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Abstract: The mixed convection flow and heat transfer in a vented rectangular hollow with an adiabatic enclosure and
an interior solid obstruction that generates heat are investigated numerically. The combined effects of natural convection,
which is produced by the heat-generating obstruction, and forced convection, which is facilitated by an exit port at the
top of the right wall and an intake port at the bottom of the left wall, propel the flow. The Galerkin Finite Element
Method (GFEM) is used to solve the governing equations for mass, momentum, and energy. The findings are examined
to comprehend the intricate relationship between the Grashof number (Gr), which controls buoyant strength, and the
Reynolds number (Re), which controls forced flow inertia. The average Nusselt number (Nu) and the average fluid
temperature inside the cavity are used to quantify the total heat transfer performance, while streamlines and isotherms are
used to depict the flow patterns and thermal distributions. The results show that the Re-Gr combination has a significant
impact on the flow structure and thermal performance. This study offers vital information for improving the thermal
design of devices including heat exchangers, solar thermal collectors, and electronic cooling enclosures.
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Abbreviation
u, v Velocity components (ms−1)

p Pressure (Pa)
θ Temperature (K)
µ Dynamic viscosity (kg/ms)
k Thermal conductivity (W/mK)
cp Specific heat at constant pressure (J/kgK)
ν Kinematic viscosity (m2/s)
ρ Density (kg/m3)
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β Coefficient of thermal expansion (K−1)
θc Fluid’s temperature (K)
g Gravity (ms−2)
U0 Velocity component (ms−1)
ρ0 Fluid’s density at θc (kg·m−3)
L Length (m)
U, V Dimensionless velocity components (-)
τ Dimensionless time (-)
† Dimensionless temperature (-)
P Dimensionless pressure (-)
Re Reynolds number (-)
Nu Nusselt number (-)
Gr Grashof number (-)
Pr Prandtl number (-)

1. Introduction
The study of heat transfer within enclosures and hollows is decisive for a widespread variety of engineering and

everyday sciences. Researchers have used theoretical, experimental and numerical methods to discover convection flow
and thermal behaviour in various geometries, including rectangular, hexagonal, and triangular cavities with different
types of heating and obstruction. The Finite Element Method (FEM) has been particularly useful for analyzing complex
geometries and boundary conditions. Recognizing heat transfer within enclosures is fundamental for designing and
optimizing electronic equipment, solar receivers, and other systems that rely on heat exchange. Employing theoretical,
experimental, and numerical methods, we have studied convection flow and thermal properties in various cavities and
enclosures. Many researchers in this field have conducted extensive research. Guo and Sharif [1] studied mixed
convection heat transfer using a rectangular two-dimensional hollow with an intensively heated bottom wall with
isothermal boundaries and continuously moving vertical wall. Enclosure driven by a partially flexible divider and internal
heat generation, Selimefendigil and Oztop [2] explored mixed convection in a viscous fluid subject to convective heating.
Haq et al. [3] examined the cavity that results from mixed convection partially driven by a semi-heated wall, whereas
Gangawane et al. [4] examined it when a lid-driven cavity is present. Haq et al. [5] achieved forced convection with a
two-dimensional trapezoidal cavity connected to a partially lid-driven trapezoidal lid with ovate cold obstacle awareness
should be oval-shaped cold obstacle placement.

Moallemi and Jang [6] presented their findings on how the Reynolds number influenced the thermal performance
of a lid-driven square hollow. The effect of Reynolds and Grashof numbers on mean Nusselt numbers was explored
independently by Prasad and Kosef [7]. By adjusting Reynolds and Grashof numbers, Khanafer and Chamkha [8] and
Basak et al. [9] made comparable observations on the performance of mixed convection. By integrating bioconvection and
Magnetohydrodynamics (MHD), Nadeem et al. [10] offer computational research on the behavior ofmotilemicroorganism
suspensions in ferrofluid flow. Using a two-phase flow technique, the model investigates the impact of magnetic
fields, interactions between nanoparticles, and swimming microorganisms. Important discoveries include changed flow
dynamics at different magnetic intensities and increased thermal conductivity brought on by microbial motility. By
changing the Reynolds number while maintaining the Grashof number constant, the impact of the Richardson number
was investigated by Dagtekin and Oztop [11]. In a lid-driven chamber, Richardson number was used to characterize the
regime of heat transfer in mixed convection system. In a curved channel, Alblawi et al. [12] examined the MHD-driven
ciliary flow of a Casson nanofluid containing carbon nanotubes while taking slip effects and metachronal wave motion
into account. By employing low Reynolds number and long wavelength approximations, they obtained exact solutions
for temperature and velocity profiles while examining the effects of variables such as the nanoparticle volume fraction
and Hartmann number. The results indicate that nanoparticles lower velocity close to the right wall, but that magnetic and
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curvature effects raise temperature. The work offers important new information on the behavior of nanofluids in ciliary
transport-related biomedical and engineering applications.

We used a variety of heated obstacles to boost the heat transfer efficiency. Ullah et al. [13] exploited a partially
heated rectangular chamber to investigate the thermal and optical properties of CuO-water nanofuid. The flow field in the
cavity is imperiled to two heated wavy rods. By utilizing a triangle-shaped heated wall and a square hollow, Alsabery et
al. [14] demonstrated nanomaterial mixed convection flow. In their investigation of Buongiorno’s nanofluid model across
a coiled exponentially stretched surface, Alblawi et al. [15] examine the combined impacts of curvature, thermophoresis,
and Brownian motion. As the curvature parameter (K) increases, the results show improved heat transmission; however,
with higher thermophoresis (Nt), the thickness of the thermal boundary layer decreases. Khan and Khan [16] investigated
thermophysical characteristics of nanofluids in a triangular hollow with an adiabatic pentagonal obstruction. Hamid et al.
[17] undertake numerical simulations in lid-driven cavity for mixed convection flow with circular obstructions on left and
right sides. Using a trapezoidal chamber with two cylindrical heated barriers placed inside, Khan et al. [18] investigated
two-dimensional flow and heat transfer. Addressing microscale heat transfer, Nikan et al. [19] presented an efficient
computational method for the hyperbolic heat conduction equation in thin metal films. Their results confirm the model’s
accuracy in simulating non-classical thermal wave propagation and predicting elevated temperature distributions. The
fluid flow in a chamber with multiple heated barriers was investigated by Usman et al. [20].

One of the numerical issues of estimating convective heat fluxes within enclosed regions clarifies the governing
parameters. The complexity of computations and governing boundary conditions and so on are some of the stumbling
blocks. The FEM has been used to investigate constraints of heat transmission in hexagonal chambers with heated fences.
Haq et al. [21] evaluated parameters of heat transmission in hexagonal chambers with partially heated wall using finite
element analysis. Abdelmalek et al. [22] applied FEM to investigate convective heat transfer in cavity containing a
wavy spherical heater. A localized meshfree collocation approach is presented by Nikan et al. [23] in their work on the
telegraph equation for electrical signal transmission. Their approach outperforms conventional finite element approaches
in terms of computing efficiency and numerical precision, handling complicated geometries with ease and exhibiting
great accuracy in simulating signal distortion and attenuation. Rehman et al. [24] studied impacts of heated triangular
spars formed by elliptical obstacles. Using a finite element approach, Kargarsharifabad [25] examined the properties of
the insulated obstruction in the cavity. Li et al. [26] demonstrated the great accuracy and computing efficiency of their
localized meshless collocation approach for simulating turbulent flows in 2D Burgers-type equations. Their technology
offers a potent substitute for conventional mesh-based techniques, drastically lowering computing costs while preserving
high agreement with analytical results. A useful starting point for a more thorough examination of the applications is the
[27–44] section, which provides some current studies in this area.

Our study’s objective is to numerically analyze fluid flow and heat transmission in a rectangular hollow with four
thermal barriers: two on lower side fence and two on upper fence as shown in Figure 1. There is only one inlet and one
outlet in the chamber. The inlet is in bottom left bend, and outflow is positioned at top right corner. The side walls are chilly,
whereas the upper and lower walls are adiabatic. The barrier locations were selected to (i) improve flowmixing throughout
the cavity, (ii) guarantee symmetric heating effects, and (iii) enable comparison with earlier cavity studies that employed
obstacles positioned at corners or mid-walls. The empirical solution is obtained using mathematical model based on PDEs.
The numerical analysis of mixed convection in a cavity with four heated barriers, a configuration that is seldom described.
Our approach uses the Galerkin Finite Element Method (GFEM) to investigate complicated thermal-fluid interactions by
combining the effects of Reynolds and Grashof numbers with obstacle-induced heat production in a novel way. Analyzing
the combined effect of buoyancy and inertia forces, showing how many impediments affect convection patterns and heat
transmission, and offering fresh perspectives on how to optimize thermal systems through geometric adjustments are
some of the main contributions. This paper’s remaining sections are arranged as follows: The governing equations and
mathematical modeling of the physical problem are shown in Section 4. While Section 6 describes the numerical solution
approach, Section 5 presents the non-dimensionalization process. The finite element formulation is described in Section
7, and the findings are thoroughly discussed in Section 8, along with how Reynolds and Grashof numbers affect the flow
and heat transfer properties. Section 9 concludes by summarizing the main findings and outlining potential avenues for
further research.
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Figure 1. Geometry of cavity

2. Mathematical modeling
The physical issue is seen in such a manner that the cavity’s length is measured along the x-axis and its height is

measured along the y-axis. Both velocities are bidimensional and, in the case of an unstable flow, will also depend on t.
The u̇, v̇ components of the velocity are located along the x-axis, and y-axis respectively. The upper and lower boundaries
are thermally insulated, and four obstacles are at higher temperatures than the side walls. We will explore temperature
distribution and velocity profiles for 1 ≤ Re ≤ 50 and 103 ≤ Gr ≤ 105. The working fluid’s thermophysical characteristics
are assumed to be constant at a reference temperature in this investigation. This popular simplification [1, 9] separates
the effects of Reynolds and Grashof numbers and lowers computing costs. These results are illustrative of fluids with
minor property changes, even if actual characteristics alter with temperature. Temperature-dependent features ought to
be included in future research.

The principal equations in component form can be expressed as follows in dimensional form [45]:

∂ u̇
∂x

+
∂ v̇
∂y

= 0, (1)

(
∂ u̇
∂ t

+ u̇
∂ u̇
∂x

+ v̇
∂ u̇
∂y

)
=− 1

ρ
∂ p
∂x

+ν
(

∂ 2u̇
∂x2 +

∂ 2u̇
∂y2

)
, (2)

(
∂ v̇
∂ t

+ u̇
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∂ v̇
∂y

)
=− 1

ρ
∂ p
∂y

+ν
(

∂ 2v̇
∂x2 +
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)
+gβ (θ −θc), (3)

cp

κ

(
∂θ
∂ t

+ u̇
∂θ
∂x

+ v̇
∂θ
∂y

)
=

1
κ

(
∂ 2θ
∂y2 +

∂ 2θ
∂x2

)
. (4)

Boundary conditions are for ṫ,

θ̇ = 0, u̇ = 0, v̇ = 0, for 0 ≤ ẋ, ẏ ≤ L,

for ṫ > 0,

θ̇ = 0, u̇ = 0, v̇ = 0, for 0 ≤ ẋ, ẏ ≤ L,
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θ̇ = θ̇c, u̇ = U̇0, v̇ = 0, at ẋ = 0,

θ̇ = θ̇c,
∂ u̇
∂ ẋ

= 0,
∂ v̇
∂ ẏ

= 0, at ẋ = L, (5)

∂ θ̇
∂ ẏ

= 0, at ẏ = 0 & ẏ =
L
4
,

θ̇ = θ̇h, for obstacles (A, B, C, D).

3. Dimensionless procedure
Scaling transformations are used to non-dimensionalize the dimensional governing equations (Eqs. (1)-(4)), producing

the dimensionless variables shown below:

X =
x
L
, Y =

y
L
, U =

u
U0

, V =
v

U0
,

t =
tµ

ρL2 , P =
p

ρU2
0
, θ =

θ −θc

θh −θc
.

Under this parametrization, eqs. (1)-(4) become:

∂U
∂X

+
∂V
∂Y

= 0, (6)

∂U
∂ t

+U
∂U
∂X

+V
∂U
∂Y

=− ∂P
∂X

+
1

Re

(
∂ 2U
∂X2 +

∂ 2U
∂Y 2

)
, (7)

∂V
∂ t

+U
∂V
∂X

+V
∂V
∂Y

=−∂P
∂Y

+
1

Re

(
∂ 2V
∂X2 +

∂ 2V
∂Y 2

)
+

Gr
Re2 θ , (8)

∂θ
∂ t

+U
∂θ
∂X

+V
∂θ
∂Y

=
1

Re ·Pr

(
∂ 2θ
∂X2 +

∂ 2θ
∂Y 2

)
, (9)

where

Gr =
gβL3∆θ

ν2 , Re =
U0L

ν
, Pr =

µcp

k
, ν =

µ
ρ
, ∆θ = θh −θc,

for t = 0,

Contemporary Mathematics 224 | Sohail Nadeem, et al.



θ = 0, U = 0, V = 0, for 0 ≤ X , Y ≤ 1,

for t > 0,

θ = 0, U = 1, V = 0, at X = 0,

θ = 0,
∂U
∂X

= 0,
∂V
∂X

= 0, at X = 1,

∂θ
∂Y

= 0, at Y = 0 & Y = 1,

θ = 1, for obstacles (A, B, C, D).

(10)

4. Method of solution
Numerical approaches are employed to solve the momentum and energy equations since analytical methods fail

in various instances. The convergence behavior for the linear grid (G7) is depicted in Figure 2. Solving the system
of equations (6)-(9) by consuming the Galerkin finite element technique subject to supposed boundary conditions, as
previously mentioned in COMSOL Multiphysics (6.1). Applying the penalty finite element approach the pressure in the
modelled system is penalized by the penalty parameter provided as

Figure 2. Convergence plot at selected grid size G7

Ṗ =−γ
(

∂U̇
∂x

+
∂V̇
∂T

)
. (11)

Using Eq. (11) in Eq. (7)-(8)
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U̇
∂U̇
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The weak formulations of Eqs. (12), (13) and (9) on the element of δm with the weight functions w1, w2 and w3 are

∫
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U

∂U
∂x
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)
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Reα rt

∫
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∂ 2t
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∂T 2

)
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Where δm in the subscript represents triangular diccretized elements.

5. Finite element method
Γ0 use FEM, approximating under discussion variables U(X , Y ), V (X , Y ) and T̃ (X , Y ) as Um, V n and T̃ n for

triangular elements An.

U ≈Um(X , Y ) =
n

∑
i=1

Um
i Φm

i (X , Y ), (17)

V ≈V m(X , Y ) =
n

∑
i=1

V m
i Φm

i (X , Y ), (18)

T̃ ≈ T̃ m(X , Y ) =
n

∑
i=1

T̃ m
i Φm

i (X , Y ). (19)

A six-nodal triangular element is represented by the function Φm
i , which is used to represent the test function.

Substituting equation (14)-(16) into equation (17)-(19) to obtain the j-th equation used in the finite element method.
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R(1)
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n
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i
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∂Φm
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∂x

∂Φm
i

∂x
+

∂Φm
i

∂Y
∂Φm

i
∂Y

)
dA.

5.1 Newton method

After solving the above integrals by numerical integrations, we have a large system of equations to solve using
Newton-Raphson form as:

J(be −be+1)−R(b(e)) = 0. (23)

The linear system is solved for index b, and the residual vector R(b(e)) and Jacobian J(b(e)) computed via divided
differences from ∂R/∂ (T, U, V ).
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5.2 Computation of nusselt number

The ratio of convective to conductive heat transfer is known as the Nusselt number (Nu), and it is a crucial parameter
in thermal engineering that measures heat transfer efficiency.

Nu =−∂T
∂n

, (24)

where n is the normal direction to the plane.
The local Nusselt number at vertical wall is defined as

Nu =−
6

∑
i=1

T̃ m
i

∂Φm
i

∂x
. (25)

The local Nusselt number at the horizontal wall is defined as

Nu =−
6

∑
i=1

T̃ m
i

∂Φm
i

∂y
. (26)

The average Nusselt number on vertical and horizontal walls has the following relationships:

Nu =
1
L

∫ L

0
NudY, Nu =

1
L

∫ L

0
NudX . (27)

6. Discussion
The mixed convection heat transfer inside a rectangular chamber is analyzed here for the governing equation [45].

The four lateral obstacles affect the flow and heat transfer characteristics. To streamline our own to achieve overshooting
physical parameters, often the two circular branches represent an extremely degenerate flow. The cavity corresponding
to 1 ≤ Re ≤ 50 and 103 ≤ Gr ≤ 105 is graphicaly described. First we fix the Re = 50 and varies Grashof number from
103 to 105. The geometrical properties were evaluated at fixed Prandtl number (Pr = 0.71), that corresponds to air. We
ran additional carefully distributed flow (Pr = 0.70), (Pr = 0.75) (Pr = 1.0). Accordingly, we initially verified that the
total rotational heat emitted from gravity.

Prandtl numbers improve the thickness of the thermal boundary layer and somewhat raise the Nusselt number.
COMSOL Multiphysics was used to run the simulations using an Intel i7 CPU and 16 GB of RAM. It took around 2-
5 minutes for each simulation to converge for the biggest mesh taken into consideration (20,000 elements). Although
the approach is still effective up to the ranges that were studied (Re ≤ 50, Gr ≤ 105), we see that the computational cost
increases as the Grashof/Reynolds numbers grow because finer meshes and stricter convergence tolerances are required.

Throughout the investigation, laminar flow accelerates are continuously varying in the Reynolds number (Re =

50). Because surpassing it would result in a shift to turbulent flow, which brings complicated, chaotic fluid motion,
this upper limit is tightly enforced. A radically different and more intricate set of equations, such as those involving
Reynolds-Averaged Navier-Stokes (RANS) models, are needed to simulate turbulence. Turbulent modeling is unable the
predominant target and alignment of the control map becomes less based on the assumptions of laminar flow.
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Figure 3. Streamlines and isothermal contours at Re = 50 for various grashof number

We see for Figures 3-4 the streamlines are vary near to each other and disturbing only at obstacle A, B, C and D
in cavity and any other change not be seen in the cavity. In Figure for the grashof 1e5 the streamlines are much around
the obstacle and at the left top and right bottom corner. Figure 3d, e heat transmission rate between obstacle A and B for
Gr = 103 and Gr = 104 is slow. For Figure 3f the temperature gradiant is higher and maximum heat transfer observed.
Also from graphically observed that heat transmission rate are approximately same for Gr = 103 and Gr = 104 in cavity
but for 105 the heat transfer rate in much more than 103 and 104. A higher value of Grashof number causes fluid motion
to accelerate as well as rate of convective heat transfer to upsurge. The dominant buoyancy at low Reynolds numbers
Re = 1−10 causes weak flow with limited recirculating vortices close to the hot obstructions and corners. Inertial effects
become important as the Reynolds number rises above 50. Deeper penetration by the entering fluid stream breaks up
thermal plumes and creates bigger circulation cells that line up with the inlet-outlet flow. The location of barriers is
crucial; those close to the outlet thin the thermal boundary layer, while those close to the entrance create greater wake
vortices. For Re = 10 and different value of Grashof the streamline for velocity and isotherms for temperature observed
in Figure 4. As a result, streamlines become parallel and the flow is fully settled at exit. And no circulation cells formed.
In Figure 4b circulation of cells occurs near the obstacle and at right bottom corner, streamlines spread more between
obstacle B and C. In Figure 4c the recirculating cells are high generated around the obstacle and other part of the cavity.
For isotherms in Figure 4 d, e, f temperature gradient is more high for every next case. For Re = 1 and variation in Grashof
number the corresponding streamline and isotherms are plotted in Figure 5. In Figure 5a the streamline are circulating
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before the obstacle A and right bottom of the cavity. The streamlines are vary narrow at obstacle A and D. Figure 5b the
circulation of cells at first part and last part of cavity is vary high as compare to middle part. In Figure 5c the circulation
of cells made at the whole cavity. For isotherms the temperature gradient is vary high between the obstacle A, B, C and D.
The maximum high temperature fluid out of the outlet, and Figure 5e, f also the temperature vary high between obstacles
B and D but the fluid twat out has less temperature than Figure 5d. Small Reynolds numbers and large Grashof numbers
produce far more complicated flow fields that involve separation and vortices near the channel walls, which have not
yet been fully investigated. The behavior of velocity streamline and temperature distribution is observed graphically in
Figures 6-8. In which for different values of Re we examine the behavior of Gr (see Figures 4 and 5).

Figure 4. Streamlines and isothermal contours at Re = 10 for various grashof number
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Figure 5. Streamlines and isothermal contours at Re = 1 for various grashof number
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Figure 6. Velocity and temperature profile against different value of Gr and Re = 50

Figure 7. Velocity and temperature profile against different value of Gr and Re = 10
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Figure 8. Velocity and temperature profile against different value of Gr and Re = 1

6.1 Nusselt number

Table 1. Variation of nusselt number with reynolds and grashof numbers

Reynolds number Grashof number Nusselt number

Re = 50
1,000 8.9047
10,000 9.5339
100,000 14.5171

Re = 10
1,000 5.2101
10,000 6.2883
100,000 9.7900

Re = 1
1,000 1.3302
10,000 2.3928
100,000 4.7407

Convective heat transfer between a solid surface and a surrounding fluid is measured by the Nusselt number (Nu).
The calculated Nu values for various Grashof numbers (Gr) in fixed Reynolds numbers (Re) are shown in Table 1. Nu
rises as Gr increases at Re = 50, indicating improved heat transfer under more powerful buoyancy effects. Although at
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lower absolute levels due to lessened inertial pressures, Nu again exhibits a gradual rise when Re is lowered to 10 (and
even to 1) while changing Gr. This demonstrates that, for all investigated Re values, Nu increases monotonically with Gr
and that higher Re regimes maintain higher heat transfer rates.

7. Conclusion
In order to assess the mixed convection flow inside a rectangular enclosure with vertical heat-generating barriers, we

performed a computer analysis. The flow rates in the rectangular chamber were given Reynolds values between 1 and 50.
Heat transmission and streamlines in the presence of heated obstructions were the main topics of the study. The Reynolds
number had a major impact on the flow patterns and temperature distribution in the mixed convection model. We found
that when the Reynolds number rose, the streamlines’ buoyancy-induced vortices grew, and the thermal layers close to
the heated surfaces grew thinner and more concentrated. Higher Reynolds numbers were associated with an increase
in the average Nusselt number at heated surfaces, indicating improved heat transfer. Furthermore, we discovered that
substantial recirculation zones developed close to the barriers, whereas velocity distributions widened at higher Reynolds
numbers. Reynolds and Grashof numbers interacted significantly to affect velocity fields and heat transfer characteristics
at the inlet, outflow, and within the hollow. Fourier’s law of conduction controlled the heat transfer, while the Navier-
Stokes equations controlled the fluid dynamics. As Reynolds numbers rose, the flow generally showed significantly
two-dimensional behavior, with clear vortical structures forming inside the hollow. The design and optimization of heat
transfer systems in engineering applications may benefit from these findings, which provide insightful information on how
heated impediments regulate thermal performance. To represent the transitory impacts of mixed convection in enclosures
with numerous heated barriers, this work may be expanded to more complicated geometries, turbulent regimes, and time-
dependent simulations in future research. Furthermore, adding magnetic field effects, porous media, or nanofluids would
offer a more comprehensive understanding of the advanced thermal management applications in process engineering, solar
energy systems, and electronic cooling.
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