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Abstract: In this work, we discuss the solutions to the boundary value problem for fractional g-difference equations
with nonlinear integral conditions:

Dy yv(1)=Av(1)= Z (1,v(1), Dy yv (1)), 1€10,£],1 <y<2, (1)
with
1
v(0)— V' (0) = ¢ /0 % (1, v (7)) d,r, @)
and
74
V{0~V (£) :Cg/o % (7, v (7)) d,T. 3)

By applying the fixed point theorems of Banach and Krasnoselskii, we establish the existence of solutions for the above
problem (1)-(3). Some illustrative examples are given. This paper generalises some earlier results in the literature.

Keywords: caputo fractional g-difference equation, fixed point theorems, integral boundary conditions

MSC: 34A08, 37C25, 30E25

1. Introduction

Over the past years, fractional differential calculus has attracted the interest of several academics, due to its
importance for mathematical modeling. Its applications can be observed in domains such as physics, engineering, biology,
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and finance, where standard calculus often fails, see [1-8] and the references therein. Regarding the qualitative properties
of solutions to fractional differential equations, further details can be found in [1, 2, 9-11] and the references cited therein.

The evolution of quantum calculus (or g-calculus) is well-established, with comprehensive accounts of its fundamental
concepts, results, and methods provided in [12-14]. In the early twentieth century, the quantum difference calculus
itself became one of the most active areas within fractional differential equations, attracting considerable attention from
researchers, see [15—17] and the references cited therein. In particular, important works have addressed initial and
boundary value problems for both ordinary and fractional g-difference equations [18—24].

Recently, Allouch et al. [1] investigated the existence of solutions to the Boundary Value Problem (BVP) for
fractional g-difference equations:

‘Dyyv(1)= (1, v(1)), 1€[0,4],1<y<2,

with nonlinear integral conditions

l
wm—vwnzzf%unwwwn

and

A
V@—V@:A%Wm@wn

where 0 < ¢ < 1, the functions ¢4, %: [0, {] x & — &,and _#: [0, {] x & — & are continuous with & is a Banach space.
D, y represents Caputo fractional g-difference derivative of order y. The author’s results are based on Monch’s fixed
point theorem and the technique of measures of noncompactness. This work is considered one of the few on difference
equations with integral boundary conditions on Banach space.

In this research, we investigate the existence of solutions to the BVP for fractional g-difference equations with
nonlinear integral conditions:

Dy yv(1)=2Av(1)= 7 (1,v(1), Dy v (1)), 1€[0,6],1 < <2, 4)
¢
VO -V (0 =i [ (e V(@) ®
and
¢
VOV (O =c [ B vEds ©)

where g € (0, 1) and A, c1, ¢2 € R, the functions 41, %: [0, (] x & — &, and £ [0, {] x & x & — & are continuous wich
& is a reflexive Bnach space. “D,, y represents Caputo fractional g-difference derivative of order 7.
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The structure of the article is as follows: Section 2 contains the important theorems and lemmas needed for the
present study. Our results, based on fixed point theory, are presented in section 3. We also provide examples to support
our results. This study improves upon the results, that have already been reported in [1].

2. Concepts and materials

Firstly, we start by some useful spaces. The Banach space C ([0, ¢], &) of all continuous functions v: [0, {] — &,
with the norm

V]l = sup{[lv (1)[], forall v € [0, ]},

where & is a separable Banach spaces. Let L' ([0, £], &), the space of Lebesgue integrable functions ¢: [0, /] — & which
are Bochner integrable, normed by

= )| dt.
9l =/, low
We also use the Banach space €, ([0, ¢], &) defined by
Gy (0,4, 6) = {v: veC((0,4], &), Dy v €C((0, 4], )},

equipped with the norm

IVlly = max {[|V]l... |Dg.yv||..} -

Let’s go over some concepts of fractional g-calculus, see [12-14]. For a, B, Y€ R, letg € (0, 1)

1
o], = o =14+q+q* . +q* "

The g-analogue of the power function (o — ﬁ)<m> with m € N is

—_

m—

(a-B)" =1, (a (0—Bq'), a,BER, meN.
i=0
More generally,
a—Bq
— —a’
(o Ha Bartt
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Note that, if = 0 then

o) = ¥
The g-gamma function is defined by:
1—a)D
)= ((1_qq))11’ teR\{0,-1,-2,..}, 0<g< 1,

and satisfies
Ly (t+1) =[], Ty (1).
The g-derivative of a function g: [0, £] — & is defined by

dgg(1) _ g(qv) —g(1)
dgt (g—1)1

Dqg(l) = , L#0, Dqg(o) = }%Dqg(l)v

and g-derivatives of higher order by

g(1),ifm =0,
Dq,n’lg(l) =
Dqu’m_lg(l), if m € N*.

The g-integral of a function g defined in the interval [0, ] is given by

=)

[ sz =1(1-0) Lot 0<lgl <1, 1€ [0, B

m=0

If a € [0, B] and g defined in the interval [0, 3], its integral from o to 8 is defined by

/aﬁg(f)dq’r = /OBQ(T)qu—/Oag(r)dqr.

Similarly, as done for derivatives, it can be defined an operator .7, ,, namely,

(£4.08) (1) = g (1) and (I mg) (1) = F4(Fg.m19) (1), meN.

The essential theorem of calculus relates to these operators .#; and Dy, i.e
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and if g is continuous at t = 0, then

F4(Dgg) (1) =g (1) —g(0).

We recommend the reader to see [13] for more details as well as the fundamental properties of these operators.
Definition 1 Let y > 0 and g be a function defined on [0, ¢]. The fractional g-integral of the Riemann-Liouville type
is

Fgy8(1) = el
%IOL (1—q7)" Vg(t)d,r, if >0

Definition 2 The Riemann-Liouville fractional g-derivative of order ¥ > 0 is defined by

g(1),ify=0
Dy y9(1) = ,1el0,4].

(Dg. 11174, [Y]—Vg> (1),if y>0

The smallest value greater than or equal to yis [}] .
Definition 3 The Caputo fractional g-derivative of order ¥ > 0 is defined by

g(1),ify=0
Dy, 40(1) = ,1elfo, 4.

(4. 1i-vDPq. 198) (7). if 7> 0

Lemma 1 ([17]) Let ¥ > 0. Then the following equality holds:

[v]-1 J
(L5 yDg.v8) (1) =08(1) — ng m (Dg,78) (0).

Lemma2 Letye (1,2]andc;, c; € Rand g € (0, 1). For .4 € C ([0, £], &). Then the following system:

CDq. YV (l) = %(l)’ S [07 ZL (7)

with nonlinear integral conditions
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v(O)—v’(O):cl/Oéhl(r)dq’c,

and

¢
VIO =V () = / Iy (1)d,T,
Jo
has a solution that shown below
¢
V(1) =4 (1) +/ G(1, 7). (1)d,r.
0
The function % (1) and G (1, ) are given by:
—1—1 ) 1 1
o= otz / hy (2)dyr + 20T D [ @z,
/ 0 /¢ Jo
and

(1—gn) "Vl (1), 0<t <1<,

Yl (r),0<1<t<,

where

which yields the following bound:

(C—1tg)7 — 1) < ¢ (1) < 02,

Proof. On the equation “D, ,V (1) = .# (1) we can apply the operator .7, y we find

1

YW=F

4
/0 (1 —qr)(”’l)///(r) dgT+1p1 + P2,

where p;, p2 € R are arbitrary constant. Through the boundary conditions that are given in (8)-(9), we get

®)

)

(10)

(11)

(12)

(13)

(14)
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¢
p2—pi =Cl/0 hi ()dy,

and

1 l _ —1
/ (= g0) "Dt (2)dye+bpy +p2 =L

_ N ) . ¢
L, o L =0 e @agrpive [ (@

With a simple calculation p; and p, are given by:

4
P :erql(y>/o (=D (t=q0) 7 = (t=q0)"V)  (1)dy
1
+z/0 (c2ha (T) —c1hyi (7)) dy,
and
l
P b (=0 (=a0) 7 = (=g ) (R
+%/oé(02h2(f)+61 (0—1)hy (1)) d,r.
Hence,

YO =1 % ./ol (1-q0)""V t (7)dy1
{
tatig b (0= 0E=a0 2 oY) @)
1+1

¢ (l—1—1) r*
. Cz/o hz(r)quJrTc]/o h (t)d,t
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1+1

¢ (—1—1) ¢
t— Cz/o hz(T)qu—FTcl/o hy (T)d,T.

So
T
V(1) = %/(l)+/0 G(1, 7). (1)d,t,

where 2 (1), G(1, ) are given by (11) and (12) respectively.
Lemma 3 The Green function G(1, 7) has the following proporties:

B<G(, 1)< A,
where

U (1))
A= )
Ty (7) ( 4

and

ift>1

(r-2)
l+1MﬂSMHﬂ <o

y(y)

Hence, G(1, 7) < &7. On other hand, forall 1, T € [0, £], we have, if0 < T <1 </

611 =g s (=09 + 0 )
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Ly (7) 14
41
_ () = .
T ATy (y)
fo<i<t</{
1+1 £+1
G(1,7)= o(7)>— () = 3.
0=, m )
Then G (1, 7) > A. O

Let & be a Banach spaces. The operator A: & — & is called
i. k-Lipschitz if and only if there exists £ > 0 such that

AV —AV*|| o < k||[v—V"|z.forall v, v* € &.

ii. A contraction if and only if it is k-Lipschitz with k < 1.

In addition, we introduce Krasnoselskii and Banach fixed point theorems (see [25]), which play a fundamental role
in our analysis.

Theorem 1 (Banach fixed point theorem ) If A: & — &, is a contraction operator. Then A has a unique fixed point.

Theorem 2 (Krasnoselskii fixed point theorem). Let & be a closed convex nonempty subset of a Banach space
(&, ]-I). Suppose that A} and A, map 2 into & such that

(i) vi, v € 2, implies A1 v + A v; € D,

(i1) A is a contraction mapping;

(ii1) Ay is completely continuous.

Then there exists v € Z with v = A v+ Ay v.

Finally, we present the solution’s definition related to the syatem (4)-(6).

Definition 4 A function v € €, ([0, £], &) is a solution of the system (4)-(6) if v satisfies the equation

Dy V(1) —=2AVv(1)= 7 (1,v(1), Dy yv (1)), forallt €0, €],

where y € (1, 2] and g € (0, 1).
Also, the integral conditions

/
v(0) =V (0) = c1 /0 G (7, v (7)) d,r,

and

4
VOV (O =c [ B v)dr
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hold.

3. Main results

Let, for r € RT, the set
G={vet,(0.0,6),Ivl,<r}.

Clearly %, is a closed bounded convex set in the Banach space ¢, ; ([0, £], &). In addition, for the first result, we
assume that & is reflexive Bnach space, and for all 1 € [0, ¢], there exist constants o € R such that

|7, v,v)| <a, forallv,v €&, (16)
redviel=1, 1] with v < ——— (17)
LY (max (7, |B]) |
4 /
el / G (1, v (1))d,T > c3 / % (1, v (1))d,T, (18)
0 0
and
| (0)| + Lot «
<r
max(l—émax(ﬂ, BN T=A]) =" (19)

Theorem 3 Suppose that (16)-(19) hold. If
|A|max {7 max (&, |A]), 1} < 1,

then the problem (4)-(6) has at least one solution in € ([0, £], &) for all 1 € [0, £].
Proof. We consider the operator A: 6, — %, as follow A(v) = A; (V) + Az (v) where A, A, are defined by

(Alv)(l):%/(l)—l—),/OZG(u OV (t)d,t,
and

/
(Aav) (1) :/0 G(1,7) 7 (, v(t), “Dy yv(1)) dyt.

We will prove that A satisfies the assumptions of Krasnoselskii’s fixed point theorem.
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Let’s start by proving that Aju+Axv € 6, forall u, v € 6. As # (1) is decreassing due to (18) and ¢ is continous,
we get forall 1 € [0, 4],

[(Asu) (1) + (Aaw) (1)

74
:H%w | 6.0 (Av@)+ 7 (1 v(@). Dyyv()) dyt

< @I+ [ 166, D2y (2)+ 7 (2, V(2), Dy pv(2) e

<1 O+ max (o, 191) [ (MIV (@147 (5 ¥(), Dy (2) ) dyt

<|# (0)| +¢max (<7, | B|)|A| r+ L.

Then,
A+ Al < |# (0)|+¢(max (<, |B|)|A|r+ ).
On other hand,

[[(“Dg.yA1u) (1) + (“Dg.yA2v) (V)| = [|Au (1) + 7 (7, v(1), “Dy.yv (1))
<@+ [1£ (@ v (1), Dy v ()
<|Alr+c.

Thus,

Dy, y A1+ Dy yA2v||, < [A]r + .

By (19), we get

[Aru+Agvl|, <

Then Aju+ Ayv € 6, for all u, v € 6,. Now, we shall prove that A is contraction

(Av) (1) M/ (1, )V (7)d,T.
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Letu, v € €, then, for all 1 € [0, ¢], we have

L
(A1) (1) + (Aw) (D] < I/U/0 G2, 9)] [Ju(t) =v(1)lldyT

<|Amax (&7, | ) £]|u(t) —v (@) -

Then
A+ Av|| < |A|max (o, |B|)L]ju—v] .
On other hand
[(“Dy.ytA11t) (1) + (“Dy.yA1v) ()| < |2 [l (1) = v ()]
Then
Dy, yAru+ Dy yArv]|,, < [A]fJu—v]...
Employing (19), then

[Aru+Arv[|, <|A|max {{max (<, |A]), 1} |lu—v].

For l = |A|max {7 max (<, |%)|), 1}, obviously, A; is a contractive operator if / < 1.
Now, we show that A, is completely continuous. First, we start by proving that A, is continuous. Let {v,} € %, be
a sequence such that v, — v € €, as n — oo, for each 1 € [0, /],

0
(23 () = (A9) 0] < [ 160 DI 7 (2 30(0). Dy (V) = 7 (£, V(1), Dy () | dy.
Since ¢ is continuous, then

1A2v, — Aoy, — 0, n — oo.

On other hand,

1Dy, yA2va) (1) = (“Dg,yav) ()| < (|7 (1, va(0), Dy ywa()) = (1, V(1) Dy v () |
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Therefore, by the continuity of _# we get

H”D% yA2v, =Dy, yAgva —0,n— oo,

We conclude that

[A2vy — Agvl|, — 0, n — oo.

The second step is to prove Az (¢;) is bounded in €, ([0, £], &) .We have for each Aov where v € €,

4
A < [ 160Dl L7 (7. V(). Dy v(0) | 7

<max (#, |2])la =c.

Then
[ Agv]l., < max (<, |B|)la = c.
On other hand,
1Dy, y2v) W < |7 (1. v(1), “Dy.yv ()
So

Dy 2V < e

Then [|[Azv[|, < max(c, &) = Z. For the third step, we shall prove that A2 (%}) is equicontinuous set. Let 11, 12 € [0, £],
with 1 < 1p, for each v = A; (v), we have

4
[v(12) = v(u)| = /0 |G(t2, $) = G(11, 9)| || 7 (7, v(2), Dy yv(1)) || dy,

fo<s<y<un</t

14
o) =) < 7 |

fo<yu<n<s</t
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01, —
o) vl = 5 ) 27 10 (@l

So, if 1, — 1; the right-hand side of the above equalitys tends to zero.

For the last step, we shall prove that for all 1 € [0, £] the set €,(1) = {v (1), v € ,} is a compact set in &.

Let (Un),cy € % be a sequence, then for 1 € [0, /] fixed, ||v, (1) < r, this gives us that (v, (1)), is bounded.
Since & is reflexive then there existe a weakly convergent subsequence such that v,, (1) — v (1), wich implies v, (1)
— ¥ (1) uniformly in &. Therefor we conclude that the set 4, (1) is relatively compact. By the Arzela-Ascoli theorem we
arrive at the conclusion that A; is completely continuous.

So, with the Theorem 2 there is an u € %, such that A| (v) + Ay (v) = v. The problem (4)-(6) has a solution v in %,..

O

Now, we provide an example to demonstrate the outcomes of Theorem 3.

Example 1 Let & = L? ([0, 1]) the Banach space of all real square integrable functions equipped with the norm

Iv]l,2 = (/01 |v(f)|zdr>5.

We consider the g-fractional differential equation with nonlinear integral conditions, given by:

“Dys 15V (1) —02v (1) =1v(1)"Dys 15V (1), 1€]0,1], (20)

1

v(0) =V (0) = e1 /O v(1)d,r, @1)

and

v(l)—v’(l):/(;l (e1v () = V2 (7)) d,r, 22)

where

g=05, y=15 =1, A =02, ¢1,c2 >0,

and

2
G (1, v)=v,%(1,v)= av-ve and 7 (1, Vv, u) =1vU.

2

Let
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%0_5,1_5“07 1], &) = {VZ v eC([o, 1],(5")701)0.571.5\/ e C(][o, 1],60)},

for r € R, we propose the set
6 ={vebs15(0.1,8), IV, <r},

such that r satisfy r > %. By simple calculation, we get

— 0 (1D 42(r-2) ~ 32
7 = s (1070 +202) = 32573,
and
B L 09 < 70711
Tos(1.5) - '

Foreach v, u € &£and1 € [0, 1], we have

[Vlz2 112

1.7 (v, Wl = llwvu]l < 7

:(X<oo’

then the condition (16) is satisfied. Also,

1 1
(max (o7, |B|)  3.2573

/1—0.26{|v||6]1,1[: vl < ~0.307},

so the condition (17) is verified. The condition (18) is verified easily. On the other hand

max |2 (0)| + Lo o ~ max 2+a o
1 —f¢max (<, |B) A 1—|A]) 0.34854" 0.8
= 2+a <r
0.34854 —

Then (19) is verified.
The quantity

|A|¢max {max (7, |B|), 1} =0.65146 < 1.
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By Theorem 3, for all 1 € [0, £], the problem (20)-(22) has at least one solution in %p 5,15 ([0, 1], &).

Now interested in providing sufficient conditions to guarantee that the solution to problem (4)-(6) is unique. Here,
Banach’s fixed point theorem provided the foundation for our strategy. Let us assume that the function ¢ fulfills the
following hypothesis. For all 1 € [0, £], there exist two positives constants pi, p» € R such that:

||/(l7 Vi, V2) - j(h V1, 1)2)” Sp] ||V1 701” +p2||V271)2H, for all Vi, V2, V1, V2 € £. (23)

Theorem 4 Assume that (23) holds. If

p = max ((max (7, |2]) (A +p1 +p2)., |A|+ p1+p2) < 1,

Then, for all 1 € [0, ¢], the problem (4)-(6) has a unique solution in €, 4 ([0, {], &).
We consider the operator

A %477([07 E], éa) - ng,}’([oa E], éa)

as follow

A(v)(1) :Ji/(l)—k/oéG(l, 7) (Av(2)+ 7 (T, v(1), “Dy 4V (7)) dygT.

Proof. We will prove that A satisfies the assumptions of Banach’s fixed point theorem. Consider the two elements
vand v in €, ([0, £], &), then, for each 1 € [0, £], we have

AW © =A@ O] =] [ 6.9 ()= v(0) + 7 (2. (3) Dy v ()
~  (5.9(5), Dy 0 (7)) dy)|
< [6, 91 (MY ) v 0]

|7 (1, v(1), Dayv (1) = 7 (1,0 (1), Dy v (1)) ||) dygt
<tmax (o, 1)) (A1) — 0 () +p1 [V () — 0 0]
42Dy, yv (1) =< Dy y0 (1))

<tmax (o, |%]) (1Al +p1) [V (1) =0 ()]l +p2 |“Dg.yv (1) = Dg.y0 (V)]]) -
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Therfore,

AV = Av||., < fmax (<7, [Z]) (IA|+p1 +p2) [V =l

On other hand,
1Dy, yA (v) (1) = Dy (0) )] = A (v (1) =0 () + 7 (1, v (1), Dy yv (1)) = 7 (1,0 (1), Dy 0 (1)
SV @) =0 @+ 7 (1 v (1), Dy yv (1) = 7 (1, 0(1), Dy (1) ]
<Y @ = @) +p1 V(1) =0 @) +p2 Dy yv (1) = Dy, 0 (1)
<AL+ IV () =0 () +p2 Dy v (1) = Dy 0 (1))
So,
[Dg, yAV = Dy, yAv ||, < (12| +py +p) IV = vll,-
Then
IAV = Av]|, <max (¢max (<7, | B]) (1A +p1 +p2), A+ 1+ p2) IV =0,
=p[v—ol,.

Since p < 1, then the operator A is a contraction. So, A has a unique fixed point v € €, ([0, £], &) according
Banach’s theorem which is the unique solution of the problem (4)-(6). O
Example 2 Consider the g-fractional differential equation with nonlinear integral conditions, given by:

Do7,7/5v(1) = Av(1) =sin (1) v(1) +cos (1) Dy 7,75V (1), 1 € [0, 1],
¢
VO -V ©O) =er [ g1(s V() dys (24)

4
VIO =V () = /0 22.(5, V() dys,

where
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7
qg=07,y= 5 ¢=1,|A] <0.15, and # (t, v, v) = vsin(t) + vcos(t),
and ¢y, ¢2, g1 (1, V), g2 (1, v), are all chosen arbitrarily. The condition (23) is verified due to the following inequality:

1 1
17 (6 w1, v2) = 7 (1, 01, 02)]) < < vy =i+ 55 [Iva = ]

By simple calculation, we get

1 1 7 7
of — 1070 4002 — 1 (1(3-1) 1203-2)) ~ 1.8334,
5 )= )
PB— t+1 pr=1) — 1+1 1(§_l)z—2.2092,
EFq(y) 1—‘07(5

and

p =max (fmax (&, |B|) (|A|+ pi+ p2), [A]| +p1 + p2)

1 1 1 1
= 2.2092 -+ — 1 o
max( 09 <|/'L+5+10),0 5—|—5+10)

=max (0.99414, 0.45)
=0.99414 < 1.

All the requirements of Theorem 4 are satisfied. Then the problem (24) has a unique solution in € 7,75 ([0, £], &).
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