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Abstract: An overview of a Neutrosophic Deep Neural Network (NDNN) is given here to illustrate how artificial neural
networks and neutrosophic sets can be combined to profit from the comprehensive truth, indeterminate, and falsity degrees
known in neutrosophic logic. The investigation details how the NDNN architecture was gradually enriched from its initial
and simplest structure, which was a Neutrosophic Neural Network (NNN) with only a one-layer neuron. Next, it progresses
to an NNN with one layer and one multi-input neuron, and then becomes even more sophisticated as an NNN with one
layer and several multi-input neurons. As a result, the framework concludes with a real NDNN made up of multiple
layers, and every layer includes several multi-input neurons. For each network structure, new sets of formulas are given
to estimate the parameters of neural networks as neutrosophic triplets for weights and activations. The use of the NDNN in
soil microbe processing is demonstrated to prove its usefulness in handling situations with uncertainty and indeterminacy.
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1. Introduction

Soil is fundamental to ecosystem sustainability, serving as the foundation for agriculture, water regulation, nutrient
cycling, and biodiversity. At the heart of its functioning lies a rich microbial community that drives essential biochemical
processes, ensuring both soil fertility and environmental stability. With rising concerns over climate change and ecological
degradation, understanding the dynamics of these microbial populations has become increasingly important. Yet, because
soils vary greatly in their composition and exhibit heterogeneous structures, capturing the full complexity of soil-microbe
interactions remains a significant scientific challenge.

Traditional modeling methods often struggle to accommodate the uncertainty and imprecision that characterize
environmental and biological datasets. Fuzzy logic, however, has proven particularly effective in such contexts. For
example, Assimakopoulos et al. [1] combined Geographic Information Systems (GIS) with fuzzy approaches to improve
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nitrogen management in agriculture, while Wu et al. [2] employed a Markov chain framework to describe temporal
variations in soil structure. Similarly, Tscherko et al. [3] utilized fuzzy classification to better understand changes in
biomass activity and enzyme function in grassland ecosystems. Applications also extend to ecological risk assessments,
such as Wu et al.’s [4] study on heavy metal contamination.

Beyond methodological advancements, researchers have emphasized the ecological importance of microbial interac-
tions. Traxler and Kolter [5] highlighted how natural products influence microbial behavior and community evolution.
Land-use practices, such as forest-grass mosaics, have also been shown to enhance soil quality in diverse landscapes like
the Yellow River Delta, as noted by Xia et al. [6]. Together, these findings reinforce the adaptability of fuzzy-based
techniques for tackling soil science problems where uncertainty is unavoidable.

Recent progress in computational intelligence has pushed this field even further. Hybrid models, combining fuzzy
inference with optimization or evolutionary algorithms, have been developed to address nutrient cycling and phosphorus
dynamics (Jha et al. [7]; Jha et al. [8, 9]). Deep learning, with its capacity to detect complex patterns in large datasets,
has also been adopted. However, conventional deep neural networks remain limited because they typically process data
in rigid, binary terms, making them less effective for uncertain or imprecise systems.

To bridge this gap, researchers have begun merging fuzzy set theory with deep learning architectures, leading to the
emergence of Fuzzy Deep Neural Networks (FDNNs). Studies such as those by Deng et al. [10] and Price and Anderson
[11] demonstrate how fuzzy integration improves both classification accuracy and interpretability. Comprehensive
reviews (Das et al. [12]; Zheng et al. [13]) further emphasize the growing potential of fuzzy deep learning for
environmental modeling, where balancing predictive strength with uncertainty awareness is crucial.

Hybrid models continue to gain traction across diverse domains. Wen-Di et al. [14] designed a fuzzy-neural
regression framework, showcasing the synergy between learning ability and fuzzy inference. Yazdinejad et al. [15]
advanced this direction with an optimized fuzzy deep learning model enhanced by evolutionary algorithms. Applications
extend beyond soil science-for instance, Aviso et al. [16] applied fuzzy optimization in sustainable energy systems,
while Aghaeipoor et al. [17] demonstrated how fuzzy rules can enhance the interpretability of neural models. Fuzzy
evaluation has also been used in environmental risk studies, such as Adeniyi et al.’s [18] holistic assessment of heavy
metal contamination in fertilizers.

In soil remediation research, Tian et al. [19] explored the combined role of soil microbes and hyperaccumulator
plants (e.g., Sedum alfredii) in detoxifying soils contaminated with heavy metals, highlighting how biological and
computational methods together offer new opportunities for sustainable environmental management. Such studies
highlight the importance of interdisciplinary approaches that combine biology, environmental science, and computational
intelligence. Fuzzy-based deep learning has also been applied in areas such as energy demand prediction, environmental
noise reduction, and soil erosion estimation [20-22]. More recent developments by Chen et al. [23] and Pham et al. [24]
have focused on deep, ensemble, and hybrid architectures, yielding notable improvements in performance, reliability, and
adaptability.

Applications of fuzzy and hybrid systems extend beyond soil science into geohazard mapping and environmental
monitoring. Aytop et al. [25] applied the Fuzzy-AHP method for landslide vulnerability assessment, while Fernando et al.
[26] employed fuzzy prediction to monitor soil and environmental conditions. Building on this, new neutrosophic-based
techniques have shown promising results in agricultural and environmental studies. Alolaiyan et al. [27] developed a
linguistic intuitionistic fuzzy approach to enhance soil bioremediation. Sobrinho etal. [28, 29] applied fuzzy-neutrosophic
logic to study the effects of elevated CO, levels on wheat productivity. Similarly, Atanassov et al. [30] proposed an
intuitionistic fuzzy deep neural network framework.

Beyond environmental contexts, neutrosophic methods have been applied to diverse problem domains. Abdalla
et al. [31] introduced interval-valued Fermatean neutrosophic super hypersoft sets for prediction and diagnosis in
advanced healthcare. Fujita [32] extended Multi-Criteria Decision-Making (MCDM) with hyperfuzzy VIseKriterijumska
Optimizacija Kompromisno Resenje (VIKOR) and Decision-Making Trial and Evaluation Laboratory (DEMATEL)
methods to address interdependent and vague criteria. Biswas et al. [33] designed a neutrosophic fuzzy decision-making
model for strategic site selection under uncertainty, and Basuri et al. [34] proposed a sustainable location framework
based on the neutrosophic CRiteria Importance Through Intercriteria Correlation-Complex Proportional Assessment
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(CRITIC-COPRAS) approach. Rahaman et al. [35] conducted mathematical analyses of uncertain differential equations
with neural uncertainty, contributing to dynamic modeling in indeterminate systems. In financial modeling, Alamin et
al. [36] demonstrated the use of neutrosophic fuzzy sets to capture volatility and hesitation in funding data. Fuzzy
entropy methodologies to assess the uncertain aspects that bring about corrosion in concrete sewer pipelines situated
underground, bringing up some new ideas that have been demonstrated in enhancing the durability of infrastructures built
under uncertain conditions [37] Alongside computational approaches, biological processes themselves play a central role
in soil remediation and environmental management. Native soil microbes, for example, can reduce toxic and non-essential
elements in wastewater-treated soils, thereby lowering contamination risks and contributing to ecosystem recovery [38].
Similarly, plant-microbe partnerships highlight how plants collaborate with specific microbial groups to improve stress
tolerance and sustain growth, even under adverse environmental conditions [39].

In parallel with these biological insights, researchers have developed advanced mathematical frameworks to better
capture uncertainty in environmental systems. Recent tools such as treesoft sets and neutrosophic sets have been applied
to study soil organic matter transformations in urban farming contexts [40], illustrating their potential for tackling complex
soil dynamics.

Environmental systems are inherently uncertain due to variations in soil properties, microbial activity, pollutant
behavior, and climate fluctuations. Conventional fuzzy logic has long been used to manage this uncertainty by assigning
degrees of truth to variables. Intuitionistic fuzzy logic goes a step further by incorporating both membership (truth) and
non-membership (falsity) values, with the condition that their sum does not exceed one. While both frameworks are
valuable, they remain limited when dealing with contradictory, incomplete, or indeterminate information-scenarios that
frequently arise in real-world environmental data.

Neutrosophic logic addresses these shortcomings by introducing a third, independent dimension: indeterminacy.
This allows truth, falsity, and uncertainty to be modeled separately, offering a more nuanced and flexible representation
of incomplete or conflicting information. Such an approach is particularly powerful in environmental modeling, where
hesitation, data gaps, and contradictions are common. By capturing these complexities, neutrosophic logic enables more
accurate simulations of soil microbial interactions, pollutant dynamics, and ecological processes.

When integrated with deep learning, this framework gives rise to Neutrosophic Deep Neural Networks (NDNNs).
These models hold strong potential for improving predictive accuracy and interpretability, as they combine the pattern
recognition power of neural networks with the uncertainty-awareness of neutrosophic logic. As a result, NDNNs can
provide a more faithful representation of dynamic soil and environmental processes, ultimately supporting more reliable
decision-making in sustainability and remediation efforts.

1.1 Motivation

1. Neural networks have problems with uncertainties as well as imprecise data, and this is typical in the application
of soil microbes.

2. Classical neural networks cannot handle substantial quantities of indeterminacy and inconsistency due to
incompleteness in the real-world information.

3. The Uncertainty of the data in deep learning models can be better represented in the context of Neutrosophic logic.

4. This paper presents a new progressive NDNN framework, which is simple, then multi-layered, and has
neutrosophic triplet-based parameterization, and proves its effectiveness through the analysis of soil microbe data.

1.2 Novelty

1. The paper presents a methodology for the systematic process of NDNN basic to deep architectures.

2. The neural computation is achieved by integrating neutrosophic values into every layer and level of the neurons.

3. Output estimation under new formulations of neutrosophic modes is derived, such as strongly optimistic to strongly
pessimistic.

4. The ability to work in uncertain environments is evidenced in the proposed NDNN, as it is illustrated on soil
microbe data and performs better.
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1.3 Research objective

1. To structure a neural network framework through neutrosophic.
2. To implement and test the model over soil microbe data under uncertain conditions.

1.4 Structure of the article

The paper presents a systematic application of neutrosophic set theory to neural networks of varying complexity.
Beginning with a single-layer Neutrosophic Neural Network (NNN) containing a single input neuron in Section 3, the
study extends the framework to a single-layer network with a multi-input neuron in Section 4. Section 5 further generalizes
the concept to multi-layer, multi-input neutrosophic neural networks. For each network type, the research introduces
neutrosophic formulations based on five reasoning strategies: strongly optimistic, optimistic, average, pessimistic, and
strongly pessimistic. The practical relevance of the proposed NDNN is demonstrated through an application to soil
microbial data in Section 6. Subsequent sections include a comparative performance analysis in Section 7, a detailed
sensitivity study in Section 8, a discussion of limitations and future research directions in Section 9, and concluding
remarks in Section 10.

2. Preliminaries

Definition 1 A NNN is defined as the tuple:
<x17-x27 "'7-xn0>a {<y(1r)uygr)7 7Y£:)>’1§7§L}7 {<ws(,r3>‘1§~§§nru 1St§nr+17 OSVSL_1}7

{<91(’), o, ., 9,§:)>‘l§r§L}.

Where:

+ L is the number of layers excluding the input layer;

* i, is the number of neurons in the r-th layer (rg is the number of neurons in the input layer);
* x; = (3¢, G;, U is a neutrosophic input value, where:

- »;: degree of truth-membership;

- ¢;: degree of indeterminacy;

- ¥;: degree of falsity (non-membership).

. yY) = <%§r), gj(.r), ﬁ;r)> is the output of the j-th neuron in layer r;

. S(rl is the neutrosophic weight from neuron s in layer r to neuron ¢ in layer r+ 1;
.o

J
L) J(r) is the activation function for the j-th neuron in layer r.

is the bias of the j-th neuron in layer ;

2.1 Neutrosophic number

A neutrosophic number is expressed as:

N=(x ¢ 0), ¢ 0el01], xtct+d<3. (1)
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2.2 Basic neutrosophic operations

LetA = <th17 Gl 191>,B= <%2, G, 192>, then:

ADB = (501 +m— 1, G, 1), )

AV B = (max(s¢], »), min(g, ¢ ), min(d;, %)). 3)

AQB:<m+m,g1+gz,0l+z92>_ @
2 2 2
AAB = {(min(s, 55), max(gi, ¢), max(d, B)). %)
ARB= (x130, 1+ 0 =G, V1 +1h —h). (6)

3. NNN with one layer and single-input neuron

Definition 2 We begin with the simplest structure-an NNN with a single layer and a single input neuron as shown in
Figure 1.

b

Figure 1. NNN with a single layer and a single input neuron
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Let the input to the network be a neutrosophic value:

p =, S, Dp), ™

where:
* #p: degree of truth-membership,
* gp: degree of indeterminacy,
* Up: degree of falsity (non-membership).
The associated weight is also a neutrosophic triplet:

W = <%(D) ga)a 19(0> (8)

The neutrosophic product @ - p can be defined using one of the following strategies:
* Strongly optimistic formula:

w-P:<l—(1—%co)(1—%p)’ €w'€pvﬁw'ﬁp>' ©

* Optimistic formula:

(Dp = <max(%(0a %P)’ min(ng GP)7 min(ﬁ(ﬂa ﬁp)> (10)

* Average formula:

o %(o+%p ga)+gP 19@"‘19’3
* Pessimistic formula:
®-p = (min(>0, 3), Max(Go, ), Max(Ve, p)). (12)
* Strongly pessimistic formula:
The following inequalities justify the naming hierarchy based on the degree:
1 — (1= 220)(1 = 5p) > max (e, 3#p) > ———— > min(se, 3p) > e #p (14)

- 2
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< max(Gp, Qp)Sl_(l_gw)(l_gp)~ (15)

Co-Cp < min(Gy, ¢p) < g“’;gp

Similarly, for the falsity component:

B+ 0
V- ¥p < min(dg, ) < % < max(dy, 9p) < 1—(1—B)(1— 1)) (16)

These expressions reflect increasing or decreasing levels of conservatism in the estimation of the resulting
neutrosophic output. The following groups of formulas can likewise be constructed in a similar fashion. Generally,
if

K, @, @:[0, 1]x [0, 1] x [0, 1] = [0, 1], (17)
are two predetermined functions such that, for every 3, 7 € [0, 1], the condition

0<k(3, M+e3, N+@(3, 7)<, (18)

is satisfied, then a neutrosophic value n may be represented in the form

n=(K(xp, %p), (e, ), B(Ve, Bp)), (19)

where s, ¢, ¥ denote the truth-membership, indeterminacy-membership, and falsity-membership values, respectively, for
the components @ and p under consideration. The same structural approach applies to subsequent formulas. The output
of such an expression is then passed into an aggregation operator ¥ (such as a weighted sum or summation function).
Additionally, a neutrosophic bias

b= (5, Go, Do), (20)

with each component lying in [0, 1], is also included in the aggregation. The final outcome is again expressed in one of
the typical neutrosophic forms, integrating the combined influence of input elements and the associated biases. In the
context of a neutrosophic neural model, let n = (37, G,, ¥,) denote the neutrosophic value of the neuron input, derived
from the weights and bias. Several aggregation strategies may be used, depending on the desired degree of optimism or
pessimism in the model interpretation:

* Strongly optimistic formula:

n=(1—(1=54)(1—3p)(1 =), GwSpGo, BVpDyp). 21

* Optimistic formula:
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n= <max(%w, %p, ), MIiN(Gw, Gp, Gp), Min(Vy, By, 195)>. (22)

* Average formula:

4 4 4
* Pessimistic formula:
n= <min(%w, #p, ), Max(Gw, Gp, Gp), Max(Vy, Oy, 19[,)>. (24)
* Strongly pessimistic formula:
n= (30535, 1~ (1— o) (1= 6p) (1= Goy 1= (1 B) (1 8p)(1— D). 25)

It is important to note that the intermediate neutrosophic parameter (2, ¢y, ¥p) may be computed using a different
formula (e.g., the average formula), leading to:

3 3 3
The result n is then passed through a transfer function ¥, which determines the final neuron output .
* For a linear transfer function, the output is:
D =%(n) = (e, Gr, On)- 27
* For a logical sigmoidal transfer function, the output is:
o1 (28)
Cl4e’

where the input # is treated as a scalar or approximated composite value derived from ¢, ¢,, ¥,.
We construct the pair

1 1 1 1 1 1
S = (3 () 3 (1 mes ) 3 () @

Proposition 1 Ty, is a valid Neutrosophic triplet (NP).
Proof. Let the input to the transfer function be a neutrosophic value
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n= <%na Gns ﬁn>7 (30)

where s, is the truth-membership, ¢, is the indeterminacy-membership, and ¥, is the falsity-membership component,
with each in the interval [0, 1].

We now verify that each component

1 1 1 1 1 1
= U priperall Kl [ e mperw 0,1 31
<3<+1+e"n>’3<+1+e€n>’3<+1+eﬂn>>e[7 J (31)

and

1 1 1 1 1 1 1 /14+e ™ 14+e S 1+4+e
1 — 1 _ 1+ —— )= . (32
<3< +1+e”n>+3< +1+e€n>+3( +1+el’n)> < < + )> (32)

3\ 257 T 25es Togem

Combining over a common denominator, and simplifying, and compute the difference:

= 12+4e 7 f-de” S fde O e eT S g STV e em O 5 ),

Each component with proper normalization, T;em (1) is a valid NP.

4. NNN with one layer and multi-input neuron

Consider a n neuron in Figure 2 that receives as input layers and has values of Neutrosophic Numbers (NNs) defined
as:

(%01 So1> Bpi ) (02 Gpas Opa) s -5 (#%00s Spus D) (33)
The corresponding weight vector consists of neutrosophic coefficients:
(%"J./,l’ So; 1> 19(0./,),), for1 <j<n, 1<I<ny. (34)
Let the bias term be denoted by the neutrosophic value:
(%hl, Goy s 19[,1), for 1 <1 <mnjy. (35)
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Figure 2. NNN with a one layer and multi-input neuron
Let the aggregated input to the activation function be:

7= <%Zz’ S ﬂzl>, for 1 <1 <n;y. (36)

Then, the aggregation formulas for computing z; are as follows.

4.1 Strongly optimistic aggregation

n n

= <1— (ﬁ(l—zmi,l) <1—zp,.>> (1= 521,). (H (gwi,,gp,-)> S (H (ﬂw,.v,ﬁp,.)> ﬁb[>. (37)

i=1 i=1 i=1

4.2 Optimistic aggregation

7= <max ({r}l:afc (%a),: - %p,-) } {%b[}> , min <{r{1nl}1 (c;w,, o s‘p,-)) } {Qb[}) ,
min ({nll{l (19in . 19,,i)) } {ﬁb[}).

4.3 Average aggregation

(38)

1

n 1 u ! y
= <2 (n.%b[+z(%wu+%pi)> , — (n-gb[+2(€wi.1+gpi)> ) o (n-ﬁb[+2(19wi,l+l9pi)> > (39)
" - . 2n i=1 ' 2n

i=1 i=1
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4.4 Pessimistic aggregation

= <min ({I}lnlfl (%w,; T %Pi) } {%b[}> , Max <{I{1’£1X (Gw,», T Qp,-)) } {Qb[}) )

(40)
max ({rf{élx (ﬂw,-. b ﬂpi)) } {19(,[}).
4.5 Strongly pessimistic aggregation
2= < (;IJ (%wi, z”Pi)) #p,, 1= (i:l (1 — So;, 1) (1 - gPi)) (1—Go,)s
(41)

1— (ﬁ (1-0a,,) (1~ 0pi)> (1—1,).

i=1

5. A NDNN with multiple layers and multi-input neurons

We now consider the most comprehensive case of an NDNN composed of s layers, where each layer consists of
several multi-input neurons governed by neutrosophic logic.

Let the first layer follow the structure outlined for a single-layer network, and let each subsequent layer adopt a
similar configuration. Each element in these layers is indexed with a superscript x, where 1 < x <'s. Consider a n neuron
that receives as input layers and has values of NNs defined as:

(%15 Sp1s Op1)s (%2> Sp2s Bpa)s +++s (¥ Spus Dpu) - (42)
The corresponding weight vector consists of neutrosophic coefficients:
(%wj,17gw.f,[7l9wj‘1)7 fOI‘lSan, 1§l§n1. (43)

Let the bias term be denoted by the neutrosophic value:

(a Sop» V), for1 <1< ny. (44)

To enhance predictive performance and decision-making under uncertainty, multiple neutrosophic neural layers are
interconnected to form a unified NNN. In this architecture, the output of each layer becomes the input to the subsequent
layer, propagating truth, indeterminacy, and falsity values through the network.

This composite structure is typically divided into three principal components:

Input layer: Responsible for receiving external data as neutrosophic values, reflecting the degree of truth, indeterminacy,
and falsity of each input.
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Hidden layers: One or more intermediate layers that perform the core neutrosophic computations, transforming
input signals through weighted combinations and neutrosophic activation functions. These layers capture the underlying
uncertainty and conflicting information patterns that define the system’s behavior.

Output layer: Tailored to produce the final decision or prediction in the form of neutrosophic values, reflecting
nuanced outcomes that preserve partial truth, indeterminacy, and falsity.

When the number of hidden layers exceeds three, the architecture is referred to as a NDNN, leveraging the principles
of deep neutrosophic learning. This allows the system to model complex nonlinear relationships, even in the presence of
incomplete, inconsistent, or ambiguous data.

Analogous to Sections 3-5, the neutrosophic output

Let the aggregated input to the activation function be:

Zf=<%zl¥, S 192;r>, for1 <i<n, 1 <x<s. (45)

Then, the aggregation formulas for computing z; are as follows.

5.1 Strongly optimistic aggregation

(1 (T10) (1 0) ) () (ETswr ) s (KT o). o0

i=1

5.2 Optimistic aggregation

= o (i G ) o o) (i (s, ) o)
({ml (21, ﬁpf)}u{ﬁbf})

5.3 Average aggregation

47

1 - 1 & 1 Z
g = <2n ("'%bﬂ-izl <%w;f,+%p;f)>, b <n~€bf+;(€wgl+€pf)>7 n <n-1957+i21 (19@3,+19pg)>>- (48)

5.4 Pessimistic aggregation

7= <min ({Hﬁl{l (%“’?fz’ %pl_x)}u {”b;}) , max ({r?rélx (Qwif,’ ng) } U {gb;’}) ,

(49)
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5.5 Strongly pessimistic aggregation

g = lﬁl%wif,%p;r oy, 1— H(l—ng-l> (I—pr) (1_%0,

(50)

n

T TT(1=00r,) (1=95) | (1= 94)-

i=1

Training of these different types of NNNs discussed here is performed by a neural network algorithm as shown in
Figure 3. The optimization is based on root mean square error to the answer, and the error back-propagation algorithm of
keying the sensitivity coefficients throughout the consecutive layers of the network.

( Collect soil sensor data J

Y
Convert data to Neutrosophic Fuzzy
Triplets (NFT)

L
( Feed NFT into input layer j

Y

Forward propagation
through each layer

Y
Calculate error

L

Perform backpropagation for
training

'

Repeat for all training samples

:

Figure 3. Algorithmic workflow of NDNN-based soil microbe data
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In the soil microbe scenario, this model enables assessment of numerous neutrosophic evaluations in consideration
of fluctuation in the strength of microbial signals according to the circumstances of uncertainty. Being a representation
of biological neuron interactions, these formulations enable one to calculate both downward (pessimistic) and upward
(optimistic) limits, determining the repository of microbial reactions. A microbial signal sent to the subsequent layer can
die away below a certain threshold and thus stop further propagation, simulating the elimination of microbial activity
under unfavourable circumstances. On the other hand, when the optimistic bound of microbial activity is lower than a
pre-determined fixed value, this system may be described as a fading case, representing less efficiency in the microbe.
Conversely, if the pessimistic bound is greater than some constant, there are two interpretations:

The microbial signal is strong enough to accomplish its functional task in soil bioremediation.

The microbial signal is very strong to the extent that it may overwhelm other microbial functions, effectively forming
a blocking phenomenon in the microbial network.

6. NDNN applied to soil microbe data

The current work shows the use of a NDNN model to analyse and forecast soil microbial properties publicly
available at Kaggle (https://www.kaggle.com/datasets/isuranga/soil-microbe-dataset). The network accepts input signals
with regard to soil parameters like soil moisture content, soil pH, soil organic matter concentration, and nutrient availability
in the soil. The process of transformation took place in the following steps:

Data normalization: Min max standardization was applied to each raw variable so that the variables were reduced to
[0, 1]

¥ =~ Tmin (51)

Truth-membership calculation: Represents the degree to which the measurement supports a positive outcome or
condition of interest. For each normalized attribute x':

x=x. (52)

Indeterminacy-membershipcalculation: Measures the uncertainty caused by the imprecision in measurement, by the
missing values, or indecisive indicators. It was calculated:

¢ =1—exp(—0?), (53)

where o is the local standard deviation of the attribute within a small neighborhood of samples.
Falsity-membership (9) calculation: Records the degree to which what was measured reflects a negative or
conversely opposite result, and is modeled as:

D =1-—75. (54)

In order to manage it, the data was shifted to the neutrosophic field, where the observations are captured as a triplet.
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clc; clear; close all;

X = xlIsread (/MATLAB Drive/N. TESTING.xIsx'); % Input file

T = xIsread (/MATLAB Drive/N TARGET xIsx"); % Target file

x=x";

T=T,

hiddenLayersizes = [40, 30, 20, 10]; % You can tune these layer sizes

net = fitnet (hiddenLayersizes, 'trainlm"); % Training function: Levenberg-Marquardt
net.trainParam.epochs = 1,000; % Number of training epochs
net.trainParam.max_fail = 20; % Max validation failures before stop
net.trainParam.min_grad = le-7; % Minimum performance gradient
net.trainParam.mu =0.001; % Initial mu for LM algorithm
net.trainParam.showwindow = true; % Show training window
net.divideParam.trainRatio =0.70

net.divideParam.valRatio =0.15;

net.divideParam.testRatio =0.15;
[net, tr] = train (net, X, T);

view (net); % opens a window with network architecture
Y_pred = net (x); % Predict output for all data
figure;

plotregression (T, Y_pred);

title ('Regression Plot: Target vs Predicted');
figure;

plotperform(tr);

mse_error = mse(net, T, Y_pred);

fprintf ('MSE on Full Data: %.4f\n', mse_error);

Figure 4. Matlab code for NDNN
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: > &=
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Elapsed time o 00:00:00 = \ ,
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Gradient 0.0863 0.000129 1e-07 g
Mu 0.001 le-05 le+10 @
Validation checks 0 6 6 A L )
Training algorithms ﬁ o )
Data Division: Random dividerand @
Training: Levenberg-Marquardt trainlm
Performance: Mean Squared Error mse —
Calculations: MEX - Y
]
Training plots ®
r T 2
| Performance | Training state | —
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Figure 5. Framework of the developed NDNN model

The neutrosophic version of the data is composed of three variables, which are truth regarding the extent of active
microbial existence, indeterminacy concerning the uncertainty in the measurement or environmental variations, and falsity
regarding the scope of microbial inactivity or absence. The MATLAB coding for NDNN shown in Figure 4. These three
levels are predicted in the network output, which may be used to guide precision agriculture and soil health assessment.
A 40-30-20-10-neuron four-layer architecture was utilized to design a network as shown in Figure 5. This design means
the modified neutrosophic data is capable of such complicated and nonlinear interactions. Training was made on the
Levenberg-Marquardt , and Mean Squared Error (MSE) was used as a measure of performance. The dataset consists of
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the first 50 recorded samples, which are randomly partitioned into three as follows: The datasets were randomly partitioned
into training (70 percent), validation (20 percent), and test (10 percent). The validation set is an external data set that is not
used in the process of weight adjustments in training. It is necessary to mention that the system randomizes the distribution
of training/testing/validation data.

Training was terminated at 11 epochs due to the premature stopping criterion that was validated on the performance.
The final validation performance had a good level of predictive accuracy with a mean squared error of 2.1 x 107>, The
error histogram and performance charts verified slight error discrepancies and steady learning behavior in the course of
the training and validation phases.

The regression analysis demonstrated strong predictive reliability between the actual and predicted outputs, with a
correlation coefficient as shown in Figure 6 follows:

* Training set: R = 0.99641

* Validation set: R = 0.99476

* Testing set: R =0.97257

* Total sum of data regression: R = (0.99475.

Training: R =0.99641 Validation: R = 0.99476
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Figure 6. Training, testing, validation, and overall dataset correlation values

These significant R-values in all data divisions testify to the resilience and wide range of generalization of the model.
In testing all 50 neutrosophic fuzzy pairs, we achieved the following result: arithmetic mean deviation of 0.2391092 for
7, 0.010393 for ¢, and 0.2391097 for ¥.
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This NDNN framework can be applied in future projects with bigger datasets, i.e. long time monitoring of soil
microbial population with various crop rotations or varying climate change scenarios. The active microbial biomass can
be quantified as the estimated truth value, the falsity value can be used to locate microbial dormancy zones, and the
indeterminacy value can be used to identify areas where additional sampling is necessary as a result of indeterminacy or
the lack of environmental data.

7. Comparative analysis

The proposed NDNN was evaluated through comparative studies focusing on accuracy, robustness, computational
efficiency, and sensitivity. Across training, testing, and validation datasets, the NDNN consistently achieved higher
correlation coefficients than traditional Feedforward Neural Networks (FNN), conventional Deep Neural Networks
(DNN), and Neutrosophic Fuzzy Neural Networks (NFNN). Its ability to simultaneously process truth, indeterminacy, and
falsity enabled superior handling of uncertainty. The model exhibited faster convergence and greater interpretability, albeit
with a slightly higher computational cost. Additionally, a five-level estimation strategy-comprising strongly optimistic,
optimistic, average, pessimistic, and strongly pessimistic modes-was introduced, allowing adaptive interpretation under
varying uncertainty levels. This capability, absent in the baseline models, highlights the NDNN’ s effectiveness in
predicting soil microbial dynamics in complex environments.

8. Sensitivity analysis

Evaluation of the performance of the NDNN is essential, particularly when handling soil microbe data characterized
by inherent uncertainty and indeterminacy. To test the sensitivity and strength of the model, a systematic sensitivity
analysis is required to understand the dependencies of changes in the input of neutrosophic values, which comprise truth,
indeterminacy, and falsity. elements stimulate a general predictive performance. In this analysis, there is:

* Evaluate NDNN with five different neutrosophic decision rules (strongly optimistic, optimistic, average, pessimistic,
strongly pessimistic) to conclude how the model reacts to various attitudes of uncertainties against soil microbe data.

* Training, testing, and validation datasets to assess the impact of fluctuation in neutrosophic input on the accuracy
of predictions.

* Investigating the effects of network depth and neuron count on model robustness and computational efficiency,
providing guidance for designing NDNNs capable of handling imprecise soil microbe data effectively.

9. Limitations and future outlook

The current study has certain limitations, primarily stemming from the high complexity of the stratified neutrosophic
model, which can make real-time implementation challenging in environments with limited computational resources. The
model is also highly dependent on the quality and accuracy of input data, such as soil microbial measurements, which
may affect its reliability. Additionally, its applicability to other domains remains uncertain and requires further empirical
validation. Future work should focus on optimizing parameter tuning, developing lightweight versions of the model
suitable for edge-device deployment, and integrating Explainable Al techniques to enhance interpretability and practical
usability in diverse applications.

10. Conclusion

This study demonstrates the systematic development of a NDNN, beginning with a single-layer, single-input neuron
network. The methodology is then extended to a single-layer network with a multi-input neuron, followed by a one-layer
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architecture comprising multiple multi-input neurons, and finally culminating in a multi-layered deep neural network with
several multi-input neurons. The research uniquely introduces five reasoning paradigms-strongly optimistic, optimistic,
average, pessimistic, and strongly pessimistic-for evaluating the summation outputs of each network type. The proposed
neutrosophic deep neural network has been successfully applied to real-world soil microbe data, highlighting its practical
applicability. Beyond this, the model shows potential for broader scientific applications wherever sensitive neutrosophic
evaluation of information is required.
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