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Abstract: In this work, we discuss the solutions to the boundary value problem for fractional q-difference equations
with nonlinear integral conditions:

cDq, γ ν (ι)−λν (ι) = J
(
ι , ν (ι) , cDq, γ ν (ι)

)
, ι ∈ [0, ℓ] , 1 < γ ≤ 2, (1)

with

ν (0)−ν ′ (0) = c1

∫ ℓ

0
G1 (τ, ν (τ))dqτ, (2)

and

ν (ℓ)−ν ′ (ℓ) = c2

∫ ℓ

0
G2 (τ, ν (τ))dqτ. (3)

By applying the fixed point theorems of Banach and Krasnoselskii, we establish the existence of solutions for the above
problem (1)-(3). Some illustrative examples are given. This paper generalises some earlier results in the literature.

Keywords: caputo fractional q-difference equation, fixed point theorems, integral boundary conditions

MSC: 34A08, 37C25 , 30E25

1. Introduction
Over the past years, fractional differential calculus has attracted the interest of several academics, due to its

importance for mathematical modeling. Its applications can be observed in domains such as physics, engineering, biology,
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and finance, where standard calculus often fails, see [1–8] and the references therein. Regarding the qualitative properties
of solutions to fractional differential equations, further details can be found in [1, 2, 9–11] and the references cited therein.

The evolution of quantum calculus (or q-calculus) is well-established, with comprehensive accounts of its fundamental
concepts, results, and methods provided in [12–14]. In the early twentieth century, the quantum difference calculus
itself became one of the most active areas within fractional differential equations, attracting considerable attention from
researchers, see [15–17] and the references cited therein. In particular, important works have addressed initial and
boundary value problems for both ordinary and fractional q-difference equations [18–24].

Recently, Allouch et al. [1] investigated the existence of solutions to the Boundary Value Problem (BVP) for
fractional q-difference equations:

cDq, γ ν (ι) = J (ι , ν (ι)) , ι ∈ [0, ℓ] , 1 < γ ≤ 2,

with nonlinear integral conditions

ν (0)−ν ′ (0) =
∫ ℓ

0
G1 (τ, ν (τ))dτ,

and

ν (ℓ)−ν ′ (ℓ) =
∫ ℓ

0
G2 (τ, ν (τ))dτ,

where 0 < q < 1, the functions G1, G2: [0, ℓ]×E → E , and J : [0, ℓ]×E → E are continuous with E is a Banach space.
cDq, γ represents Caputo fractional q-difference derivative of order γ. The author’s results are based on Mönch’s fixed
point theorem and the technique of measures of noncompactness. This work is considered one of the few on difference
equations with integral boundary conditions on Banach space.

In this research, we investigate the existence of solutions to the BVP for fractional q-difference equations with
nonlinear integral conditions:

cDq, γ ν (ι)−λν (ι) = J
(
ι , ν (ι) , cDq, γ ν (ι)

)
, ι ∈ [0, ℓ] , 1 < α ≤ 2, (4)

ν (0)−ν ′ (0) = c1

∫ ℓ

0
G1 (τ, ν (τ))dqτ, (5)

and

ν (ℓ)−ν ′ (ℓ) = c2

∫ ℓ

0
G2 (τ, ν (τ))dqτ, (6)

where q ∈ (0, 1) and λ , c1, c2 ∈R, the functions G1, G2: [0, ℓ]×E → E , and J : [0, ℓ]×E ×E → E are continuous wich
E is a reflexive Bnach space. cDq, γ represents Caputo fractional q-difference derivative of order γ.
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The structure of the article is as follows: Section 2 contains the important theorems and lemmas needed for the
present study. Our results, based on fixed point theory, are presented in section 3. We also provide examples to support
our results. This study improves upon the results, that have already been reported in [1].

2. Concepts and materials
Firstly, we start by some useful spaces. The Banach space C ([0, ℓ] , E ) of all continuous functions ν : [0, ℓ] → E ,

with the norm

∥ν∥∞ = sup{∥ν (ι)∥ , for all ι ∈ [0, ℓ]} ,

where E is a separable Banach spaces. Let L1 ([0, ℓ] , E ), the space of Lebesgue integrable functions φ: [0, ℓ]→ E which
are Bochner integrable, normed by

∥φ∥L1 =
∫
[0, ℓ]

∥φ (ι)∥dt.

We also use the Banach space Cq, γ ([0, ℓ] , E ) defined by

Cq, γ ([0, ℓ] , E ) =
{

ν : ν ∈C ([0, ℓ] , E ) , cDq, γ ν ∈C ([0, ℓ] , E )
}
,

equipped with the norm

∥ν∥q = max
{
∥ν∥∞ ,

∥∥cDq, γ ν
∥∥

∞
}
.

Let’s go over some concepts of fractional q-calculus, see [12–14]. For α, β , γ ∈ R, let q ∈ (0, 1)

[α]q =
qα −1
q−1

= 1+q+q2...+qα−1.

The q-analogue of the power function (α −β )(m) with m ∈ N is

(α −β )(0) = 1, (α −β )(m) =
m−1

∏
i=0

(
α −βqi) , α, β ∈ R, m ∈ N.

More generally,

(α −β )(γ) = αγ
∞

∏
i=0

α −βqi

α −βqγ+i .
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Note that, if β = 0 then

α(γ) = αγ .

The q-gamma function is defined by:

Γq (ι) =
(1−q)(ι−1)

(1−q)ι−1 , ι ∈ R\{0, −1, −2, ...} , 0 < q < 1,

and satisfies

Γq (ι +1) = [ι ]q Γq (ι) .

The q-derivative of a function g: [0, ℓ]→ E is defined by

Dqg(ι) =
dqg(ι)

dqι
=

g(qι)−g(ι)
(q−1) ι

, ι ̸= 0, Dqg(0) = lim
ι→0

Dqg(ι),

and q-derivatives of higher order by

Dq, mg(ι) =


g(ι), if m = 0,

DqDq, m−1g(ι), if m ∈ N∗.

The q-integral of a function g defined in the interval [0, β ] is given by

∫ ι

0
g(τ)dqτ = ι (1−q)

∞

∑
m=0

g(ιqn)qn, 0 ≤ |q|< 1, t ∈ [0, β ].

If α ∈ [0, β ] and g defined in the interval [0, β ], its integral from α to β is defined by

∫ β

α
g(τ)dqτ =

∫ β

0
g(τ)dqτ −

∫ α

0
g(τ)dqτ.

Similarly, as done for derivatives, it can be defined an operator Iq, n, namely,

(Iq, 0g)(ι) = g(ι) and (Iq, mg)(ι) = Iq(Iq, m−1g)(ι) , m ∈ N.

The essential theorem of calculus relates to these operators Iq and Dq, i.e
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Dq (Iqg)(ι) = g(ι) ,

and if g is continuous at ι = 0, then

Iq (Dqg)(ι) = g(ι)−g(0) .

We recommend the reader to see [13] for more details as well as the fundamental properties of these operators.
Definition 1 Let γ ≥ 0 and g be a function defined on [0, ℓ]. The fractional q-integral of the Riemann-Liouville type

is

Iq, γg(ι) =


g(ι) , if γ = 0

1
Γq(γ)

∫ ι
0 (ι −qτ)(γ−1) g(τ)dqτ , if γ > 0

, ι ∈ [0, ℓ] .

Definition 2 The Riemann-Liouville fractional q-derivative of order γ ≥ 0 is defined by

Dq, γg(ι) =


g(ι) , if γ = 0

(
Dq, [γ]Iq, [γ]−γg

)
(ι), if γ > 0

, ι ∈ [0, ℓ] .

The smallest value greater than or equal to γ is [γ] .
Definition 3 The Caputo fractional q-derivative of order γ ≥ 0 is defined by

cDq, γg(ι) =


g(ι) , if γ = 0

(
Iq, [γ]−γDq, [γ]g

)
(τ), if γ > 0

, ι ∈ [0, ℓ] .

Lemma 1 ([17]) Let γ ≥ 0. Then the following equality holds:

(
I c

q, γDq, γg
)
(ι) = g(ι)−

[γ]−1

∑
j=0

ι j

Γq ( j+1)
(
Dq, γg

)
(0).

Lemma 2 Let γ ∈ (1, 2] and c1, c2 ∈ R and q ∈ (0, 1). For M ∈C ([0, ℓ] , E ). Then the following system:

cDq, γ ν (ι) = M (ι), ι ∈ [0, ℓ] , (7)

with nonlinear integral conditions
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ν (0)−ν ′ (0) = c1

∫ ℓ

0
h1 (τ)dqτ, (8)

and

ν (ℓ)−ν ′ (ℓ) = c2

∫ ℓ

0
h2 (τ)dqτ, (9)

has a solution that shown below

ν(ι) = K (ι)+
∫ ℓ

0
G(ι , τ)M (τ)dqτ. (10)

The function K (ι) and G(ι , τ) are given by:

K (ι) =
c1 (ℓ− ι −1)

ℓ

∫ ℓ

0
h1 (τ)dqτ +

c2 (ι +1)
ℓ

∫ ℓ

0
h2 (τ)dqτ, (11)

and

G(ι , τ) =
1

Γq (γ)


(ι −qτ)(γ−1)+ ι+1

ℓ ϕ (τ) , 0 < τ < ι < ℓ,

ι+1
ℓ ϕ (τ) , 0 < ι < τ < ℓ,

(12)

where

ϕ (τ) = (γ −1)(ℓ−qτ)(γ−2)− (ℓ−qτ)(γ−1) , (13)

which yields the following bound:

(ℓ− ℓq)(γ−2)− ℓ(γ−1) ≤ ϕ (τ)≤ ℓ(γ−2). (14)

Proof. On the equation cDq, γ ν (ι) = M (ι) we can apply the operator Iq, γ we find

ν(ι) =
1

Γq (γ)

∫ ι

0
(ι −qτ)(γ−1)M (τ)dqτ + ιρ1 +ρ2,

where ρ1, ρ2 ∈ R are arbitrary constant. Through the boundary conditions that are given in (8)-(9), we get
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ρ2 −ρ1 = c1

∫ ℓ

0
h1 (τ)dqτ,

and

1
Γq (γ)

∫ ℓ

0
(ℓ−qτ)(γ−1)M (τ)dqτ + ℓρ1 +ρ2 =

γ −1
Γq (γ)

∫ ℓ

0
(ℓ−qτ)(γ−2)M (τ)dqτ +ρ1 + c2

∫ ℓ

0
h2 (τ)dqτ.

With a simple calculation ρ1 and ρ2 are given by:

ρ1 =
1

ℓΓq (γ)

∫ ℓ

0

(
(γ −1)(ℓ−qτ)(γ−2)− (ℓ−qτ)(γ−1)

)
M (τ)dqτ

+
1
ℓ

∫ ℓ

0
(c2h2 (τ)− c1h1 (τ))dqτ,

and

ρ2 =
1

ℓΓq (γ)

∫ ℓ

0

(
(γ −1)(ℓ−qτ)(γ−2)− (ℓ−qτ)(γ−1)

)
M (τ)dqτ

+
1
ℓ

∫ ℓ

0
(c2h2 (τ)+ c1 (ℓ−1)h1 (τ))dqτ.

Hence,

ν(t) =
1

Γq (γ)

∫ ι

0
(ι −qτ)(γ−1)M (τ)dqτ

+
ι +1
ℓΓq (γ)

∫ ℓ

0

(
(γ −1)(ℓ−qτ)(γ−2)− (ℓ−qτ)(γ−1)

)
M (τ)dqτ

+
ι +1
ℓ

c2

∫ ℓ

0
h2 (τ)dqτ +

(ℓ− ι −1)
ℓ

c1

∫ ℓ

0
h1 (τ)dqτ

=
1

Γq (γ)

(∫ ι

0

(
(ι −qτ)(γ−1)+

ι +1
ℓ

(
(γ −1)(ℓ−qτ)(γ−2)− (ℓ−qτ)(γ−1)

))
M (τ)dqτ

)

+
ι +1
ℓΓq (γ)

∫ ℓ

ι

(
(γ −1)(ℓ−qτ)(γ−2)− (ℓ−qτ)(γ−1)

)
M (τ)dqτ
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+
ι +1
ℓ

c2

∫ ℓ

0
h2 (τ)dqτ +

(ℓ− ι −1)
ℓ

c1

∫ ℓ

0
h1 (τ)dqτ.

So

ν(ι) = K (ι)+
∫ T

0
G(ι , τ)M (τ)dqτ,

where K (ι) , G(ι , τ) are given by (11) and (12) respectively.
Lemma 3 The Green function G(ι , τ) has the following proporties:

B ≤ G(ι , τ)≤ A , (15)

where

A =
1

Γq (γ)

(
ℓ(γ−1)+

(ℓ+1)ℓ(γ−2)

ℓ

)
,

and

B =− ℓ+1
ℓΓq (γ)

ℓ(γ−1).

Proof. Let ι , τ ∈ [0, ℓ] , we have, if τ < ι

G(ι , τ) =
1

Γq (γ)

(
(ι −qτ)(γ−1)+

ι +1
ℓ

ϕ (τ)
)

≤ 1
Γq (γ)

(
ℓ(γ−1)+

(ℓ+1)ℓ(γ−2)

ℓ

)
= A ,

if τ > ι

G(ι , τ) =
ι +1
ℓΓq (γ)

ϕ (τ) ≤ (ℓ+1)ℓ(γ−2)

ℓΓq (γ)
≤ A .

Hence, G(ι , τ)≤ A . On other hand, for all ι , τ ∈ [0, ℓ] , we have, if 0 < τ < ι < ℓ

G(ι , τ) =
1

Γq (γ)

(
(ι −qτ)(γ−1)+

ι +1
ℓ

ϕ (τ)
)
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≥ 1
Γq (γ)

(
(ι −qτ)(γ−1)+

ι +1
ℓ

(
ℓ(γ−2) (1−q)(γ−2)− ℓ(γ−1)

))

≥− ℓ+1
ℓΓq (γ)

ℓ(γ−1) = B,

if 0 < ι < τ < ℓ

G(ι , τ) =
ι +1
ℓΓq (γ)

ϕ (τ)≥− ℓ+1
ℓΓq (γ)

ℓ(γ−1) = B.

Then G(ι , τ)≥ B.

Let E be a Banach spaces. The operator Λ: E → E is called
i. k-Lipschitz if and only if there exists k > 0 such that

∥Λν −Λν∗∥E ≤ k∥ν −ν∗∥E . for all ν , ν∗ ∈ E .

ii. A contraction if and only if it is k-Lipschitz with k < 1.
In addition, we introduce Krasnoselskii and Banach fixed point theorems (see [25]), which play a fundamental role

in our analysis.
Theorem 1 (Banach fixed point theorem ) If Λ: E → E , is a contraction operator. Then Λ has a unique fixed point.
Theorem 2 (Krasnoselskii fixed point theorem). Let D be a closed convex nonempty subset of a Banach space

(E , ∥.∥). Suppose that Λ1 and Λ2 map D into E such that
(i) ν1, ν2 ∈ D , implies Λ1ν1 +Λ2ν2 ∈ D ;
(ii) Λ1 is a contraction mapping;
(iii) Λ2 is completely continuous.
Then there exists ν ∈ D with ν = Λ1ν +Λ2ν .
Finally, we present the solution’s definition related to the syatem (4)-(6).
Definition 4 A function ν ∈ Cq, γ ([0, ℓ] , E ) is a solution of the system (4)-(6) if ν satisfies the equation

cDq, γ ν (ι)−λν (ι) = J
(
ι , ν (ι) , cDq, γ ν (ι)

)
, for all ι ∈ [0, ℓ] ,

where γ ∈ (1, 2] and q ∈ (0, 1).
Also, the integral conditions

ν (0)−ν ′ (0) = c1

∫ ℓ

0
G1 (τ, ν (τ))dqτ,

and

ν (ℓ)−ν ′ (ℓ) = c2

∫ ℓ

0
G2 (τ, ν (τ))dqτ,
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hold.

3. Main results
Let, for r ∈ R+, the set

Cr =
{

ν ∈ Cq, γ ([0, ℓ] , E ) , ∥ν∥q ≤ r
}
.

Clearly Cr is a closed bounded convex set in the Banach space Cq, γ ([0, ℓ] , E ). In addition, for the first result, we
assume that E is reflexive Bnach space, and for all ι ∈ [0, ℓ], there exist constants α ∈ R such that

∥J (ι , ν , υ)∥ ≤ α, for all ν , υ ∈ E , (16)

λ ∈
{
∥ν∥ ∈ ]−1, 1[ with ∥ν∥< 1

ℓmax(A , |B|)

}
, (17)

c1

∫ ℓ

0
G1 (τ, ν (τ))dqτ > c2

∫ ℓ

0
G2 (τ, ν (τ))dqτ, (18)

and

max
(

|K (0)|+ ℓα
1− ℓmax(A , |B|) |λ |

,
α

1−|λ |

)
≤ r. (19)

Theorem 3 Suppose that (16)-(19) hold. If

|λ |max{T max(A , |B|) , 1}< 1,

then the problem (4)-(6) has at least one solution in Cq, γ ([0, ℓ] , E ) for all ι ∈ [0, ℓ].
Proof. We consider the operator Λ: Cr → Cr as follow Λ(ν) = Λ1 (ν)+Λ2 (ν) where Λ1, Λ2 are defined by

(Λ1ν)(ι) = K (ι)+λ
∫ ℓ

0
G(ι , τ)ν (τ)dqτ,

and

(Λ2ν)(ι) =
∫ ℓ

0
G(ι , τ)J

(
τ, ν(τ), cDq, γ ν(τ)

)
dqτ.

We will prove that Λ satisfies the assumptions of Krasnoselskii’s fixed point theorem.
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Let’s start by proving that Λ1u+Λ2v ∈ Cr for all u, v ∈ Cr. As K (ι) is decreassing due to (18) and J is continous,
we get for all ι ∈ [0, ℓ] ,

∥(Λ1u)(ι)+(Λ2v)(ι)∥=
∥∥∥∥K (ι)+

∫ ℓ

0
G(t, τ)

(
λν (τ)+J

(
τ, ν(τ), cDq, γ ν(τ)

))
dqτ
∥∥∥∥

≤∥K (ι)∥+
∫ ℓ

0
|G(t, τ)|

∥∥λν (τ)+J
(
τ, ν(τ), cDq, γ ν(τ)

)∥∥dqτ

≤|K (0)|+max(A , |B|)
∫ ℓ

0

(
|λ |∥ν (τ)∥+

∥∥J (
τ, ν(τ), cDq, γ ν(τ)

)∥∥)dqτ

≤|K (0)|+ ℓmax(A , |B|) |λ |r+ ℓα.

Then,

∥Λ1u+Λ2v∥∞ ≤ |K (0)|+ ℓ(max(A , |B|) |λ |r+α) .

On other hand,

∥∥(cDq, γ Λ1u
)
(ι)+

(cDq, γ Λ2v
)
(ι)
∥∥=∥∥λu(ι)+J

(
τ, ν(ι), cDq, γ ν(ι)

)∥∥
≤|λ |∥u(ι)∥+

∥∥ f
(
t, v(ι) , cDq, γ ν(ι)

)∥∥
≤|λ |r+α.

Thus,

∥∥cDq, γ Λ1u+c Dq, γ Λ2v
∥∥

∞ ≤ |λ |r+α.

By (19), we get

∥Λ1u+Λ2v∥q ≤ r.

Then Λ1u+Λ2v ∈ Cr for all u, v ∈ Cr. Now, we shall prove that Λ1 is contraction

(Λ1ν)(t) = K (ι)+λ
∫ ℓ

0
G(ι , τ)ν (τ)dqτ.
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Let u, v ∈ Cr, then, for all ι ∈ [0, ℓ] , we have

∥(Λ1u)(ι)+(Λ1v)(ι)∥ ≤|λ |
∫ ℓ

0
|G(t, s)|∥u(ι)− v(ι)∥dqτ

≤|λ |max(A , |B|)ℓ∥u(t)− v(t)∥ .

Then

∥Λ1u+Λ1v∥ ≤ |λ |max(A , |B|)ℓ∥u− v∥ .

On other hand

∥∥(cDq, γ Λ1u
)
(ι)+

(cDq, γ Λ1v
)
(ι)
∥∥≤ |λ |∥u(ι)− v(ι)∥ .

Then

∥∥cDq, γ Λ1u+c Dq, γ Λ1v
∥∥

∞ ≤ |λ |∥u− v∥∞ .

Employing (19), then

∥Λ1u+Λ1v∥q ≤ |λ |max{ℓmax(A , |B|) , 1}∥u− v∥ .

For l = |λ |max{T max(A , |B|) , 1}, obviously, Λ1 is a contractive operator if l < 1.
Now, we show that Λ2 is completely continuous. First, we start by proving that Λ2 is continuous. Let {vn} ∈ Cr be

a sequence such that vn → v ∈ Cr as n → ∞, for each ι ∈ [0, ℓ],

∥(Λ2vn)(t)− (Λ2v)(t)∥ ≤
∫ ℓ

0
|G(ι , τ)|

∥∥J (
τ, vn(ι), cDq, γ vn(ι)

)
−J

(
τ, ν(ι), cDq, γ ν(τ)

)∥∥dqτ.

Since J is continuous, then

∥Λ2vn −Λ2v∥∞ → 0, n → ∞.

On other hand,

∥∥(cDq, γ Λ2vn
)
(t)−

(cDq, γ Λ2v
)
(t)
∥∥≤ ∥∥J (

ι , vn(ι), cDq, γ vn(ι)
)
−J

(
ι , ν(ι), cDq, γ ν(ι)

)∥∥ .
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Therefore, by the continuity of J we get

∥∥cDq, γ Λ2vn −c Dq, γ Λ2v
∥∥

∞ → 0, n → ∞.

We conclude that

∥Λ2vn −Λ2v∥q → 0, n → ∞.

The second step is to prove Λ2 (Cr) is bounded in Cq, γ ([0, ℓ] , E ) .We have for each Λ2v where v ∈ Cr

∥Λ2v(t)∥ ≤
∫ ℓ

0
|G(ι , τ)|

∥∥J (
τ, ν(τ), cDq, γ ν(τ)

)∥∥dqτ

≤max(A , |B|)ℓα = c.

Then

∥Λ2v∥∞ ≤ max(A , |B|)ℓα = c.

On other hand,

∥∥(cDq, γ Λ2ν
)
(ι)
∥∥≤ ∥∥J (

t, ν(ι), cDq, γ ν (ι)
)∥∥

So

∥∥cDq, γ Λ2ν
∥∥

∞ ≤ α.

Then ∥Λ2v∥q ≤max(c,α) =R. For the third step, we shall prove thatΛ2(Cr) is equicontinuous set. Let ι1, ι2 ∈ [0, ℓ],
with ι1 < ι2, for each υ = Λ2 (v), we have

∥υ(ι2)−υ(ι1)∥=
∫ ℓ

0
|G(t2, s)−G(ι1, s)|

∥∥J (
τ, ν(τ), cDq, γ ν(τ)

)∥∥dqτ,

if 0 < s < ι1 < ι2 < ℓ

∥υ(ι2)−υ(ι1)∥ ≤
α

Γq (γ)

∫ ℓ

0

∣∣∣∣(ι2 −qτ)(γ−1)− (ι1 −qτ)(γ−1)+
ι2 − ι1

ℓ
ϕ (τ)

∣∣∣∣dqτ,

if 0 < ι1 < ι2 < s < ℓ
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∥υ(ι2)−υ(ι1)∥=
α

Γq (γ)

∫ ℓ

0

ι2 − ι1

ℓ
|ϕ (τ)|dqτ.

So, if ι2 → ι1 the right-hand side of the above equalitys tends to zero.
For the last step, we shall prove that for all ι ∈ [0, ℓ] the set Cr(ι) = {υ (ι) , υ ∈ Cr} is a compact set in E .

Let (υn)n∈N ∈ Cr be a sequence, then for ι ∈ [0, ℓ] fixed, ∥υn (ι)∥ ≤ r, this gives us that (υn (ι))n∈N is bounded.
Since E is reflexive then there existe a weakly convergent subsequence such that υnk (ι) ⇀ υ (ι), wich implies υnk (ι)
→ υ (ι) uniformly in E . Therefor we conclude that the set Cr(ι) is relatively compact. By the Arzelà-Ascoli theorem we
arrive at the conclusion that Λ2 is completely continuous.

So, with the Theorem 2 there is an u ∈ Cr such that Λ1 (ν)+Λ2 (ν) = ν . The problem (4)-(6) has a solution ν in Cr.

Now, we provide an example to demonstrate the outcomes of Theorem 3.
Example 1 Let E = L2 ([0, 1]) the Banach space of all real square integrable functions equipped with the norm

∥ν∥L2 =

(∫ 1

0
|ν (τ)|2 dτ

) 1
2

.

We consider the q-fractional differential equation with nonlinear integral conditions, given by:

cD0.5, 1.5ν (ι)−0.2ν (ι) = ιν (ι)cD0.5, 1.5ν (ι) , ι ∈ [0, 1] , (20)

ν (0)−ν ′ (0) = c1

∫ 1

0
ν (τ)dqτ, (21)

and

ν (1)−ν ′ (1) =
∫ 1

0

(
c1ν (τ)−ν2 (τ)

)
dqτ, (22)

where

q = 0.5, γ = 1.5, ℓ= 1, λ = 0.2, c1, c2 > 0,

and

G1 (ι , ν) = ν , G2 (ι , ν) =
c1ν −ν2

c2
and J (ι , ν , µ) = ινµ .

Let
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C0.5, 1.5 ([0, 1] , E ) =
{

ν : ν ∈C ([0, 1] , E ) , cD0.5, 1.5ν ∈C ([0, 1] , E )
}
,

for r ∈ R∗
+, we propose the set

Cr =
{

ν ∈ C0.5, 1.5 ([0, 1] , E ) , ∥ν∥q ≤ r
}
,

such that r satisfy r ≥ 2+α
0.34854 . By simple calculation, we get

A =
1

Γ0.5 (1.5)

(
1(γ−1)+2(γ−2)

)
≃ 3.2573,

and

B =− 1
Γ0.5 (1.5)

1(0.5) ≃−0.70711.

For each ν , µ ∈ E and ι ∈ [0, 1], we have

∥J (ι , ν , µ)∥= ∥ινµ∥ ≤ ∥ν∥L2 ∥µ∥L2√
3

= α < ∞,

then the condition (16) is satisfied. Also,

λ = 0.2 ∈
{
∥ν∥ ∈ ]−1, 1[ : ∥ν∥< 1

ℓmax(A , |B|)
=

1
3.2573

≃ 0.307
}
,

so the condition (17) is verified. The condition (18) is verified easily. On the other hand

max
(

|K (0)|+ ℓα
1− ℓmax(A , |B|) |λ |

,
α

1−|λ |

)
=max

(
2+α

0.34854
,

α
0.8

)

=
2+a

0.34854
≤ r.

Then (19) is verified.
The quantity

|λ |ℓmax{max(A , |B|) , 1}= 0.65146 < 1.
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By Theorem 3, for all ι ∈ [0, ℓ] , the problem (20)-(22) has at least one solution in C0.5, 1.5 ([0, 1] , E ) .

Now interested in providing sufficient conditions to guarantee that the solution to problem (4)-(6) is unique. Here,
Banach’s fixed point theorem provided the foundation for our strategy. Let us assume that the function J fulfills the
following hypothesis. For all ι ∈ [0, ℓ], there exist two positives constants p1, p2 ∈ R such that:

∥J (ι , ν1, ν2)−J (ι , υ1, υ2)∥ ≤ p1 ∥ν1 −υ1∥+p2 ∥ν2 −υ2∥ , for all ν1, ν2, υ1, υ2 ∈ E . (23)

Theorem 4 Assume that (23) holds. If

ρ = max(ℓmax(A , |B|)(|λ |+ p1 + p2) , |λ |+ p1 + p2)< 1,

Then, for all ι ∈ [0, ℓ] , the problem (4)-(6) has a unique solution in Cq, γ ([0, ℓ] , E ) .

We consider the operator

Λ: Cq, γ ([0, ℓ] , E )→ Cq, γ ([0, ℓ] , E )

as follow

Λ(ν)(ι) = K (ι)+
∫ ℓ

0
G(ι , τ)

(
λν (τ)+J

(
τ, ν (τ) , cDq, γ ν (τ)

))
dqτ.

Proof. We will prove that Λ satisfies the assumptions of Banach’s fixed point theorem. Consider the two elements
ν and υ in Cq, γ ([0, ℓ] , E ) , then, for each ι ∈ [0, ℓ], we have

∥Λ(ν)(ι)−Λ(υ)(ι)∥=
∥∥∥∥∫ ℓ

0
G(ι , τ)

(
λ (ν (τ)−υ (τ))+J

(
τ, ν (τ) , cDq, γ ν (τ)

)

−J
(
τ, υ (τ) , cDq, γ υ (τ)

)
dqτ
)∥∥

≤
∫ ℓ

0
|G(ι , τ)|(|λ |∥ν (ι)−υ (ι)∥

+
∥∥J (

ι , ν (ι) , cDq, γ ν (ι)
)
−J

(
ι , υ (ι) , cDq, γ υ (ι)

)∥∥)dqτ

≤ℓmax(A , |B|)(|λ |∥ν (ι)−υ (ι)∥+p1 ∥ν (ι)−υ (ι)∥

+p2
∥∥cDq, γ ν (ι)−c Dq, γ υ (ι)

∥∥)
≤ℓmax(A , |B|)

(
(|λ |+p1)∥ν (ι)−υ (ι)∥+p2

∥∥cDq, γ ν (ι)−c Dq, γ υ (ι)
∥∥) .
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Therfore,

∥Λν −Λυ∥∞ ≤ ℓmax(A , |B|)(|λ |+p1 +p2)∥ν −υ∥q .

On other hand,

∥∥cDq, γ Λ(ν)(ι)−c Dq, γ (υ)(ι)
∥∥=∥∥λ (ν (τ)−υ (τ))+J

(
ι , ν (ι) , cDq, γ ν (ι)

)
−J

(
ι , υ (ι) , cDq, γ υ (ι)

)∥∥
≤|λ |∥ν (ι)−υ (ι)∥+

∥∥J (
ι , ν (ι) , cDq, γ ν (ι)

)
−J

(
ι , υ (ι) , cDq, γ υ (ι)

)∥∥
≤|λ |∥ν (ι)−υ (ι)∥+p1 ∥ν (ι)−υ (ι)∥+p2

∥∥cDq, γ ν (ι)−c Dq, γ υ (ι)
∥∥

≤(|λ |+p1)∥ν (ι)−υ (ι)∥+p2
∥∥cDq, γ ν (ι)−c Dq, γ υ (ι)

∥∥ .
So,

∥∥cDq, γ Λν −c Dq, γ Λυ
∥∥

∞ ≤ (|λ |+p1 +p2)∥ν −υ∥q .

Then

∥Λν −Λυ∥q ≤max(ℓmax(A , |B|)(|λ |+p1 +p2) , |λ |+ p1 + p2)∥ν −υ∥q

=ρ ∥ν −υ∥q .

Since ρ < 1, then the operator Λ is a contraction. So, Λ has a unique fixed point ν ∈ Cq, γ ([0, ℓ] , E ) according
Banach’s theorem which is the unique solution of the problem (4)-(6).

Example 2 Consider the q-fractional differential equation with nonlinear integral conditions, given by:

cD0.7, 7/5ν(ι)−λν(ι) = sin(ι)ν(ι)+ cos(ι)cD0.7, 7/5ν(ι), ι ∈ [0, 1] ,

ν (0)−ν ′ (0) = c1

∫ ℓ

0
g1 (s, ν (s))dqs, (24)

ν (ℓ)−ν ′ (ℓ) = c2

∫ ℓ

0
g2 (s, ν (s))dqs,

where
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q = 0.7, γ =
7
5
, ℓ= 1, |λ |< 0.15, and J (t, ν , υ) = ν sin(t)+υ cos(t) ,

and c1, c2, g1 (ι , ν) , g2 (ι , ν), are all chosen arbitrarily. The condition (23) is verified due to the following inequality:

∥J (ι , ν1, ν2)−J (ι , υ1, υ2)∥ ≤
1
5
∥ν1 −υ1∥+

1
10

∥ν2 −υ2∥ .

By simple calculation, we get

A =
1

Γq (γ)

(
1(γ−1)+2(γ−2)

)
=

1
Γ0.7

( 7
5

) (1(
7
5−1) +2(

7
5−2)

)
≈ 1.8334,

B =− ℓ+1
ℓΓq (γ)

ℓ(γ−1) =− 1+1
Γ0.7

( 7
5

)1(
7
5−1) ≈−2.2092,

and

ρ =max(ℓmax(A , |B|)(|λ |+ p1 + p2) , |λ |+ p1 + p2)

=max
(

2.2092
(
|λ |+ 1

5
+

1
10

)
, 0.15+

1
5
+

1
10

)

=max(0.99414, 0.45)

=0.99414 < 1.

All the requirements of Theorem 4 are satisfied. Then the problem (24) has a unique solution in C0.7, 7/5 ([0, ℓ] , E ) .
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