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Abstract: This paper investigates the stochastic Fokas-Lenells Equation (FLE) with time-dependent coefficients and
multiplicative white noise to model the propagation of chirped optical solitons in nonlinear dispersive media. The
equation captures complex dynamics in realistic fiber systems, accounting for variable dispersion, Kerr nonlinearity,
Raman effects, and stochastic perturbations arising from thermal and amplifier-induced fluctuations. Two analytical
techniques, namely the extended simplest equation method and the enhanced direct algebraic method, are employed to
derive exact soliton solutions. These methods offer a systematic and flexible analytic framework that efficiently handles
stochastic and variable-coefficient systems, enabling closed-form solutions where conventional techniques often struggle.
These include bright, dark, kink-shaped, singular, and elliptic solitons under specific parametric conditions. The richness
of the obtained solution classes demonstrates the strength and versatility of the adopted approach in capturing diverse
nonlinear wave profiles in noisy, inhomogeneous optical media. A key result is that the multiplicative noise affects only
the soliton phase, preserving the amplitude and shape of the waveform. This demonstrates the inherent stability of soliton
structures in noisy environments. The results highlight the analytical power of the proposed methods and provide deeper
insights into robust pulse dynamics in realistic stochastic fiber systems, paving the way for future studies in dispersion-
managed fibers, optical lattices, and structured photonic media.

Keywords: solitons, chirping, white noise

MSC: 35Q55, 35Q51, 60H15, 35C08, 78M35

Copyright ©2026 Anjan Biswas, et al.

DOI: https://doi.org/10.37256/cm.7120267855

This is an open-access article distributed under a CC BY license
(Creative Commons Attribution 4.0 International License)
https://creativecommons.org/licenses/by/4.0/

Co ary Math tics 172 | Anjan Biswas, et al.

/


https://ojs.wiserpub.com/index.php/CM/
https://ojs.wiserpub.com/index.php/CM/
https://www.wiserpub.com/
https://orcid.org/0000-0002-8131-6044
https://doi.org/10.37256/cm.7120267855
https://creativecommons.org/licenses/by/4.0/

1. Introduction

Nonlinear dispersive wave models and their solitary-wave solutions play a central role in describing complex
phenomena across modern optics, plasma physics, and fluid dynamics. Classical developments in partial differential
equations and soliton theory have established a foundation for understanding how localized structures emerge, propagate,
and interact in nonlinear media. This framework naturally motivates the study of integrable and near-integrable systems
capable of capturing higher-order and stochastic effects that arise in realistic optical environments.

Within this framework, the Fokas-Lenells Equation (FLE) has emerged as a versatile model for ultrashort pulse
propagation in regimes of small or managed chromatic dispersion. Compared with the standard Nonlinear Schrédinger
Equation (NLSE), the FLE accommodates derivative-type nonlinearities and higher-order dispersive corrections that
become prominent for few-cycle pulses and in tailored fiber platforms. Earlier studies have examined conserved quantities,
equilibrium (quiescent) solitons under nonlinear chromatic dispersion, generalized temporal evolution, and robustness
under perturbations [1, 2]. Subsequent works have developed semi-inverse variational techniques to obtain optical solitons
with power-law self-phase modulation and arbitrary intensities, and have analyzed solution persistence under parameter
changes [3, 4]. In parallel, a cubic-quartic extension of the FLE has been proposed to capture additional higher-order
effects that arise in advanced fiber designs and metamaterial-inspired waveguides [5-9].

A growing body of literature highlights the need to couple deterministic high-order modeling with stochastic
influences that are intrinsic to practical fiber links. Temperature fluctuations, amplifier and spontaneous emission noise,
polarization-mode dispersion, and fabrication tolerances induce randomness that modulates amplitude, phase, and group
delay along the link. Incorporating such effects at the equation level, especially in multiplicative form, is essential for
predicting waveform stability, timing jitter, and spectral breathing. Prior analyses of stochastic soliton models and random
perturbations in fiber systems provide a baseline for the present study and motivate the inclusion of stochastic terms in
FLE-type dynamics [10—-12].

Analytically, a variety of constructive methods have been used across related nonlinear and quantum wave
equations. For instance, wave-function ansatz techniques have produced exact bound states for Schrodinger equations with
anharmonic or central potentials, yielding closed-form eigenvalues and eigenfunctions in various dimensions [13, 14]. In
logarithmic nonlinear Schrédinger models, Gaussian solitary-wave (Gausson) profiles have been characterized in (14 n)
dimensions, extending solitary-wave analysis to logarithmic media [15]. Beyond conservative settings, recent studies
have reported rich dynamical behaviors in fractional and geometric wave systems, including chaotic dynamics and hybrid
lump-wave interactions in time-fractional coupled NLSEs, as well as generalized optical-soliton families and higher-
order structures for the Kuralay-IIA equation via multiple analytic frameworks [16—18]. These developments collectively
underscore two themes that also drive the present work: broadened solution taxonomies and modeling fidelity under
nonstandard (e.g., fractional, stochastic, or higher-order) effects.

The present paper advances the FLE program along both axes of realism and analytical breadth. First, we formulate
a stochastic FLE with explicitly time-dependent coefficients to reflect slow parameter drift and engineered management
strategies in dispersion and nonlinearity. The stochastic perturbation is introduced in multiplicative form to emulate noise
pathways that couple to the field amplitude and phase in a physically relevant manner. Second, we target chirped optical
solitons, whose frequency modulation across the pulse envelope is central to pulse compression, nonlinear reshaping, and
ultrafast optical signal processing. By focusing on chirped profiles, we access families of localized states that are both
practically relevant and diagnostically sensitive to higher-order and random effects.

Methodologically, we employ two complementary construction schemes: the extended simplest-equation technique
and an enhanced direct algebraic approach. The former enables systematic reduction of the governing equation to tractable
auxiliary forms that preserve key amplitude-phase couplings, while the latter facilitates closed-form ansétze that organize
solution families by their polynomial, trigonometric, hyperbolic, and elliptic characteristics. In contrast to earlier FLE-
based treatments that emphasized either integrability-inspired reductions or purely variational closures [1, 3, 5], our dual-
track strategy yields a broader catalog of chirped solitons, maps parameter regimes that support them under stochastic
forcing, and clarifies how time-dependent coefficients shape amplitude, width, and chirp invariants. Where relevant, we
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explicitly compare the solvability conditions and parameter constraints arising from both techniques with those reported
for related NLSE-type, logarithmic, and fractional models [13, 15, 16].

Table 1. Dimensionless coefficients, physical meaning, and typical magnitudes under 7 = 20 — 200fs

Coeff.  Physical quantity Example functional form  Typical magnitude

Hi(t)  Normalized GVD B,/ 0 two-step/periodic (-2, 2]

Hy(t)  Normalized nonlinearity y/y% 1+ ¢&ysin(2mt/T,,) 0.7—1.3 (up to 1.5)

Hs(t) FL/nonlinear dispersion constant/weakly periodic 1073 — 107!

Hy(r)  Raman: Tx/Tp constant/410% drift 0.01-0.15

Hs(r)  Shock: 7,/Tp constant/+10% drift 0.002 —0.05

Hs (1) FL/nonlinear dispersion constant/weakly periodic 1073 — 107!

o(t) Noise amplitude 00/ G(t) — 1 rms 0.02 —0.06 (gain seg.)

1.1 Governing model

We consider the dimensionless form of the stochastic perturbed FLE incorporating time-dependent coefficients and
multiplicative white noise, expressed as:

dw (1)
dt

ig + H (1) + [Ha (0)g + i3 (1)) [ + 0 (1)g
(M

=i [Ha(0)q+ H5() (Ia*a) +Ho(e) (IaP’) a]-

Here, g(x, t) denotes a complex-valued wave envelope and i = v/—1. The function H(¢) represents the time-
dependent coefficient of nonlinear chromatic dispersion, while Hy(7) and H3(t) correspond to the Kerr nonlinearity and
nonlinear dispersion, respectively. The terms involving Ha(f) and Hs(¢) account for Intrapulse Raman Scattering (IRS)
and Self-Steepening (SS), respectively. Additionally, He(t) governs a nonlinear dispersion contribution. The stochastic

influence is introduced via (), which modulates the noise strength, and W (¢) denotes a standard Wiener process, making
dvgt(t) the white noise term.

Equation (1) captures a rich interplay between deterministic and stochastic mechanisms governing nonlinear wave
evolution in optical fibers. The inclusion of six time-dependent coefficients H;() enables the modeling of variable system

parameters, such as dispersion management, nonlinear gain, and higher-order effects. Simultaneously, the stochastic

term cr(t)q’m(;—l(’> introduces multiplicative noise, reflecting realistic perturbations from amplifier-induced fluctuations or

thermal instabilities.

The time-dependent coefficients H;(¢) in (1) model engineered longitudinal variations that are ubiquitous in realistic
fibers and optical cavities. Specifically, H; (¢) represents dispersion management or gradual tapering; H;(¢) tracks changes
of the Kerr nonlinearity y(z) < na/Aef(z); H3(t) and Hg(t) collect Fokas-Lenells/derivative corrections that become
important for ultrashort pulses; H4(¢) (Raman/IMD) and Hs(r) (self-steepening) encode the standard material time scales
Tg ~ 2-3fs and 7, = 1/ ~ 0.5-1fs in the near-infrared regime. The multiplicative white-noise term o (¢)gdW/ds
models amplifier spontaneous emission and gain-driven jitter that scale with the optical field amplitude; under the It6
interpretation, this produces mainly a stochastic phase factor while preserving the soliton amplitude, which is consistent
with our analytical results. After nondimensionalization t = T /Ty, x = z/Lp and ¢ = \/WwLp A, the coefficients become
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Hy ~ B(z)/B2,0, H» ~ ¥(2)/ Yo, Hs ~ 7/Tp and Hy ~ Tg/Ty, while 6(t) = 09/G(t) — 1. In our examples, we use
piecewise-constant or periodic H;(r) to emulate dispersion-managed links and mode-locked cavities, demonstrating that
all parameter choices correspond to experimentally standard settings. Three representative practical configurations are:
(1) Erbium-Doped Fiber Amplifier (EDFA)-amplified Single-Mode Fiber (SMF)/Dispersion-Compensating Fiber (DCF)
links with two-step H; of depth 1-2, H ~ 140.1, H3 ¢ ~ 1072, and for Ty ~ 100 fs, Hy ~ 0.02-0.05 and Hs ~ 0.005—
0.01; (ii) mode-locked fiber cavities with periodic H; and H, over one round trip (depth 0.5-1.5), the same Hy 5, and
Hs ¢ ~ 1072; and (iii) tapered or Photonic Crystal Fiber (PCF) sections with slowly varying Ha(t) = 1 +0.3, tanh(¢/T),
weakly chirped Hy, and H3 ¢ ~ 1072-10"".

The multiplicative amplitude factor is written as o (¢) = 69 /G(¢) — 1, where G(¢) proxies the local gain (or excess
spontaneous-emission factor) along the segment after nondimensionalization. In our plots we use oy such that the rms
noise per normalized unit lies in 0.02—-0.06, consistent with moderate Amplified Spontaneous Emission (ASE) and pump
jitter; passive spans set G(¢) ~ 1 and thus o (¢) ~ 0.

A detailed summary of the dimensionless coefficients H;(r), their physical interpretations, example functional forms,
and experimentally relevant magnitudes is provided in Table 1.

Previous studies have examined Eq. (1) under various simplifications. For instance, when ¢ (¢) = 0, chirped soliton
solutions were derived as presented in [19]. Similarly, in [20], chirp-free solitons were studied assuming constant nonzero
values for all H;(t) (j=1, ..., 6) and o(r) # 0. Another scenario with ¢(r) = 0 and constant coefficients H;(r) led to
classical chirped soliton forms.

Despite these valuable contributions, a comprehensive treatment of the FLE incorporating both time-varying
physical parameters and multiplicative noise remains underexplored. Such a framework is crucial for accurately
describing ultrashort pulse dynamics in next-generation optical fibers subject to environmental fluctuations and engineered
nonuniformities.

The present work addresses this gap by investigating the evolution of chirped optical solitons governed by Eq. (1)
with o(¢) # 0. The chirp, which refers to a frequency variation across the pulse envelope, is an essential characteristic in
pulse shaping and signal processing, and its interaction with stochastic effects adds further complexity and significance
to the model.

The paper is organized as follows: Section 1 introduces the problem setup and the governing model (Sec. 1.1).
Section 2 presents the mathematical preliminaries and the reduction to an Ordinary Differential Equation (ODE). Section
3 outlines the extended simplest equation approach. Section 4 details the enhanced direct algebraic method. Section 5
presents the results and discussion. Section 6 provides the conclusions.

2. Mathematical preliminaries

This section establishes the mathematical groundwork necessary for deriving soliton solutions to the stochastic Fokas-
Lenells equation. A suitable transformation is applied to reduce the governing partial differential equation to a nonlinear
ordinary differential equation. The resulting equation is then analyzed using a chirped wave ansatz, allowing separation
into real and imaginary components and facilitating the construction of exact solutions in subsequent sections.

To analyze and solve Eq. (1), we postulate the following form for the wave function:

) =U@esp (i[o@)+ [ (x)+ 0t ™5 - 020 ) ).

2
I3 :x—i-./),(t)dt—&—ﬁo.
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With the It6 convention, the quadratic variation of the multiplicative noise produces the effective drift term —o2(t)
inside the phase integral. As a consequence, the stochastic perturbation acts primarily through a random phase modulation,
while the soliton amplitude remains governed by the deterministic balance of the dispersive and nonlinear contributions.

Where U(€) and ¢(&) are real-valued functions of &, and x(¢), o(r), A(r), and W(¢) are time-dependent real
functions. Here, & is an integration constant. Substituting this ansatz into Eq. (1) and separating real and imaginary
components yields the following two coupled equations:

[A(1) = Ha(1)]U'(E) +2H, (1)U () 9" (E) + Hi(1)9" (§)U(E)

+[H3(1) — 3Hs(r) — 2He(1)] U (E)UP(E) = O, N
and
[—A(0) = k(o) + 02(0) + Ha(1)] U(E)9'(8) + [02(1) — k(1) U (&)
FHOU(E) ~ Hi(0U(E)9™(E) + Ha()U () @
+ [H5(0) ~ (0] ' (E)UP (&) = 0.
Assuming the phase derivative has the form
9'(8) =A() +B(1)U*(§), (5)
where A(f) and B(r) are to be determined. The chirp profile associated with the optical pulse is then defined by:
ows0) =5 0@+ [ (k) +0l0 M5 020 )
=—0'(8) (©)
A+ BOUAE)].
Substituting Eq. (5) into Egs. (3) and (4) gives:
A1) — Har) + 2A(0)H: ()] U'(€)
@)

+[Hs(1) — 3Hs(1) — 2Hs (1) +4B(1) Hi (1) U' (§)U* (&) = 0,

and
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[A() (= (1) = k(1) + 0%(1) + Ha(1)) + 02 (1) — k(1) — Hi (1)A*(1)] U (&)
+ [B(r)(=A(r) = K(t) + 02 (1) + Ha(t)) = 2H (1) A(1) B(t) + Ha (1) + (Hs (1) — H3 (1)) A* (1) U° () ®
+Hi(1)U" (&) + [B(1)(Hs (1) — Ha (1)) — Hi (1)B* (1) U°(§) = 0.

Applying the principle of linear independence to Eq. (7) results in:

_ Hy(t) —A(r)
A(t)_ 42H1([) )
©)
B(t) _ 3H5(t) —H3(l) +2H6(l) .

4H1(t)

Furthermore, Egs. (9) explicitly tie the chirp coefficients A(¢) and B(¢) to the Raman, self-steepening, and dispersion
parameters, thereby linking experimentally measurable fiber knobs to the resulting chirp profile. This establishes a direct
map from the engineered longitudinal variation of the coefficients H;(t) to the observable pulse dynamics.

assuming H, (¢) # 0. Substituting back into Eq. (8) simplifies it to a nonlinear ordinary differential equation:

U"(&) +ar(U(§) +ax(NU>(§) +as(1)U°(§) =0, (10)
where the time-dependent coefficients are given by:

A(t)(=A(t) — k(t) + 0%(t) + Ha(t)) + 02(t) — k(t) — Hy (t)A2 (1)

= Hi0) /
 BIO(=A0)— k(1) + 0%(0) + Ha(e)) ~ 2H(AWBLD) + Halt) + (Hs(o) — Hile)A%()

a(t) = () ; (11)
B0 ~ () ~ 0B

as (l‘) = .

H](l‘)

Balancing the highest-order nonlinear term U (&) with the second derivative U”(£) in Eq. (10) suggests N = 1.
Introducing a transformation:

U(&)=+P(), (12)

where P(&) is a new real-valued function, leads to the transformed equation:
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P'(£)? =2P(§)P"(&) —4ai(1)P*(&) — 4ax(1)P*(§) —das (1) P*(§) = 0. (13)

By balancing P(&)P"(E) and P*(€) in Eq. (13), we determine N = 1. The soliton solutions of Eq. (1) will be
systematically constructed in the following sections using two distinct analytical techniques.

3. Extended simplest equation approach: a succinct overview

The extended simplest equation method can be viewed as a way of “factoring” a nonlinear Partial Differential
Equation (PDE) into a simpler hidden structure. Instead of guessing the wave profile directly, the method introduces
an auxiliary ODE whose solutions encode canonical wave shapes (hyperbolic, trigonometric, polynomial). The original
nonlinear problem is then rewritten in terms of this simpler building block.

Compared with classical tanh-expansion or the basic simplest equation method, this extended framework admits
richer functional bases and handles time-dependent coefficients more flexibly. In particular, incorporating the Riccati-
type auxiliary system enables stochastic modulations and variable-coefficient effects to be absorbed naturally into the
ansatz. Practically, this means the method can produce both standard solitons and more exotic chirped, breathing, and
noise-modulated envelopes, whereas traditional balance methods often stall or require restrictive assumptions.

This section presents a brief yet comprehensive overview of the extended simplest equation method, a powerful
analytical tool for constructing exact solutions to nonlinear differential equations. By employing a suitable auxiliary
equation and a structured ansatz, the method systematically reduces complex nonlinear forms to solvable algebraic
systems.

To outline this method [21-23], we begin with the associated projective Riccati system:

1'(€)=—r(&)g&), &©E)=-g &) +v(nf(&)—8() (14)
where 8(¢) and v(¢) are time-dependent functions. Let us define:

_ L _ V()
f(i)—w( 7 g(6) = (15)

where (&) satisfies the second-order ordinary differential equation:

V(&) +8(Nw(E) = V(). (16)

Depending on the sign of §(¢), Eq. (16) admits three families of solutions:
(a) Hyperbolic case (6(r) < 0):

w(E) = A, (t) cosh (g,/—s(t)) A (1) sinh (5\/_5@)) + ;8, (17)

with corresponding identity:
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V(&) 27 b 27 2v(t)
<w(é)) A‘”(w(é)) o0+ yEy
V(1)

where A (t) = §(t)A3(t) — 8(t)A5(t) — 50
(b) Trigonometric case (5(¢) > 0):

W(&) =A;(t)cos ('é \/%) +A () sin (5 \/%> + ;g;’

with identity:

where As (1) = 8(1)AT (1) + 8(1)A3 (1) — S35
(c) Polynomial case (6(r) = 0):

v(©) = "e L a0z +ax0),

and
(W(C‘))z _ ) (1>2+ 2v(1)
w(é) w(E))  w(E)
with Az (t) = A3(t) — 2v(1)Aa(1).
Now, consider a general nonlinear PDE:
.)=0,

F(I/t, Upy Uy Uxxy Upry Upx,y -

(18)

(19)

(20)

@

(22)

(23)

where F denotes a polynomial expression involving u(x, #) and its partial derivatives, including nonlinear components

and higher-order terms.
The extended simplest equation method proceeds through the following steps:

Step 1: Introduce the traveling wave substitution,

E=kx—ct,

u(x, 1) = u(§),

24

where k and c are arbitrary constants. This transformation converts Eq. (23) into an Ordinary Differential Equation (ODE)

of the form:
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Plu,u',u",...)=0, (25)

with derivatives taken with respect to &.
Step 2: Assume a formal series solution of the form:

B N ' llf/(é) 1. N-—1 ‘ ‘///(‘5) jz;
u(é)jlzzoana)(w(&)) +j22=0ﬁn<r>(w(5)) e 26)

where @;, (t) and B, (t) are time-dependent coefficients to be determined, with o () + B2, (¢) # 0. The function y(&)
is a solution to Eq. (16).

Step 3: Substitute Eq. (26) into Eq. (25), use Eq. (16) along with the identities from Eqs. (18)—(22), and collect like
terms in powers of y(&)~! and its combinations. Setting each coefficient to zero produces an algebraic system in ¢}, (¢),
Bj,(t), k, ¢, 8(t), and v(r). Solving this system (often with the aid of symbolic computation software like Maple) leads to
exact solutions of the original PDE.

3.1 Application to the model of study

In this subsection, the extended simplest equation method is directly applied to the transformed form of the stochastic
Fokas-Lenells equation. A formal ansatz based on the auxiliary function is introduced to represent the soliton profile. By
substituting this ansatz into the reduced nonlinear ordinary differential equation and utilizing algebraic identities, exact
analytical solutions are systematically derived under specific parametric constraints.

Following Step 2 above, the formal solution to Eq. (13) is assumed as:

P(E) = co(t) + () (%f) Bl (W(lé)) , @

where 04 (t), @ (1), and Bo(t) are functions to be identified. The condition a:?(¢) + B3 (¢) # O ensures non-triviality. Here,
(&) satisfies the auxiliary ODE in Eq. (16).

The next steps involve substituting this ansatz into Eq. (13) and simplifying using identities from Section 4 to obtain
the explicit forms of soliton solutions.

Type—(a): Case when 6(r) <0

In this case, we substitute Eq. (27) into Eq. (13) and utilize Eq. (16) in conjunction with the identity in Eq. (18).
By grouping terms according to powers of w(&)~/ and combinations of y'(&)/w(&) for j =0, 1, 2, 3, 4, and setting
the resulting coefficients to zero, we obtain an algebraic system. Solving this system with symbolic computation (e.g.,
Maple), we derive the following distinct solution sets:

Result 1: For A;(r) > 0, a3(¢t) <0, and 6(r) < 0:

Bo(t) =/ —f2a3 (A1), ou(r) =\/—12as(t), ow(t) =/ Ra3(1)(0), (28)
2ay(1)— &/ 15a3(1)8(t).

ag(t) = —

Using Egs. (17), (27), and (28), the corresponding hyperbolic soliton solution of Eq. (1) is:
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1/2
a(x,1) = { 5 43()3() [1 - @1 ()] + —}2a3<r>m<r>®2<§>}

X exp (i [qb(&)f/ <;<(r)+ —cz(t)) dt]), (29)

where

_ Ay (t)sinh(E+/=8(t)) +Ax(t) cosh(E/—8(1)) G0)
Ay (r) cosh(Er/=8(t)) + Az () sinh(E /=8 (1)) + 5<*7
0(8) = 1 :

A1(1)cosh(E y/=8(1)) + Az (1) sinh(& y/=3(0)) + 53

A particular case arises when A1 (1) =0, A2(¢) # 0, and v(r) = 0, yielding a singular solution:

q(x, 1) :{ Bas(1)8( [1 coth(&/—8(r)) +csch(E1/—=58(1)) } }1/2

(3D
X exp (i [(p(é) +/ <1<(t) +G(t)dW(t) - 62(1‘)> dtD .
Result 2:
Bo(t) = —3a3(t)v(t), on(r) =0, 6(t) = 6(¢), ay (t) =0, (32)
=1 158(0)A (1) +1448(1)az(1)v? (1)
W sOmovi
By utilizing equations (17), (27), and (32), we derive the hyperbolic solutions of Eq. (1) as presented below:
St ~3as(1)o (1) 7
t)cosh (éx/—S ) + Ay sinh (.‘,‘\/—5 ) SL
(33)

X exXpi {tp (§)+/{K(t)+c(t) dw (1) —Gz(t)}dt] ,

where a3 (r) v(r) < 0.
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In particular, by setting A; () = 0 and A, (¢) # 0 in equation (33), we derive the associated singular soliton solution:

q(x,1)= { Ny }
Ax(r)sinh (£ /50)) + 30

(34)
X expi [d) &) +/ {K‘(t) +0o(r) dVl;t(t) —o? (t)}dt] ,
with the condition a3(f) v(¢) < 0.
Specifically, if we choose A;(7) # 0 and A, (r) = 0 in equation (33), this yields the bright soliton solution:
“3a3(1)v (1) ’
Q(x7 t) =
{Al(t)cosh (5\/750)) +% } 35)
X expi [qb ) +/ {K(t) +o ) dvzt(” P (t)}dt] ,
provided that a3(¢) v(¢) <O.
Result 3:
, B 5 5001 5
P =0, @)= —gm S rame °Y T Ba@pa @ a0’
(36)
B —15as(t) B v2(t)
ou(t) = i\/16[5a1 Ordan) MO =180+ 50
This leads to:
; 1/2
A1)+ ;28 sinh(& /=8 (1)) + Aa(t) cosh(E /=8 (1))
q(xv I) = _S[Sal(t)i-4a2(r)] 1+ 2 V)
A3(1) + o cosh(& /=8(1)) +Ax(1) sinh (& /=8(1)) + 5 a7

X exp (i [(1)(5) +/ <1<(t) +0o(r) dVZt(t) - Gz(t)> dtD .

In the special case where A, (f) = 0, the solution simplifies to a combo dark-bright soliton:
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R 12
Q(xv t) = {_S[Sal(t)s |} + tanh(é _S(t)) ‘| }

Haax (1) 1+sech(&1/=8(1))
(38)
X exp <i [q)(é) +/ (K‘(l) +6(t)dVZ(t) - (72(1‘)) dtD
Result 4:
ou(t) =0, oo(t)=ao(r), Polt)=Polr),
(1) = —2ay (1) oo (1) Bo (1) +9as (1) oo (2) v (¢) 4 6a3(t) Bo ()6 (1)
@ 300(1)pot) ’ (39)
_ S(0)Bs (1) +200(1)Bo(1) v (1)
M=o '
Corresponding solution:
1/2
Bo(?)
X, t) = 1)+
a0 =q @l Ay (1) cosh(&/=8(1)) +Aa(r) sinh (& \/=5(1)) + 51} w0

X exp <i [d)(é) +/ (K(Z‘) +G(t)‘”§f’) — Gz(t)) dt]) .

Special cases: -Bright soliton: if A2(#) =0, v(t) = 0 = use sech function.

qlx, 1) = {(xo(t) + 5?22 sech(& m}}lﬂ exp (i [d)(&) +/ (K’(l‘) + "(’)dVZ,(” —o? (t)) dt] ) . (41)

-Singular soliton: if A|(t) = 0, use csch form:

=

atoor) = { ) + 20 csch<¢m>}l/2 e (i0@)+ [ (xt0+o0 ™2 ~*w)ar] ). @2

Remark: Cases for §(¢) > 0 and 6 (r) = 0 are omitted here, as they correspond to periodic and rational forms, which
are not of primary interest in soliton dynamics due to their non-localized nature.

In this section, we successfully reduced the stochastic Fokas-Lenells equation with time-dependent coefficients
and multiplicative noise to a nonlinear ordinary differential equation governing the soliton profile. Through a carefully
designed chirped wave ansatz, we derived explicit expressions for the phase and amplitude components, and introduced
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a transformed form amenable to analytical techniques. This foundational reduction sets the stage for the systematic
construction of exact soliton solutions using the extended simplest equation method and the enhanced direct algebraic
method in the following sections.

4. Enhanced direct algebraic method

This method reverses the logic of many classical techniques: instead of linearizing the problem first, we begin by
selecting a physically meaningful waveform (sech, tanh, Jacobi elliptic, etc.) and then enforce that the governing equation
agree with that geometry. This “geometry first” strategy is particularly effective when the physical system is known to
support solitons of specific symmetry or steepness.

Unlike the extended simplest equation method, which constructs the solution space from auxiliary ODE identities, the
enhanced direct algebraic approach directly anchors the solution to recognizable pulse shapes from nonlinear optics and
fluid models. As a result, it provides immediate interpretability and lets one tune dispersion, nonlinearity, and Raman/self-
steepening contributions in a transparent way. This improves its practical utility over generic symbolic-algebra soliton
generators, especially when one wants to connect parameters to experimentally controllable knobs.

In this section, we explore the enhanced direct algebraic method, a powerful analytical tool for deriving exact
solutions to nonlinear differential equations. This method formulates solutions as rational functions of auxiliary variables
that satisfy designated first-order differential relations. By inserting the assumed solution form into the reduced ordinary
differential equation and matching coefficients of similar terms, an algebraic system emerges, whose resolution leads to
multiple families of soliton-type solutions.

Following the principles of the enhanced direct algebraic approach, we assume the solution takes the form [24-26]:

P(ﬁ)=Bo(t)+;{Bj(f)Fj(§)+Cj(f) F(&)}, (43)

where By(t), Bj(t), Cj(t) (j =1, ..., N) are arbitrary functions, provided B (¢) +C%(t) # 0, while F () is the solution of
the equation:

4
F2(&)=Y Li(1) F'(¢), (44)
=0

where L;(t)(j =0, 1,2, 3,4) are functions, provided L4(f) # 0. Now, Eq. (13) has the formal solution:

P(&)=Bo(1) +Bi(1)F(§)+ (45)

where By (t), B (t), and Cy (t) are time-dependent functions to be determined, under the condition that B2(¢) + C3(t) # 0.
By inserting expression (45) together with Eq. (44) into Eq. (13), and requiring that the coefficients of all terms of the
form

Fi(&)(F' (5))’ ,withi=—4, ..., 4and j =0, I, vanish identically, we derive a corresponding algebraic system:
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F* (&) 4a3(1)B1(1) +3B1 (1)La(1) = 0,

F3(&):4as(1)CY (1) +3CL(t)Lo(1) =0,

F2(§): 16a3(1)Bo(t)B] () +4aa (1) B} (1) +4Bo(1)B1 (1)La (1) +2B1(1) L3 (1) = 0,

F (§): 16a3(1)Bo(1)C3 (1) +4az(1)C5 (¢) +4Bo(1)C1 (1) Lo(t) +2CF (1)L (1) = 0,

FO(&): 16a3(1)B(1)C1 (¢) +48a3(1)Bo(1)B1 (1)CF (¢) + 12a2(t) B (1)C1 (1) + 12a2(1)B1 (1)C (1)

+8ay(1)Bo(1)C (t) +2Bo(1)C1 (1)l (1) + 6B1 (1)C1 (1)1 (1) = O,

F1(8): 16a3(1)B;(¢)B1 (1) +48a3(t)Bo(1) B} (1)C1 (¢) + 12a2(1) B (¢)B1 (1) + 12a2 (1) B (1)C: (1)
+8ay (1)Bo(t)B1 (1) + 2Bo (1) B1 (1) 2 (1) + 6B1 (1)C: (1) 3(t) = 0, (46)

F72(8): 24a3(1)B3(1)CF (1) + 16a3(1)B1 (1)CF () + 12a2 (1) Bo(1)C (1) +4ar (1)CT (1)
+3Bo(t)C1 (1)1 (1) +6Bo(1)Ci (1)lo(t) +Ci (1) 2 (1) = 0,

F 3 (&)1 24a3(1)B5 (1) B (1) + 16a3(1) B} (1)C1 (1) + 12a2(1)Bo (1)CF (¢) +4ar (1) Bi (1)
+3Bo(t)B1(1)13() + 6B1 (1)C1 (1)La (1) + B} (1) (1) = 0,

F4(£): 4a3(1)B (1) +48a3 (1) By (1)B1 (1)C1 (¢) + 24a3 (1) B (1) CF (1) +4az (1) By (1)

+4ay (t)B3(r) 4 8a1 (t)B1 (£)Cy (t) + Bo(t)By (2)11 (1) + Bo(t)C1 () 15(2) + B3 (1)l (1)

+C3(t)14(r) 4+ 24Bo(t)B1 (t)C1 (1) + 6B, (1)C1 (t) 1 (1) = 0.

We now examine specific scenarios for the algebraic system given in Eq. (46), which can be solved symbolically
using MAPLE to determine the unknown functions appearing in Eq. (45).

Case 1: Consider the situation where Lo(¢) = Li(¢) = L3(¢r) = 0. Substituting these conditions into the algebraic
system (46) and employing MAPLE for computation yields the following results:

3L4 (t)

Bolt) = Bole), i) = 0, By(1) = [t

Ly(t) = %, A7)
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with constraint conditions:

Sas(t)B3(t)

= SOBO o Sm(Bu)

: (48)

When Ly(¢) > 0, La(¢) < 0 and a3(¢) > 0. Then Eq. (1) has bell-shaped soliton solutions:

q(x,t) = |Bo(t) | 1 +sechy/ %B(Z)(t) & 7 exp (i [d) (€) +/ {K(t) +0o(t) dVi/h(t) —o? (t)}dt]) , (49

provided By(t) > 0. The solution (49) is existed under the constraint conditions (48).

L3t
Case 2: Suppose we impose the conditions Ly (¢) = 4Z ( (t)) ,and L (r) = L3(r) = 0 within the algebraic system defined
4

by Eq. (46). By applying symbolic computation through MAPLE, we arrive at the following outcomes:

2
Bo() = Bo(t), Cil0)= 0, By(t)=Bi(1), Lo(r) = —-200Ll), (50)
Bi(t)
with constraint conditions:
_ Ly(1)Bj(r)
"0 g
a(t) = 2L4I§?(f; ), (51)
. 3L4(t)
0= "5y

When L4(t) > 0, Lo(¢) < 0. Then Eq. (1) has the kink-shaped soliton solution:

q(x, 1) = lBo (1) (1 +tanhy | B(z]g%)f:;(t) x>] jexp (i [(p (é)—l—/{x(r)—i—d(r) dvzt(t) _o? (ﬂ}dr]) , (52)

provided By (t) > 0. Also, Eq. (1) has singular soliton solution:

AR
q(x, 1) = lBo(z‘) <1+coth Bog%)é;;(t) x>] exp (i [¢ (€)+/{K(t)+c(t) du;t(t) —o? (t)}dt]) , (53)

where By (¢) > 0. The solutions (52) and (53) are existed under constraint conditions (51).
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Case 3: Let us consider the case where L; (1) = L3(¢) = 0. Substituting these constraints into the algebraic system
(46) and utilizing MAPLE for symbolic resolution, we obtain the following results:

(I): When Ly (z) = %,O<m< 1, we get

Bo(1)=Bo(t), Bi(t)= Bi(t), Ci(t)=0,

(54)
L) = — 2B3(t)La(t) [ —1—16m* + 16m> 4 v/32m8 — 64m® + 4dm* — 12m? + 1 3
g B(1) Am2 (1 —m?) ’
with constraint conditions:
B3(t)La(t) (—1 — 16m™* + 16m? +/32m8 — 64m® + 44m* — 12m? + 1)
a“a= 8B2(1)m2(m? — 1) ’
2By (I)L4 (l)
ax(t) = B0 (55)
1
314 (l)
as (t) = — .
4B(1)

It is now evident that Eq. (1) admits soliton solutions of the Jacobi elliptic type, characterized by double periodicity:

q(x,t)z[Bo(t)—i—Bﬂt) —M(Lz(’)mzcn< L) ¢ m)]

t)(2m? —1) 2m>—1
(56)
d
X exp (i {q) &)+ /{K(t)+6(t) W;t(t) —o? (t)}dtD ,
provided L, () > 0, L4 (¢) < 0. The solution (56) is existed under constraint conditions (55).
)2
(ID): When Ly (t) = %, 0<m<1, we get
Bj(1)La(t) (m* —2)
By(1)=Bo(t), Bi(1)=B1(t), Ci(t)=0, Ly(t) = (57

Bi(1)

with constraint conditions:
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a (t) Bé(t)L4(t)(m2+4)
e B
a(t) = ZBOI%)(f; ), (58)
. 3L4(1)
“O= "By

At this stage, Eq. (1) supports soliton solutions expressed in terms of Jacobi elliptic functions, exhibiting doubly
periodic behavior:

1

m2
qx,1) = | Bo (1) +B1 (1) | ~ ;153 %s dn ( 2 g, m)]
(59)
X exp (i {(}5 (&) —1—/{1(0) +o(t) du;:t) —o? (t)}dt}) ,
provided (2 —m?)L, (t) > 0, L4 (t) < 0. The solutions (59) is existed under constraint conditions (58).
In particular if m — 1 in (56), (59) we get bell-shaped soliton solution:
%
glx, 1) = {Ba (1) +B1 (1)~ 248 seeh (V/L2(0) 5)]
(60)
X exp (i {45 (&) +/{K‘(t) +o(t) dW;t(t) —o’ (t)}dt} ) ,
provided L, (¢) > 0, L4 (f) <O0.
272
(III): When Lo (¢) = (mﬁfi% , 0<m< 1, we get
B3(t)La(t)(m* +1
Bol0)=0. B10)= Bi(1). C1(0)=0. n() =~ 2Tt (61)
1

with constraint conditions:
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)

)= BG(1)La (1) (m* = 5)
N 4

n B0

_ 2By(t)L4(2) (62)

. 3Ly (l)
BT

At this point, Eq. (1) possesses a soliton solution of the Jacobi elliptic type, characterized by its doubly periodic

structure:
¥
_ m2Ly (1) LZ(I)
q(x, t) = BO([)+Bl (t) \/(mz-&-l2)L4(t) Sn <\/m2—|—1 é, m
] (63)
. ' dw(t) ]
xexp | i ¢(§)+/ k(t)+ol(t) P () pdr| ),
provided B (t) > 0, Ly (¢t) <0, Ly (t) > 0. The solution (63) is existed under constraint conditions (62).
In particular when m — 1 in (63), we have the kink-shaped soliton solution:
1
Ly(t) 2(1) ’
q(x,t) = |Bo(t)+ B (t) T 2La0) tanh T 3
(64)

X exp (i {q) (§)+/{K(t)+c(t) d“;t(t) —Gz(t)}dt]> :

provided By () > 0, Ly (t) <0, Ly (t) > 0.
Case 4: Consider the condition where Ly(¢) = L;(¢) = 0. Substituting these values into the algebraic system in

Eq. (46) and solving it using MAPLE, we obtain the following results:

W

Bo(t) =0, Ci()=0, By(t)=— ;;2((’3) Lo(6) = —4ay (1), La(t) = —WL(I)(Z(I) (65)
2

where a; (1), ax(t) and a; () are arbitrary constants.
At this stage, Eq. (1) admits straddled-type soliton solutions of the form:

(ID): when Ly (t) >0, L4 (t) > 0 and a;(¢) <0, a3(¢) < 0.
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=

241 ?( 3(1) sech? (\/Té)

qlx, t) =€ —4 Wtanh( \/Tg)+L3 (66)
<oo(ifo@)+ [{xt+o0 ™ -cwhal ).

also,

2‘”; 3(1) ¢sch? (\/Té)
aj(t)as(r) L —
4 R ) coth (\/ ai(t 5) +Ls(t ©7)

X exp (i {q& (é)+/{x(r)+c(t) du;t(t) —02(t)}dt]> :

(I1) when L, > 0, a;(t) <0, and L3(¢) # 0

q(x, t)=¢

alx,1) =2 |- > ;
20 4&1@;23)@«) [1 - tanh (v/=a1 (¢ | )
<on(ifo @+ [{xw+a0 ™ o0 far ).
also,
it () |
alor)=e 130) - 0080 e\
3 3a( ‘C"th( _‘”(t)g)} (69)

The solutions (66)-(69) are existed under constraint conditions (65).
Case 5: Assume L;(¢) = L3(¢t) = 0. By applying these conditions to the algebraic system in Eq. (46) and solving it
with the aid of MAPLE, we obtain the following outcomes:
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B()(t):B()(t)7 B (t):o7 G (l‘): 3L()(t)

B das (t) ’
(70)
4B3 (1) [—5BZ (t) a3 (1) +3ay (1
LZ(t):SQS(t)ag(t)—4al(t)7 L4(t):_ 0()[ 0(2) 3() 1()}5
3Ci (1)
with constraint conditions:
8By (t)as (¢
ar )= -2 El), (71)
It follows that Eq. (1) admits a solution of the Weierstrass elliptic type, exhibiting doubly periodic behavior:
%
CLt) VL (1) (6pi(8). 50, 85100
ax.n) = |Bolo) + == (GEEER)
(72)
X exp (i {(P (€)+/{K(t)+d(t) dW;t(t) -0’ (t)}dt}) ,
where Bg (t) > 0, L4 (¢t) > 0. Also, Eq. (1) has
3
_ 3G ( @lE)ee
q(x, 1) =|Bo(t) + o) (6p[(é),g2,g3]+L2(z‘))
(73)

<oo(ifo@)+ [{x+o0 ™ -cw}al ).

where By (t) > 0, Lo (¢) > 0. The solutions (72) and (73) are existed under constraint conditions (71).

This section provided a concise yet effective overview of the extended simplest equation method and demonstrated
its suitability for analyzing nonlinear differential equations arising from stochastic models. By introducing an auxiliary
Riccati-type system and exploiting its associated identities, the method facilitates a structured pathway for constructing
exact analytical solutions. The formulation established here will be directly applied in the next section to extract a rich
variety of soliton solutions to the transformed Fokas-Lenells equation.

Both proposed techniques extend the solution arsenal beyond classical inverse scattering, Hirota bilinearization, and
standard tanh/coth expansions. The extended simplest equation method excels when variable coefficients, noise terms, or
modulation effects appear, because the auxiliary Riccati structure absorbs these perturbations without sacrificing analytical
solvability. The enhanced direct algebraic method, by contrast, is superior when one desires explicit control over waveform
geometry or wishes to map analytical parameters to physical system controls.

In practice, the two methods are complementary: the extended simplest equation method offers structural generality
and handles parametric complexity, whereas the enhanced direct algebraic method yields clearer physical intuition and
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faster construction of soliton families. Together, they significantly broaden the catalog of exact solutions for the stochastic
Fokas-Lenells model compared with standard symbolic or perturbative soliton techniques.

5. Results and discussion

In this section, we analyze and interpret the analytical solutions derived for the stochastic Fokas-Lenells equation with
time-dependent coefficients. The two distinct methods applied, the extended simplest equation approach and the enhanced
direct algebraic method, yielded a diverse spectrum of exact chirped soliton solutions, each shaped by the interplay of
deterministic dispersion, nonlinearity, and multiplicative stochastic perturbations. The extended simplest equation method
enabled the derivation of various classes of hyperbolic solitons, including bright, dark, singular, and combo bright-dark
structures. These solutions emerged from the case 6(7) < 0 and are expressible in terms of functions such as sech, csch,
tanh, and coth. Their localized nature makes them ideal for modeling sharply confined optical pulses in dispersion-
managed systems. In contrast, solutions corresponding to §(¢) = 0 or 6(¢) > 0 (i.e., polynomial and trigonometric forms)
tend to be non-localized and hence less favorable for applications requiring high pulse fidelity. The enhanced direct
algebraic method uncovered a broader family of exact solutions, including periodic waveforms expressed via Jacobi
elliptic functions (cn, dn, sn) and Weierstrass elliptic functions. These waveforms represent soliton trains or bound states
and are especially relevant in periodic or modulated media, such as optical lattices or waveguide arrays. Additionally,
hybrid structures such as kink-shaped, straddled, and combo bright-dark solitons were obtained, further expanding the
model’s ability to capture complex nonlinear wave behavior.

A key aspect of the derived solutions is the incorporation of a dynamic chirp, embedded in the solution ansatz.
This chirp arises from the time-dependent phase modulation term, influenced both by deterministic coefficients and
the stochastic white noise term G(t)du;t('). The resulting solutions exhibit not only spatial amplitude variation but also
temporal frequency modulation, which is essential for pulse shaping, spectral control, and nonlinear signal compression.
The inclusion of stochasticity leads to phase randomness and modulation instability effects, thereby modeling realistic

fiber environments where amplifier noise and thermal fluctuations are prevalent. The analytical framework employed
also reveals complementary strengths between the two methods. The extended simplest equation method is algebraically
systematic and well-suited for soliton profiles dominated by hyperbolic behavior. In contrast, the enhanced direct algebraic
method is more flexible in constructing rational, periodic, and elliptic-type solitons. Despite their differing approaches,
both methods provided overlapping solution families (e.g., sech-shaped pulses), which strengthens the validity and
consistency of the results.

From a physical standpoint, the diversity of soliton structures presented here offers practical relevance across multiple
domains. In fiber-optic communications, chirped stochastic solitons with time-adaptive profiles can support robust data
transmission, dynamic dispersion compensation, and pulse stabilization under noisy environments. In metamaterials
and nonlinear photonic systems, the solutions provide a framework for designing programmable pulse dynamics and
localized energy transport. Moreover, the mathematical flexibility of the governing model suggests potential extensions
to multi-component systems, vector solitons, or coupled waveguides under random forcing. This study demonstrates
the feasibility of constructing and classifying chirped stochastic solitons in generalized Fokas-Lenells systems with time-
varying coefficients. The solutions span a wide range of localized and periodic forms, governed by both deterministic and
stochastic mechanisms. These results enrich the theory of nonlinear wave propagation in stochastic media and open new
avenues for designing controllable optical structures in next-generation photonic platforms.

Figure 1 presents the deterministic bright soliton associated with Eq. (60), using L, = 1.0, Ly = —2.0, § =0, v(t) =
1, Bo(t) = 1, By(t) = 0.6, k(t) = 1, and o(t) = 0. The intensity |¢(x, t)|*> forms a localized, stable bright pulse that
maintains its spatial profile throughout propagation, confirming the solitonic nature of the solution. The real and imaginary
components oscillate beneath the pulse envelope consistent with the carrier contribution induced by x(¢) and the traveling
coordinate &£. In the absence of stochastic forcing, the soliton remains fully coherent in both amplitude and phase.
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t 0 .10 7

(a) Intensity |g(x, O’ (b) Real part of g(x, 7) (¢) Imaginary part of g(x, 1)

Figure 1. Profiles of the solution ¢(x, r) from Eq. (60): intensity, real part, and imaginary part

Figure 2 examines the influence of multiplicative noise on the bright soliton of Eq. (60) for 6 = 0.2, 0.4, 0.6, while
keeping all other parameters unchanged. For o = 0.2, the real-part evolution remains nearly indistinguishable from the
deterministic case, with only mild fluctuations visible in the temporal signal at x = 0. As the noise level increases to
o = 0.4 and o = 0.6, the soliton envelope remains intact, demonstrating robust amplitude preservation, whereas phase
coherence deteriorates progressively, resulting in denser contour patterns and enhanced jitter in the time series. Thus, the
bright soliton amplitude is unaffected by the multiplicative noise, while the phase exhibits increasing stochastic variation.
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Figure 2. Real part of g(x, #) from Eq. (60) for different noise levels ¢

Figure 3 displays the deterministic dark (kink-type) soliton solution obtained from Eq. (64) for L,(¢) = —1.0, L4 (¢) =
2.0,Bo(t)=1,B1(t) = 1,v(t) = 1, k(t) = 1,& = 0, and 6 (¢) = 0. The intensity |g(x, t)|* features a localized intensity dip
on a constant background, characteristic of a dark soliton. The real part of g(x, ¢) exhibits a smooth kink-type transition
between opposite asymptotic states, while the imaginary part adjusts to ensure recovery of the background modulus as
|x| — eo. With no noise present, the dark soliton retains a sharp phase jump and complete coherence.

gx, O

Ry(x, 1)

- 1.1

-5

1 0 -10
(a) Intensity |g(x, O’ (b) Real part of g(x, 7) (¢) Imaginary part of g(x, 1)

Figure 3. Profiles of the solution ¢(x, t) from Eq. (64): intensity, real part, and imaginary part

Figure 4 illustrates the effect of multiplicative noise on the dark soliton of Eq. (64) for 0 = 0.2, 0.4, 0.6, with all other
parameters kept fixed at their deterministic values. For the weak-noise case o = 0.2, the kink structure remains sharply
defined and the temporal trace exhibits only minor fluctuations. Increasing the noise level to 6 = 0.4 and 0.6 leads to
more pronounced phase diffusion, as seen in both the 3D profiles and the time-series plots, while the soliton notch depth
and constant-background amplitude remain unaffected. This demonstrates that the dark soliton, like the bright counterpart,
retains its deterministic intensity structure under multiplicative stochastic forcing, with noise affecting primarily the phase
dynamics.
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Figure 4. Real part of g(x, 7) from Eq. (64) for different noise levels &

5.1 Quantitative impact of multiplicative noise (Ito)

Write ¢ = Ue'® with U > 0. For the stochastic term in (1) we take the It6 form dq|yoise = 0(t) gdW;. Applying Itd’s
lemma to Ing and separating real/imaginary parts gives

d(InU)+id® = —1o*(t)dt + o (t) dW,.

Hence, d(InU) =0 and d® = o(t)dW, — 6 (t) dt. Therefore the amplitude U receives no stochastic or drift contri-
bution from the noise, whereas the phase undergoes a Brownian motion with deterministic drift. In integrated form,
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Ule, 1) =U(x,10),  ®(x, 1) —D(x, 1) = / o (s)dW, — / '62(s) ds.

1o 1o
Consequently, for any fixed x the phase variance is

Var[®(x, 1) — D (x, 10)] = /’ o2(s)ds,

fo

while U is invariant. This calculation explains the appearance of the —o?2(¢) drift inside the phase integral of (2) and makes

precise our main claim: multiplicative Itd noise affects the phase only, leaving the deterministic envelope governed by
Egs. (10)-(11).

5.2 Sensitivity and stability under noise

Because U is unaffected by the It6 noise, robustness reduces to phase statistics. We summarize useful, dimensionless
indicators:
* Phase diffusion coefficient: Dg(t) = o2 (t).
* Phase variance over [0, T]: Var®(T) = [ 2(t)d. :
* Coherence time (rough estimate): for a target phase rms /Var® = 1, one has 7. = ( OTC O'Z(l)dt> ; foro(t) =
0o, T, ~ 0 ~.
These metrics quantify the phase wandering without envelope degradation. In addition, the deterministic envelope
U (&) from (10) admits the following mean-square stability statement.

Let U,(&) be a smooth solution of (10) for a fixed instant (or slow-variation average) of the coefficients a; » 3(t).
Consider perturbations u = U, 4 v and define the quadratic functional

‘g[v]:%/R(v’z—alvz—aszvz—ogvaz)d&,

where o; are the instantaneous values of a(#). If the linearized operator L = —dgg — @t — 0 U? — a3U} is nonnegative on
the subspace orthogonal to translational/phase modes (standard soliton spectral condition), then &[v(¢)] is nonincreasing
and ||v(¢)]|;2 remains bounded uniformly in time. Since the noise does not enter U, this implies mean-square stability of
the amplitude under multiplicative Itd noise.

In our examples we therefore report (i) the deterministic envelope parameters (amplitude/width) from (10)-(11),
which are unchanged by noise, and (ii) the phase sensitivity via Var ®(T') for the chosen o (¢). For periodic/gain-segmented
maps we also quote the per-period diffusion AD, s = ( OT’” o (t) dt) 12 {0 characterize long-range coherence.

6. Conclusions

In this study, we have successfully derived chirped optical soliton solutions to the perturbed Fokas-Lenells Equation
(FLE) with time-dependent coefficients under the influence of multiplicative white noise. The analytical framework
employed two robust solution techniques: the extended simplest equation method and the enhanced direct algebraic
approach. These methodologies enabled the construction of a comprehensive set of exact soliton solutions, categorized
into various types including bright, dark, kink-shaped, singular, and elliptic solitons, each subject to specific parametric
constraints.
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A key observation from this investigation is that the multiplicative white noise manifests exclusively in the phase of
the soliton profiles, leaving the amplitude and inverse width unaffected. This phenomenon is particularly noteworthy as it
highlights the robustness of soliton amplitude dynamics in noisy optical environments—a result not previously reported
for models with chirp-supporting time-dependent coefficients.

The findings of this paper contribute new insights into the theory of optical solitons in stochastic media and lay
the groundwork for several future directions. Upcoming research will extend this framework to include models with
differential group delay and dispersion-flattened fibers. Moreover, the FLE will be further explored in the contexts of
optical metamaterials, magneto-optic waveguides, and Bragg gratings, with the goal of uncovering and analyzing gap
soliton solutions in such structured media. These extended investigations are currently in progress, and their outcomes
will be presented in future publications.
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Appendix A. Definition of parameters

o () — Time-dependent noise amplitude, typically 6 () = c9+/G(t) — 1.
op — Baseline noise-strength parameter.

G(t) — Local optical gain factor.

B2(z) — Group-velocity dispersion coefficient of the fiber.
B2, 0 — Reference dispersion coefficient.

¥(z) — Kerr nonlinearity coefficient.

Y — Reference Kerr coefficient.

n, — Nonlinear refractive index.

Act(z) — Effective mode area of the fiber.

Tp — Reference pulse duration (e.g., 100 fs).

Lp = T3 /|Ba.o| — Dispersion length.

Tr — Raman response time (typically 2-3 fs in silica).

T, = 1/ @y — Self-steepening time scale (0.5-1 fs at near-IR).
ay — Carrier angular frequency.

¢ — Speed of light in vacuum.

no — Linear refractive index of fiber core (= 1.45 for silica).
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