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Abstract: Accurate cell classification plays a vital role in the diagnosis and treatment of diseases. However, existing
methods face challenges such as limited feature learning and excessive computational complexity, resulting in low
classification accuracy, prolonged training processes, and slow inference speeds. We propose a novel lightweight
method, Quantized Linear Vision Transformer (QLViT), based on the Multiscale Vision Transformers (MViTv2) and
linear attention mechanisms, to facilitate cell classification tasks from microscope images. Specifically, QLViT employs
a large-kernel convolutional layer and a well-designed feature extraction module called Conv-Linear Attention (CLA) to
extract features. It optimizes self-attention with an activation function and utilizes a residual structure to facilitate feature
reuse and address gradient issues. The CLA ensures efficient learning of local information via dynamic convolution
and employs linear attention to comprehensively capture global features, maintaining a lightweight profile compared
to the traditional self-attention. By introducing the Kolmogorov-Arnold Network (KAN) structure, CLA significantly
reduces computational complexity and parameter count. Extensive experiments on four public datasets demonstrate the
effectiveness of QLViT. We achieve an accuracy of 97.19% on the BioMediTech dataset, 97.35% on the ICPR-HEp-2
dataset, 90.45% on the blood malignancy bone marrow cytology expert-annotated dataset for a six-category classification
task, and an impressive accuracy of 99.84% on the white blood cell dataset. Furthermore, our method exhibits a
computational efficiency of 1.95 Giga Floating-point Operations (GFLOPs) and utilizes 9.07 million parameters. Our
results show that QLViT outperforms current state-of-the-art methods across multiple datasets, demonstrating its superior
inference speed, lightweight design, strong feature extraction capabilities and generalizability. This proposed method
provides a promising solution in the field of medical image classification.

Keywords: cell classification, linear attention, quantitative methodology, kolmogorov-arnold network

MSC: 68T07, 68T20, 68T45

1. Introduction
Cell classification refers to the process of categorizing cells based on their morphological, functional, gene expression,

and surface markers. This task is of great importance in the medical field because it helps to understand the properties,
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functions, and roles of different cell types within an organism. Many diseases are associated with abnormalities in specific
cell types [1]. Clinical physicians can improve diagnostic accuracies and develop personalized therapies based on the
results of cell classification. In the early stages, cell classification primarily relied on the traditional image processing
techniques and classical machine learning methods. For example, Computer-Aided Diagnosis (CAD) systems enhanced
diagnostic accuracy through methods such as decision trees, Bayesian networks, and rule extraction [2]. These methods
are suitable for simpler scenarios and are advantageous due to their low computational complexity. However, due to the
limitations of manually designed features, these approaches often fail to analyze images comprehensively, leading to poor
generalizability [3].

With the advancement of deep learning (particularly Convolutional Neural Networks (CNNs)), significant break-
throughs have been made in cell classification techniques [4]. Researchers have increasingly turned to CNNs to
automatically learn features from cell images [5]. For example, Kutlu et al. [6] and Shafique et al. [7] demonstrated that
deep CNNs can accurately identify various morphological cell types in blood images. Promising results have also been
reported in the detection of acute lymphoblastic leukemia using pre-trained neural networks such as AlexNet. Furthermore,
Song et al. [8] proposed a method that uses deep autoencoder networks within a single architecture to classify irregularly
shaped cells in bone marrow histology images accurately. Although CNNs have significantly improved cell classification
accuracy by automatically extracting multi-level features, the diversity and complexity of cells may lead to suboptimal
performance when using general-purpose networks for specific cell-related tasks.

Since the introduction of the self-attention mechanism [9], self-attention-based models have gradually surpassed
CNNs in image processing. Self-attention methods are now widely used to enhance image classification performance. To
the best of our knowledge, there have been several studies [10–12] that focus on utilizing the traditional self-attention
mechanisms or modified self-attention based on the Vision Transformer (ViT) [13] architectures for cell classification
tasks. However, these studies do not fully address the issues associated with excessive computational complexity and
limited learning of local information inherent in self-attention mechanisms. Very little research has been conducted to
explore self-attention-based models for extracting relevant cell classification information from microscope images.

To address the aforementioned challenges, we propose the Quantized Linear Vision Transformer (QLViT) approach,
which primarily leverages a designed feature extraction module Conv-Linear-Attention (CLA) and large kernel convolu-
tions for feature representation. The activation function is used to optimize self-attention, and a residual structure is
introduced to mitigate gradient-related issues. In the CLA module, we implement dynamic convolution to flexibly
adjust the weights of the convolutional kernels. In addition, we incorporate a linear attention mechanism with lower
computational complexity to capture global information, replacing traditional self-attention methods. To further enhance
the model’s interpretability and feature representation capacity, inspired by the Kolmogorov-Arnold representation
theorem [14], we employ theKAN [15] structure, replacing the conventionalmultilayer perceptrons. Thismakes themodel
more lightweight and better equipped to capture both local and global information, further boosting model performance.

The main contributions of this article are as follows. 1) We propose a novel CLA feature extraction module that
integrates dynamic convolution, a linear attention mechanism, and the KAN structure. This module can thoroughly learn
feature representations while maintaining fewer parameters and lower computational complexity. 2) By introducing the
quantization operation to optimize linear layers and activation functions, training cost of the model is significantly reduced
and inference speed is notably accelerated. 3) The proposed QLViT approach for the classification of microscope cell
images effectively overcomes the limitations of traditional methods, enhancing the performance and generalizabilty, thus
offering a new solution and direction for microscope cell image classification.

2. Related work
From the literature, it can be observed that traditional machine learningmethods [16, 17] are highly relying onmanual

feature engineering and exhibit poor scalability when handling large-scale and complex image data. Their performance
often lags behind that of deep learning models and they are sensitive to noise and outliers, making it more difficult to tune
the parameters [18]. Deep learningmodels have obtained a range of achievements in the field of medical image processing,
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and also in the classification of microscope cell images. Conventional machine learning techniques have gradually been
replaced by CNNs due to their superior performance to analyze the cell images captured under a microscope for the
identification and classification of different cell types. Asghar et al. [19] noted that while White Blood Cell (WBC)
classification was initially carried out based on traditional machine learning methods, it has been shifted towards deep
learning methods, particularly CNNs, in recent years. Among 136 relevant studies published between 2006 and 2023,
54.8% employed CNN. For example, Park et al. [9], Yenurkar et al. [10], and Davamani et al. [11] used different CNN-
based approaches (integrated models, pre-trainedmodels, andmigration learning techniques) to classify cells, respectively.
DEV et al. [20] developed several hybrid data-drivenmodels that combinedCNNs for feature extractionwith two cascaded
Recurrent Neural Network (RNN) classifiers to analyze images of red blood cells infected with malaria. Huang et al. [21]
proposed the MGCNN model, a hyperspectral imaging-based blood cell classification method that integrates modulated
Gabor wavelets with CNN kernels to effectively promote blood cell classification performance in small sample training
scenarios. In summary, while there are a series of research works utilizing CNNs for cell classification tasks, the capability
of learning global information is insufficient due to the limitations of their receptive fields, particularly when faced with
complex data distributions, thus hindering their ability to establish effective global contextual relationships.

The self-attention mechanism enables efficient learning in terms of the importance of different feature information,
gradually outperforming CNNs. For example, the ViT model, which was the first to introduce attention mechanisms
into the field of computer vision, has achieved outstanding results on datasets such as ImageNet, CIFAR-100, and VTAB.
Furthermore, with the ViTmodel, Halder et al. [12] performed a comprehensive analysis of theMedMNISTv2 dataset that
include blood cell microscopy images, showing the potential of self-attention mechanisms in medical image analysis. The
MViTv2model proposed by Li et al. [22] employed amultiscale visual self-attention mechanism and enhanced the models
performance by introducing decomposed relative position embeddings and residual pooling connections. However, self-
attention mechanisms tend to have high computational complexity in image classification and are more concentrated on
global information, often ignoring the learning ability of local features.

Recently, lightweight technologies have also made progress across various domains. For instance, CAS-ViT
effectively streamlines the complex Transformer architecture through its innovative CATM module, enabling efficient
operation on resource-constrained devices such as mobile platforms while achieving competitive performance across
multiple visual tasks [23]. Flat U-Net focuses on domain-specific lightweighting strategy. For solar filament segmentation
tasks, it significantly reduces model parameters and enhances segmentation efficiency through optimized convolutional
blocks and a flattened network architecture [24]. Furthermore, DyT technology offers an alternative approach to
Transformer models by eliminating normalization layers altogether. Through simple element-wise operations, it not only
simplifies model structure but also maintains comparable performance to normalized models [25]. Collectively, these
efforts advance lightweight technology, providing novel insights and methodologies for efficient, low-resource model
deployment in a wide range of applications.

The KAN network is a novel neural network architecture inspired by the Kolmogorov-Arnold Representation
Theorem, distinguished by its unique structural design. In KAN, the fixed weight matrices typically used in traditional
networks are replaced with learnable univariate functions parameterized by spline curves. By leveraging this formulation,
KAN effectively mitigates the difficulty of dimensionality often encountered by conventional neural networks in high-
dimensional function approximation tasks. It exhibits stronger expressive power and improved accuracy, while also
opening new pathways to improve the interpretability of neural network models.

To this end, our proposed QLViT method incorporates a large-kernel convolutional layer and an innovative CLA
module as the feature extractor, enhancing feature representation capabilities while reducing computational complexity
in identifying microscope images. By integrating an optimized activation function, dynamic convolution, and linear
attention, along with the KAN structure, our approach effectively captures both high-level semantic information and local
characteristics, significantly reducing computational overhead and parameter demands.
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Figure 1. Overall architecture of the proposed QLViT model

3. Research method
3.1 Overall architecture

The overall architecture of the proposed QLViT approach is shown in Figure 1. It primarily includes the following
three steps: large kernel convolution for coarse feature extraction, the CLA module for refined feature learning, and the
output of image classification results. First, the cell images are fed into the large kernel convolution layer, where the
extensive receptive field effectively learns the features of each image. Next, the data is passed to the well-assembled CLA
module, which first employs dynamic convolution to enhance the detailed features of the image. The quantized activation
function is then used to match the performance of traditional activation functions while providing greater computational
efficiency. In linear attention, information is integrated into the activation function during computation to alter the order
of QKV calculations, achieving linear complexity. A residual structure for feature reuse is introduced to mitigate gradient
problems during training, following the self-attention mechanism. The CLA module is repeated N times to learn cell
image features thoroughly. Finally, after normalization and the quantized linear layer, the classification results are output.

3.2 CLA module

The core component in QLViT is the designed CLA module. After a feature map is input, it first passes through a
norm layer to enhance the performance of the neural network by stabilizing the gradients, thereby accelerating model
convergence. It also reduces internal covariate shift, which refers to changes in the distribution of input data, thus
improving the model’s generalizability. The following is the Projection part of the model, which begins with a mapping
layer. Dynamic convolution [26] allows themodel to better capture complex structures of the input data, thereby increasing
its feature representation capabilities. The weights of each convolutional kernel are dynamically adjusted as the attention
weights of the input feature map vary. It uses K convolutional kernels

∼
W of the same size, with identical input and output

dimensions, and the final convolutional operation is performed by aggregation of the attention weights πk(x). The output
of the dynamic convolution can be expressed as:
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πk (x) = 1, (4)

where x is the input feature map, and A is an activation function,
∼
W k and

∼
bk are kth weight matrix and bias vector. The

attention weights
∼
W k are computed through the compression of global spatial information and a fully connected layer,

utilizing the Softmax function to ensure that the sum of all attention weights equals 1. This can be expressed as:

πk =
exp( zk/τ )

∑K
j=1 exp( z j/τ )

, (5)

where zk is the output of the final Linear layer in the attention brunch, and τ is used to control the sparsity of the attention
distribution to addressing the efficiency issues associated with deep dynamic convolution. The Qact layer implements
activation layer quantization, combining log2 quantization with iexp which is a polynomial approximation of exponential
function [27]. This speeds up the model inference process without affecting performance. The Softmax operation is
represented as follows:

QA(s ·Xk) = 2b −1− log2

⌊
∑q iexp(Xq)

iexp(Xk)

⌉
, (6)

where iexp denotes the iexp function, s is a scaling factor, and X is the input. The term iexp (Xk) provides an integer
approximation of the exponential function. This avoids using floating-point numbers in the Softmax operation, allowing
efficient hardware execution using integers. Finally, the mapping layer concludes with a 1 × 1 convolution, which can alter
the number of channels in the feature map, facilitating cross-channel information integration and aiding in the extraction
of more abstract feature representations. The self-attention mechanism in this module references Flowformer [28], where
the outputs Q, K, and V are obtained through the mapping layer. The Q and K matrices are processed through a sigmoid
function to ensure the non-negativity of the attention matrix. In contrast to traditional attention calculations, this approach
integrates specific activation functions into feature computations, using matrix multiplication optimization techniques. It
first performs operations on K and V rather than the conventional approach of first processing Q and K. V represents the
importance of each token, and the use of the Softmax function significantly differentiates the levels of importance. Q and
K indicate the amount of information each token needs to receive, with the sigmoid function effectively acting as a gating
mechanism to control the volume of incoming information. The traditional attention [9] calculation formula is as follows:
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Attention(Q, K, V ) = Softmax
(

QKT
√

dk

)
V. (7)

The attention calculation formulas related to our model are as follows:

LinearAttention(Q, K, V ) =
Sigmoid(Q)Sigmoid

(
KT
)
Softmax(V )

√
dk

, (8)

where dk is the dimensionality of the data.

Sigmoid(xi j) =
1

1+ e−xi j
i ∈ (1, . . . , n) j ∈ (1, . . . , m), (9)

where xi j denotes the element in the ith row and jth column of the matrix X ∈ Rn×m. Each element in the matrix is
transformed using the Sigmoid function.

Softmax( X ) j =

([
ex1 j

∑n
i−1 exi j

,
ex2 j

∑n
i−1 exi j

, . . . ,
exn j

∑n
i−1 exi j

])T

. (10)

Equation (10) performs the corresponding Softmax operation on each column j of the matrix X ∈ Rn×m, where xi j

represents the element in the ith row and jth column of the matrix X .
Finally, the residual structure [29] is used to alleviate the gradient vanishing problem and aid gradient flow while

training a deeper network model. For example, as shown in 1, the features that pass through both the norm layer and the
KAN layer involve residual structures. In common neural networks, MLP is used as the base component of the model.
However, in our model, this practice is abandoned and a KAN structure based on the Kolmogorov-Armold representation
theorem is used, which is more interpretable and has a smaller number of parameters. Unlike MLPs, the inputs in the
KAN structure are directly and nonlinearly transformed before the inputs are combined. Multiple curves are combined to
simulate arbitrary functions using spline functions. Parametric learning with spline functions is more difficult than with
linear functions, but nonlinear representations are much better and can achieve higher accuracy with fewer nodes. The
following is a representation of the KAN structure. Let f : [0, 1]n → R be a smooth multivariable function. According to
the Kolmogorov-Arnold

f (x) =
2n+1

∑
q=1

Φq

(
n

∑
p=1

ϕq, p ( xp )

)
, (11)

where ϕq, p: [0, 1]→ R and Φq : [0, 1]→ R are univariate continuous functions, and x = (x1, . . . , xn) represents the input
variables.

Φ =
{

ϕq, p
}
, p = 1, 2, . . . , n, q = 1, 2, . . . , m, (12)
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where n and m represent the input and output dimensions of the KAN layer, respectively, and each univariate function
contains trainable parameters.

For a deep KAN structure, multiple KAN layers can be stacked, with each KAN layer defined as a matrix composed
of a set of univariate functions, as shown in Equation (13). The general form of KAN is as follows:

KAN(X) = (ΦL−1 ◦ΦL−2 ◦ · · · ◦Φ2 ◦Φ1)X . (13)

3.3 Linear layer quantization operation

In QLViT, the final layer employs a quantized linear layer to further enhance the model’s inference speed. The
quantized linear layer utilizes a uniform quantization method [30, 31], mapping floating-point numbers X to the nearest
quantization bin. The definition of the quantizer is as follow.

Q(X |b) = clip
(⌊

X
s

⌉
+ zp, 0, 2b −1

)
, (14)

s =
µ − l
2b −1

, (15)

l = min(X), (16)

µ = max(X), (17)

zp = clip
(
−
⌊

X
s

⌉
, 0, 2b −1

)
, (18)

where, b is the quantization bit-width, which determines the precision and range of values. l and µ define the range of
quantized values, while the parameters s (scale) and zp (zero-point) are determined by the upper bound µ and lower bound
l of X . The “clip” function ensures that the quantized value does not fall outside this range. If the quantized value is less
than 0, it is set to 0; If the quantized value is greater than or equal to 2b −1, it is set to 2b −1−1.

3.4 Loss function
In this approach, cross-entropy loss is used as the loss function. This is based on the concept of cross-entropy defined

in information theory, whereby the distance between two probability distributions is measured. The aim is to minimize
the loss by making the predicted distribution as similar as possible to the true distribution, with the difference between
the two distributions calculated. The formula for cross-entropy loss is as follow.

Cross Entropy Loss=−
C

∑
i=1

yi log(pi), (19)

where C is the number of classification categories and yi is the distribution of the true labels, which is 1 for the correct
category and 0 for the others. pi is the output probability of the model, representing the probability that the sample belongs
to category i. The cross-entropy loss function is well-suited for gradient descent and backpropagation due to its smooth
properties. Based on probability distributions, it gives model output a clear probabilistic interpretation, which aids in
understanding and interpreting the model.
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4. Experiments
4.1 Dataset

The details of the four datasets used in the experiment are summarized in Table 1.

Table 1. Summary of the datasets used in the experiment

Name Number of categories Cell type Quantity and category
names for each category

BioMediTech dataset [32] 4 Retinal cells
216 Fusiform,
547 Epithelioid,
949 Cobblestone,

150 Mixed

White blood cell dataset [33] 4 Blood cells
3,133 Eosinophils,
3,108 Lymphocytes,
3,095 Monocytes,
3,171 Neutrophils

ICPR-HEp-2 dataset [34] 6 HEp-2 cells

2,495 Homogeneous,
2,831 Speckled,
2,598 Nucleolar,
2,741 Centromere,

2,208 Nuclear membrane,
724 Golgi

Hematological malignancy
bone marrow cytology

expert annotation dataset [35]
6 Bone marrow cells

5,883 Eosinophils,
3,055 Degenerative myelocytes,

4,040 Monocytes,
6,557 Bone marrow,

3,538 Non-Identifiable elements,
2,740 Proerythroblasts

1) The BioMediTech dataset is composed of 195 initial microscopic images of retinal pigment epithelial cells captured
at various stages. These images are segmented into 16 smaller images through a 4× 4 grid division, yielding a total of
1,862 images after removing those that are cluttered, blurry, or consist solely of background. Each sub-image is classified
by two professional annotators.

2) The ICPR-HEp-2 dataset comprises HEp-2 cells that display a variety of nuclear antigens, which renders it a
perfect medium for conducting Indirect Immunofluorescence (IIF) experiments. This dataset, sourced from the University
of Salerno, features fluorescence microscopy images of HEp-2 cells exhibiting a range of morphological characteristics.

3) The dataset for hematological malignancies in bone marrow cells encompasses over 170,000 anonymized cells
that have been annotated by experts. These cells were obtained from the bone marrow smears of 945 patients. The
smears were stained using the May-Grünwald-Giemsa/Pappenheim technique, and the images were taken with a 40 × oil
immersion microscope. The full dataset covers a variety of conditions across 21 different cell types. However, given the
uneven distribution of the data, we chose six cell types that have a more balanced representation.

4) The leukocyte classification dataset contains 12,500 enhanced images of blood cells, each accompanied by cell
type labels. The diagnosis of blood-related diseases usually involves the identification and characterization of patient
blood samples, and methods for the automatic detection and classification of blood cell subtypes hold significant value
for medical applications.

For each dataset, the data is partitioned using stratified random sampling. Within each category, samples are randomly
selected at a 20% ratio to form the testing set, while the remaining data automatically comprises the training set. Regarding
data augmentation, we randomly apply rotations within the range of −15 to +15 degrees without resizing the images,
followed by an automatic enhancement strategy. Additionally, all images are normalized across the three channels using
the mean values [0.485, 0.456, 0.406] and standard deviations [0.229, 0.224, 0.225].
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4.2 Evaluation metrics

In this experiment, three commonly used evaluation metrics were used to assess the model performance: Accuracy
(Acc), Recall, and F1 Score. For comprehensive evaluation across all classes in the multi-class setting, micro-averaging
was applied to these metrics. Notably, under micro-averaging, Recall and F1 Score yield identical values to Accuracy.
Thus, we primarily focus on Accuracy for performance interpretation. The formulas of accuracy is as follow.

Accuracy= ∑C
i=1 T Pi

∑C
i=1 (T Pi +FPi +FNi)

, (20)

whereC is the total number of categories, and T Pi, FPi, and FNi are the number of true instances, false positive instances,
and false negative instances of the ith category, respectively.

4.3 Comparative experiments
4.3.1Experimental setup

In this study, all baseline models are initialized using weights pre-trained from ImageNet . This process endows the
models with robust feature extraction capabilities, enabling them to efficiently adapt to the complex features present in
cell images. Through fine-tuning on four cell classification datasets, these models further optimize their performance for
specific tasks. We conducted comparative experiments on the aforementioned four datasets with our proposed method and
representative methods in the field of image classification, including ResNet [32], RegNet [36], ShuffleNetV2 [37], Vision
Transformer (ViT) [38], SwinTransformer [39], ConvNext [36], and MViTv2. During the training stage, all comparative
models with pre-trained weights are fine-tuned for 50 epochs on the same dataset. Because our redesigned model does not
leverage pre-trained weights, it underwent a longer training process of 500 epochs to achieve convergence and competitive
performance.

ResNet addresses the issue of model degradation in deep networks by employing shortcut connections. Unlike
conventional networks, ResNet introduces shortcut mechanisms that facilitate residual learning, enabling deeper networks
to function effectively. RegNet is a family of simple and fast networks derived from a network design space for various
FLOP levels. ShuffleNetV2 is a model with high efficiency and accuracy, and it is developed based on four proposed
criteria: (1) minimizing memory cost (MAC) through equal channel width, (2) avoiding excessive group convolutions
that increase MAC, (3) reducing network fragmentation to enhance parallelism, and (4) considering the impact of element-
wise operations. ViT divides the input images into multiple patches, which are then fed into a Transformer model. It excels
in tasks that involve high-resolution images and require capturing long-range dependencies. Swin Transformer combines
the strengths of Transformers andCNN. This architecture demonstrates strong generalizability. ConvNeXt integrates some
advantages of Transformer architecture while maintaining the efficiency and intuitiveness of CNNs. MViTv2 is a versatile
model designed for image and video classification as well as object detection. It achieves superior performance compared
to previous work by employing multiscale self-attention, decomposed relative position embeddings, and residual pooling
connections.

4.3.2Experimental results

Table 2 present the quantitative comparison results of QLViT against classical models in four datasets. It can be
seen that our method significantly outperforms others in terms of four metrics on all four datasets. In Particular, on
the BioMediTech dataset, the classification accuracy of our method far exceeds that of the state-of-the-art models. For
example,compared to ShuffleNet, it increased by 10%. Furthermore, in the white blood cell classification dataset, our
model raises the ACC to 99.84%. Our method consistently yields better results compared to the baseline on all four
datasets. Notably, on the BioMediTech dataset, our method surpassed the baseline MViTv2 by 7% in classification
accuracy. This improvement is likely due to the incorporation of dynamic convolution, the improved linear attention
mechanism, and the KAN structure for feature extraction, which provide more effective and computationally efficient
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learning. These experimental results indicate that by introducing the novel CLA module, our QLViT method exhibits
superior feature representations, leading to notable promotion over other methods for cell classification on the microscope
images.

To comprehensively evaluate the model’s classification performance, confusion matrices are provided for each
dataset in Figure 2. These matrices offer detailed insights into the model’s predictive behavior by disaggregating the
number of true positives, true negatives, false positives, and false negatives across all categories. The model achieves
perfect classification on balanced datasets and categories with distinctive features, such as the White Blood Cell dataset in
Figure 2b and the Cobblestone category in Figure 2a-the latter characterized by a distinct dobblestone-like texture pattern.
However, on imbalanced dataset, the confusion matrix also reveals the model’s tendency to misclassify samples from the
minority class. For instance, the model shows notably poor performance in classifying the Golgi category in Figure 2c,
with a pronounced error rate. This behavior aligns with common challenges posed by class imbalance, likely resulting
from the model developing a bias toward the majority class during training.

Figure 2. Confusion matrices for different datasets. (a) BioMediTech, (b) White blood cell, (c) ICPR-HEp-2, and (d) Bone marrow
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Table 2. Comparison of quantitative results from various models across four datasets

Model Dataset (Acc (%))

BioMediTech WhiteBloodCell [30] ICPR-HEp-2 [31] BoneMarrow [32]

Swin transformer [35] 91.11 93.08 95.49 89.09
Vision transformer [13] 90.03 97.84 96.67 88.14

ResNet [29] 91.11 94.84 96.35 88.45
ConvNext [36] 91.91 94.84 94.70 88.49
ShuffleNet [34] 87.06 93.24 87.46 87.42
RegNet [33] 91.37 95.51 96.06 88.14
MViTv2 [25] 90.49 98.19 95.38 87.21

Ours 97.19 99.84 97.35 90.45

Figure 3. ROC curves of different models across four datasets. (a) BioMediTech, (b) White blood cell, (c) ICPR-HEp-2, and (d) Bone marrow
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Figure 3 presents the ROC curves of different models across four datasets. Our model demonstrates outstanding
classification performance on all datasets, achieving high AUC values of 0.9633 on BioMediTech dataset, 0.9825 on
White Blood Cell dataset, 0.9713 on ICPR-HEp-2 dataset, and 0.9038 on BoneMarrow dataset, with strong and consistent
stability compared to other models. Notably, in Figure 3a, the curve rises rapidly in the low false positive rate region,
reflecting the model’s ability to capture a substantial number of true positives at an early stage.

In several typical misclassification cases, some datasets contain cell images with high visual similarity. For instance,
a sample from the Fusiform class (Figure 4a) in the BioMediTech dataset is misclassed as Mixed, and aMonocytes sample
(Figure 4c) from the bone marrow dataset is incorrectly predicted as Proerythroblasts. These errors indicate that our model
still struggles in distinguishing subtle textures variations. This mainly stems from the fact that texture features consist of
multi-scale andmulti-dimensional information, including both local and global texture characteristics. Without effectively
integration of features across different levels, it remains incomplete for the model to comprehensively understand complex
textures. Further improvements could focus on improving attention mechanisms to more efficiently guide convolutional
feature extraction and improve multi-level feature fusion.

Figure 4. Examples of misclassified images in the dataset. (a) and (b) are misclassed samples from the BioMediTech dataset, belonging to the
Fusiform and Mixed categories, respectively. (c) and (d) are misclassified instances from the bone marrow dataset, corresponding to Monocytes and
Proerythroblasts, respectively

4.3.3 Interpretability analysis

We employ the Grad-CAM tool [40] to generate and visualize class activation maps for two datasets to further
demonstrate the effects of our method. The visualization results can clearly exhibit each model’s focus on features relevant
to the classification task within the cellular images, highlighting the differences in cellular feature recognition among
different models and enhancing the interpretability of the models.

Figure 5 shows a set of class activation maps of fusiform Retinal Pigment Epithelium (RPE) cells classification
generated by different methods from the BioMediTech Dataset. It can be seen that for the Fusiform and the Epithelioid
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images, our model’s attention is more focused on each cell nucleus within the images compared to other models. In the
Cobblestone category, the cells are tightly arranged under normal physiological conditions, forming a texture reminiscent
of cobblestones, which are crucial characteristics for identifying the cell categories. These visualization results clearly
demonstrate that our method successfully concentrates attention on the essential characteristics of different types of cells,
showing a stronger feature learning abilities over other methods.

Figure 5. Visualization of feature maps generated by various models on the BioMediTech dataset

Figure 6. Feature maps of different models on the bone marrow dataset
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Activation maps of different models on the bone marrow dataset are shown in Figure 6. It is evident that our method
shows the best visualization results regarding the internal feature representations of different types of cells in almost
all cases, closely aligning with the key feature regions and excelling in the morphology and boundaries of the nucleus.
While except the MViTV2 perform relatively well, other models exhibit blurred boundaries or incorrect feature areas. In
summary, these results validate that our method outperforms others in characterizing the classification-related features
on the microscope images. It significantly aids in precise classification and identification of cell types, offering higher
classification and accuracy and more reliable results.

4.4 Ablation study
4.4.1Ablation experiment setup

We performed ablation studies on the BioMediTech dataset to verify the effectiveness of each component in the
proposed method. To this end, five versions from QLViT_V0 to QLViT_V4 were constructed, and each model is an
improvement of the previous version. All experiments are trained for 500 epochs.

QLViT_V0: Compared to the baseline MViTv2, the V0 version incorporates a convolutional layer and feature
processing operations before the standard multi-head self-attention feature mapping.

QLViT_V1: The quantization operation is utilized in the activation functions within the multi-head self-attention
mechanism and a dynamic convolution is employed to replace the conventional convolution of the mapping layer.

QLViT_V2: The quantization operation is used on the linear layers and the activation functions except for the core
attention module.

QLViT_V3: The QKVs in the self-attention mechanism are processed with the activation function.
QLViT_V4: The KAN structure is adopted to supersede the MLP at the end of the CLA module.

Table 3. Comparison of FLOPs and number of parameters for five versions of the model using the same vectors

Model Acc (%) FLOPs Params

MViTv2 [28] 90.49 4.00 G 23.33 M
QLViT_V0 92.05 4.3 G 24.78 M
QLViT_V1 92.33 4.00 G 23.33 M
QLViT_V2 92.61 4.29 G 25.11 M
QLViT_V3 94.89 4.27 G 25.09 M
QLViT_V4 97.19 1.95 G 9.07 M

To measure the number of parameters and computational complexity of each model, the input vector of the same
size 3×224×224 was fed into each model to record the FLOPs and number of parameters. When the model depth (the
repetitions of the backbone CLA module) is 10 layers, the corresponding FLOPs and the parameter quantity are listed in
Table 3.

Table 4. Training and inference time of different variant

Models Training time Inference time

V0 1 h 23 min 15 sec 15.12 ms
V1 2 h 26 min 25 sec 14.29 ms
V2 1 h 45 min 40 sec 12.25 ms
V3 1 h 17 min 7 sec 11.39 ms
V4 2 h 20 min 56 sec 9.43 ms
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The training and inference times for different variants are presented in Table 4. Each variant was evaluated by
passing a 3 × 224 × 224 tensor and measuring the full inference duration. The evolution in training time from QLViT_V0
to QLViT_V4 reflects the architectural modifications in each version. QLViT_V1 introduces quantization and dynamic
convolution operations. Quantization involves an additional discretization step, while dynamic convolution requires
computing input-dependent kernel weights, collectively increasing training time to 2 hours 26 minutes 25 seconds. In
QLViT_V2, quantization was extended to linear layers and activation functions. Although quantizing linear layers raised
computational complexity, optimizations such as quantization-aware training helped curb this increase, reducing training
time to 1 hour 45 minutes 40 seconds. QLViT_V3 applies activation function processing only to the QKV components
in the self-attention mechanism. Since activation functions are computationally inexpensive and efficiently implemented,
their impact on training time was marginal, leading to a further reduction to 1 hour 17 minutes 7 seconds. Finally,
QLViT_V4 replaces the final MLP in the CLA module with a KAN structure, which introduces richer feature interactions
and nonlinear transformations. This change increased training time to 2 hours 20 minutes 56 seconds. Overall, the
incorporation of complex operations or modules tends to increase training time, whereas structural simplification and
optimization can reduce it. Notably, inference time is often more critical in practical applications. Our final model,
QLViT_V4, achieves the shortest inference time of only 9.43 milliseconds.

4.4.2Results and analysis

The ablation study results are shown in Table 3. We can see that our ultimate QLViT model achieves the best
results in all evaluation metrics. With the addition of convolutional layers, the accuracy of QLViT_V0 increases by 2%
over the baseline model. However, as indicated in Table 3, both FLOPs and the number of parameters have a slight
increase. There is a further improvement of accuracy with QLViT_V1 by 0.3% compared to QLViT_V0 because of the
involvement of the quantization operation and dynamic convolution, while identical FLOPs and parameters with MViTv2
are obtained. QLViT_V2 and QLViT_V3 achieve additional 0.3% and 2.5% increase in accuracy over QLViT_V1 because
of the utilization of the quantization operation on the entire model and an improved self-attention mechanism, respectively,
at an expense of computational complexity. Ultimately, our method QLViT_V4 further aggregates the KAN structure and
achieves the highest accuracy of 97.19%, recall of 97.19% and F1-score of 97.19%, significantly outperforming other
configurations. Particularly, the smallest FLOPs of 1.95G and number of parameters of 9.07M are obtained. This further
demonstrates the superior lightweight characteristics and outstanding performance of our proposed method.

As shown in Figures 7 and 8, the Grad-CAM visualizations generated by KAN-based QLViT_V4 exhibit clearer and
more prominent features compared to those from MLP-based QLViT_V3. This advantage can be largely attributed to a
key characteristic of KAN by deploying learnable activation functions on the edges of the network rather than fixed node
activation functions. KAN gains greater flexibility in capturing complex relationships within input data, thereby achieving
more accurate and robust feature extraction. Furthermore, KAN’s design enables the model to achieve comparable or
superior accuracy with fewer parameters. These results demonstrate KAN’s potential to boost both model performance
and interpretability in deep learning models.
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Figure 7. Grad-CAM visualizations for QLViT_V3 and QLViT_V4 on the BioMediTech dataset

Figure 8. Grad-CAM visualizations for QLViT_V3 and QLViT_V4 on the BioMediTech dataset
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5. Discussion
This work presents the QLViT method for cell image classification under the microscope. The method combines

large kernel convolutions, a well-designed CLA module, quantized activation functions, and linear layers. Large kernel
convolutions are utilized to capture local information extensively in images, thereby enhancing the model’s feature
extraction capabilities. By integrating dynamic convolution, a linear attention mechanism, and the KAN structure,
the CLA module enables the model to achieve better feature representation while maintaining lower computational
complexity.

The dynamic convolution allows the convolution kernel weight distribution to be adjusted based on feature
information, enabling more comprehensive feature learning. The advantages of the improved linear attention mechanism
lie in the inclusion of activation functions during the QKV calculations, which reorders computations compared to
traditional self-attention methods. This adjustment brings two key benefits, similar to gating mechanisms: it better
controls the information flow and captures global information dependencies, mitigating gradient issues during training,
and it selectively retains information relevant to the task at hand, improving the model’s memory capacity and predictive
performance. Replacing the traditional MLP with the KAN structure further enhances the model’s nonlinear learning
capability and interpretability. Experimental results (see Table 3) also show a significant reduction in computational load
and a decrease in the number of parameters.

Class activationmaps from the BioMediTech and bonemarrow cell datasets indicate that ourmethod is more sensitive
to the microscopic cell images than other the state-of-the-art classification models. It focuses on key areas of each cell
type. Based on the comprehensive experimental results on four datasets, it proves that our is capable of handling various
cell classification tasks with strong performance and extreme lightweight features.

Due to the variabilities of the employed dataset and different validation procedures, it is difficult to make quantitative
comparison with related work. Nevertheless, we believe it is still important to attempt a relative comparison. To this end,
we identified several representative literatures. Manju et al. [41] proposes a hybrid method combining CNN, Gray Level
Co-occurrence Matrix (GLCM), and Discrete Cosine Transform (DCT) for HEp-2 cell image classification, highlighting
the importance of multi-dimensional feature fusion, achieving 96.56% accuracy on the ICPR-HEp-2 dataset. Our QLViT
method integrates the KAN architecture and self-attention optimization, yielding a 0.6% increase in accuracy on the
same dataset. Pandiraj et al. [42] develops a domain-specific graph-based model for blood cell classification, achieving
99.13% accuracy on the White Blood Cell dataset. Although their innovative approach excels in scenarios with clear
morphological patterns, it faces scalability issues in multi-domain images. The utilization of dynamic convolution and
self-attention mechanism in our model addresses these limitations, enabling the accuracy rise by 0.71%. Chen et al.
[43] develops a ViT-based bone marrow cell classification model that assembles the SCConv [44] and KAN structure,
mitigating the problem of local and global feature loss. However, different dataset is adopted in contrast with our model
and the large parameter size limits its application. Our proposed method balances model compression and performance
by using lightweight strategies on a more compact architecture. Overall, our approach outperforms existing methods for
cell classification tasks with strong generalization and lightweight characteristics.

Although our method achieves satisfactory results on four public microscopy cell image classification datasets,
future work could expand to include more diverse datasets or other type of classification tasks to further validate its
generalizability.

6. Conclusion
In conclusion, this study presents QLViT, a lightweight cell classification method based on the MViTv2 architecture

and linear attention mechanism for microscope images. By incorporating the CLA feature extraction module, it achieves
superior feature representation with reduced computational complexity. Comprehensive experimental evaluations on four
publicly available cell classification datasets validate QLViT’s robustness and efficacy, demonstrating its potential for
large-scale biological image analysis and broader classification tasks in other domains.
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