ ( ) , 1.8,

1.8, 1.8.

if u
u u if u

if u
ϕ

>
= ≤
- < -

1. The mathematical model has the form

(29)
2 2

2
2 2 ˆ

ˆ ˆ0.147 ( ) 0.433,  0,99.xx u rϕϕ= + =




2. Exclusion of influence y. Enter the misalignment ε = x· 2 - x·̂2 and obtain the model

(30)2ˆ 0.2038 0.933,  0.95.yy r εε = - + =

3. Determine the misalignment π = ε - ε̂ and approximate it with the linear model

(31)
2

2
1 2ˆ 0.424 0.559,  0.94.xx r ππ = - =

So, the model (31) is adequate. Apply the model

(32)
2 2

2
2 2 2 ,

ˆ 0.37 0.45,  0.97.x xx x r ππ = - - =

to increase the accuracy of the approximation π(t).
Remark 7 The implementation of MHI is based on checking the SI of the framework at each stage. Next, the 

mathematical model design. This stage is the prerequisite for obtaining the adequate model.
Thus, the analysis confirms the structural identification possibility of the nonlinear system (28) and its identifiability 

on interval Jy. It is shown that the model (5) application depends on the structure of the system. Therefore, it is not 
possible to propose a general method to the choice of the model structure for the system with multiple nonlinearities. 
The approach depends on the specifics of the system under study. This conclusion illustrates considered examples, and 
confirms the versatility and complexity of the SI problem under consideration.

The system (2) identifiability depends on structural relationships. As a result, the indirect influence of one variable 
on another can occur. This case is typical for sequentially connected parts of the system. Such systems are typical 
objects for the identification [16, 18]. In this case, the influence graph between the system variables is used. It is a 
polyhedron whose cross-section over some variable reflects the relationships between all variables of the system. Next, 
apply MHI; construct geometric frameworks to estimate the identifiability of each subsystem.
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Figure 10. Confirmation of system (28) structural identifiability with cubic nonlinearity



Contemporary MathematicsVolume 2 Issue 2|2021| 155

Remark 8 The friction introduction with cubic nonlinearity does not break the system (28) work. This conclusion 
is valid for the system (28) with a higher degree of friction the system (28) structural identifiability with φ1(x2) = φ1(4)(x2) 
= x2

3 following from Figure 10. It reflects the functional dependency for the system (28), where x2(3), x2(4) are the change 
rotation rate of the object shaft angle with quadratic and cubic nonlinearity. The SI check is based on the analysis of 
the model properties x̂2(4) = 1.0472x2(3) + 0.0026, r2

2(4) = 0.998 (see Figure 10). The system (28) with φ1(x2) = φ1(3)(x2) = 
x2

2sign(x2) is SI. Therefore, the system (28) with φ1(4)(x2) based the analysis x̂2(4) = 1.0472x2(3) + 0.0026 and Figure 10 
are also structurally identifiable.

Example 3 Consider the system for generating self-oscillations containing the object (variables y1, y2), nonlinear 
(variable y3) and linear (variable y4) meters, and the linear amplifier-converter with the nonlinear actuator (variable y5)

(33)

( )Y AY DF Y= +

0
1

2
1 1

13
2 42

4
2 2

5

3
3

0 1 0 0 0
0 0

0 0 0
0 0

10 0 0 0 1 0 ( )
,  ,  ( ) .

( )10 0 0 0 0
1010 0 0 0

g k
y
y

T f y
TyY A D F Y

f yk
y

T T
y

T
T

 
  -         -         = = = =        -            - -     

The input of the system is the variable u = y5.  fi(x) (i = 1, 3) is the saturation function with the dead zone

(34)

2,

1, 1, 2,

1, 1,

1, 1,

2,

,,
2( ), ,
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, ,

i
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if x dc
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f x if d x d
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c if x d
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
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Figure 11. Object phase portrait
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The object phase portrait is shown in Figure 11. It confirms the availability of self-oscillations in the system.
Apply the approach described in section 4 and obtain the object linearity. Build the influence graph (IG) to perform 

further analysis. The graph is shown for the nonlinear meter (NM) with the output y3 in Figure 12. The derivative of the 
variable yi denoted as dyi in Figure 12. We consider connections that exceed 75%. We have relations y·4, y1, y5 for y3, for y·3 
we have y·5, y2, y4. Apply MHI and exclude variables that influence y·3. We choose y5 since y2 has the indirect influence. 
Construct the framework 3 5y yS

 

 described by the function 3 5 5 3:y y y yγ →
 

  , and determine the secant

3 5
ˆ 1.241 0.0094.y y= - + 

(35)
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Figure 12. Influence graph for the nonlinear meter

Introduce the misalignment 
3 3 3

ˆy y yε = -


   and construct the framework 13y yεS


 described by the function 

1 33 1:
y y yyεγ ε→




 (see Figure 13).
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Figure 13. Estimation of nonlinearity structure for NM

Figure 13 shows that NM contains the nonlinearity described by the saturation function with the dead zone. The 
dead zone width depends on properties y5. The model (35) structure is based on the analysis of the influence graph 

for y3. Variables yi ∈ PEαi
, 1,3i = . Analysis of the framework 13y yεS



 shows that it satisfies conditions of theorem 4. 

Therefore, the object and the nonlinear meter are structurally identifiable. 
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Next, we perform the analysis of the linear meter (LM) structure. y1, y·3 influence y4, and y2, y3, y5 influence y·4. Most 
of the relationship is between y·4 and y3. The secant structure 4 3y yS



 has the form

(36)
4 3

2
4 3 ,1.1737 0.06ˆ 0.8889, . y yy y r= - =+




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Figure 14. Linearity estimation of LM

The linear meter is h-identifiable. Perform the next MHI stage. Enter the residual 
3 3ˆ 3 3,

ˆ
y y y yε = -
 

   and estimate the 

influence of variables y2, y5. Obtain 
ˆ ˆ5 2, ,3 3 3 3

2 2
, ,0.23,  0.73

y y y yy yr rε ε= =
   

. So, y·4 depends on y2 (see Figure 14) linearly.

Remark 9 We consider indirect relationships reflected the influence of system previous elements.
Consider the linear amplifier-converter with the nonlinear actuator (LACNA). The influence graph gives y·5 

variables y2, y·3, y4, y·4. The LACNA phase portrait is shown in Figure 15. We see that the processes are nonlinear in 
LACUNA.
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Figure 15. LACUNA phase portrait

Remark 10 The SI estimation of the Sy·5 y
·
3
 framework is based on the analysis of the values range.

Consider frameworks Sy·5 y
·
3
, Sy·5 y2

 and construct secants
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(37)
5 2

2
5,2 2 ,0, 2593 0,0281,  ˆ 0.90,y yy y r= - =+





(38)
5 3

2
5,3 3 ,0.5019 0,0239,  ˆ 0.77,y yy y r= - =-

 

 

to exclude the influence y2 and y·3. In Figure 16, frameworks Sy·5 y
·
3
 and Sy·5 y2

 are shown.
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Frameworks analysis shows that the processes are nonlinear in LACUNA. The final decision cannot be made on 
the LACUNA nonlinearity.

Introduce residuals 5,3 5 5,3 5,2 5 5,2
ˆ ˆ,  y y y yε ε= - = -     and apply MHI. The analysis shows that obtained results do 

not allow to decide on the LACUNA structure. Consider the Sy·5 y4
-framework (see Figure 17). Figure 16 confirms that 

LACUNA contains the saturation element with the dead zone. But this representation contains some indistinctness. 
So, consider the framework Sy·5 y

·
4
 and determine the secant 

45, 40.4 0.024ˆ 11yy y= +-


   for it, introduce the misalignment 

4 45, 5 5,
ˆy yy yε = -

 

  . Next, consider the framework 5, 44y yεS


 (see Figure 17). The 5, 44y yεS


-framework gives the complete 

representation of the nonlinearity f3(y4) type (form). The framework 5, 44y yεS


 satisfies the conditions of theorem 4. 
Therefore, LACUNA is structurally identifiable.
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Let the measurement information be known for the system (33)

(39)[ ]{ }3 4 5I ( ), ( ), ( ), 0, ,  .o k ky t y t y t t t t= ∈ < ∞

Construct the influence graph to estimate SI of the system (33). Graph components are presented above.
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Figure 18. Framework Sy·3 y4

We have ( ) ( ) ( )3 4 5 4 3 5 5 3 4,  ,  ,  ,  ,  ,y y y y y y y y y    
    where  is the connection symbol of graph elements. 

The SI estimate presented for y·5 in Figure 16. It confirms the identifiability of the system at this level. The relationship 
y·5 = v(y·3) allows estimating the dead zone of the function f3(y4). The analysis of y5 relationship ( ) ( ) ( )3 4 5 4 3 5 5 3 4,  ,  ,  ,  ,  ,y y y y y y y y y    

   confirms 
the linearity of this subsystem. The framework Sy·3 y4

 is shown in Figure 18, and confirms the existence of the saturation 
class with the variable dead zone.

Sy·3 y4
 is structurally identifiable and confirms the above conclusion. The variable y4 is a function of y2 (see (33)). So, 

obtain the identifiability of the function f1(y2).
Denote the graph defined on Io and contains connections in the system (33) as G.
Definition 14 The relationship between the variables ( yi, yj) ∈ G of the system (33) is significant if the framework 

Syi yj
 ensures h-identifiability of the system (33) and corresponds to this relationship.
The subset of graph G significant for obtaining connections at the k-element analysis level is denoted as Gs, k ⊂ G.
Theorem 7 If the system (33) input y5 is S-synchronizing, and frameworks Syi yj

 are defined on graph Gs, k ⊂ G, and 
the conditions of theorem 4 are satisfied, then system (33) is hδh

-identifiable.
The proof of theorem 7 follows the condition y5 ∈ S fulfillment and the subgraph Gs, k existence which the 

frameworks Syi yj
 had the dh, Σ-optimality property.

Continue the LACNA analysis. Consider the framework Sy·5 y2, y1
, select fragments Fs

l, Fs
r, and approximate Fs

l, Fs
r 

with secants (7) on y1. Have ar = -0.485, al = -0.347. Let δh = 0.04. Calculate ||al|-|ar|| = 0.081, apply theorem 1 and 
obtain Sy·5 y2, y1

 = NS. Next, apply theorem 7 and stop the hierarchical immersion method.

So, it shows the structural identifiability problem complexity for the system with multiple nonlinearities. Internal 
connections can influence the SI problem solution. These connections can influence the subsystem for studying their 
identification indirectly. In this case, considering the relationships influence level has great importance. It is a new 
problem that appears in the SI study of systems with multiple nonlinearities. A priori information is critical in this case. 
The SM-model synthesis of the analogous model (5) depends on the influence graph.
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7. Conclusion
Structural identifiability conditions for the nonlinear system are obtained. They are founded on the property 

analysis of geometric frameworks. The role of S-synchronizability and the constant excitation is shown in the structural 
identifiability analysis. Conditions of structural non-identifiability and structural indistinguishability are obtained. 
Systems with two nonlinearities are considered. Difficulties appearing in the analysis of structural identifiability are 
noted. The internal organization influence of system elements is noted on the structural identifiability possibility. The 
SI estimating problem on the set of available dimensions is considered. The influence graph is essential in the structural 
identifiability analysis. It allows selecting significant variables for SI analysis and synthesize the model for geometric 
framework design.
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