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Abstract: This study focuses on the diffusion processes to predict the mean tree volume in a forest stand, considering
the variability and uncertainty associated with regional, operational, and environmental factors. The distribution and
spatial arrangement of trees within a given forest area, as well as dynamic fluctuations and complex uncertainties, are all
represented by the nonsymmetric stochastic differential equations of the Gompertz-type. This study proposes a trivariate
system of mixed-effect parameters, Gompertz-type Stochastic Differential Equations (SDEs) that quantify the dynamics
of the trivariate distribution of tree size components (diameter, potentially occupied area, and height) against age in a stand.
The newly developed model has demonstrated that it is possible to accurately predict, track, and explain the dynamics
of mean tree volume yield and growth in a forest stand as trees grow over time. Theoretical findings are demonstrated
using observed data from Lithuania’s permanent experimental plots that are mixed-species and uneven-aged. The model
is implemented using the Maple symbolic algebra system.
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1. Introduction

Since volume measurements of standing trees are not realizable in the field, characterizing the tree volume model
in a regression expression, which is defined in a different form for any species and region, is common in forestry.
Tree volume prediction models are required when there are legal constraints on logging because of the destructive
nature of data collection. These models include two predictor variables: diameter at breast height (diameter at the
height of 1.3 m above ground) and height, as well as one predictor model with diameter at breast height. Complex
modeling paradigms encompass various levels of detail, focusing on accurate long-term forecasting or the interpretation
of mechanical processes [1-3]. Forecasts of the mean tree and stand volumes are essential for large-scale forest planning
and management. Mean tree and stand volume models are imperative to estimate the carbon flux via formalized models
[4, 5]. These models begin with carbon fixation in forest biomass and end with CO; being released into the atmosphere
through natural decomposition or human-caused processes such as combustion [6, 7]. Regression equations describe
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individual-tree and stand-level models as the most widely used type of growth and yield model in management. These
equations determine the basal area, volume, mortality, dominant height, and stem density; unfortunately, most of these
equations do not reveal continuous changes with stand age.

Because all the models are only as good as the data and techniques that support them are, forest managers must be fully
aware of the limits of modeling approaches before concluding the management strategy of a specific stand. Growth and
yield models, which are quantitative and often technically complex, are sometimes used to justify the aura of a specific
author. The main drawback of regression models is the need for more flexibility due to overfitting, homoscedasticity,
multicollinearity, data dynamism, nonnormality, variability, and the assumption of model specification [8—10]. The
mechanisms controlling growth can be integrated via process-based models that explain the development of trees and
stands [1, 11, 12].

The most fundamental formalization of individual-tree and whole-stand yield and growth models is deterministic,
which is not true in reality because of numerous random disturbances. Consequently, a stochastic system would more
accurately represent the development of the forest stand [12—15]. The stochastic differential equations approach was
not popular in forest growth modeling because it was challenging to estimate the parameters of the transition probability
densities for the majority of situations. Numerous disciplines use stochastic differential equations, including finance,
physics, medicine, image processing, meteorology, flood and weather forecasting, and forestry [16—19]. In most
applications, a mechanical description of a stochastic system is provided by choosing the drift and diffusion functions
of stochastic differential equations utilizing simple parametric functions. Additive or multiplicative-type diffusion
functions and exponential or sigmoid-type drift functions were developed for a certain class of stochastic differential
equations applied to forest growth studies. These functions are dependent on specific fixed- and random-effect parameters.
Traditional multivariate models are, unfortunately, limited by the computationally costly process needed for parameter
estimation, despite their considerable advantages in capturing time-varying dynamics and covariate effects [20, 21].

The dynamics of forest yield and growth models are integral tools for understanding and forecasting how forests
react to changes in the global environment. A theoretical, probabilistic model of forest dynamics is superior to the
commonly used deterministic growth models in applied forestry and may reduce uncertainty in long-term predictions
of forest dynamics under global change.

Building on previous research, this paper develops a sigmoidal mixed-effects 4-parameter Gompertz-type trivariate
stochastic differential equation to produce a growth model and applies it to describe the dynamics of the mean tree volume
of both dying and living trees in a forest stand. One of the biggest challenges facing the scientific community in the context
of rapid climate change is forest mortality, coupled with the release of CO, into the atmosphere. The mean tree volume
trajectory for both live and dying trees is newly developed in this work; as a result, the model that was presented enables
the tracking and evaluation of carbon dioxide absorption and release in a forest.

The present research initiative focuses on simulating mean tree volume yield and growth dynamic patterns. The
static growth models of individual-tree and whole-stand volumes have been extensively studied [22-24]. This work
concentrates on the diffusion process analogies provided by stochastic differential equations since commonly used models,
such as linear and nonlinear regression models, are unable to adequately capture the intricate relationships between the
tree and stand size component variables [17]. The dynamics of the mean tree volume, as well as its increments (mean and
current), are investigated in this study concerning the age, height, and potentially occupied area of the trees. The newly
developed models were validated using repeated stand measurements in permanent test plots in southwestern Lithuania.
The MAPLE framework for symbolic algebra is used to carry out all of the findings [25].

2. Materials and methods
2.1 Dynamics of tree diameter, height, and potentially occupied area

The main challenge in modeling tree growth and yield is formulating the trivariate probability density function of the
diameter, height, and potentially occupied area of trees in a stand, which varies over age. The trivariate probability density
function of tree height, diameter, and potentially occupied area, together with the corresponding regression equation of
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individual-tree volume, enables us to define the mean stand volume per hectare, and the two-dimensional probability
density function of diameter and height, together with the corresponding regression equation of individual-tree volume,
allows us to estimate the mean tree volume in a forest stand. Numerous attempts have been made in forestry to consistently
use a probability density function of a bivariate random vector to statistically characterize a stand with a large number
of trees [26, 27]. Tree size variables are controlled by the probability density function of the evolutionary type, either
univariate or multivariate, which matters for the whole ensemble of trees whose members undergo the same probabilistic
growth process [28—30]. In this work, we use a trivariate Gompertz-type stochastic differential equation to describe the
evolution of tree diameter at breast height X} (¢), tree potentially occupied area Xi(r), and tree height X}(¢) over age in
various M (i =1, ..., M) stands in the following Ito’s [31] form:

. . . 1 A
dX'(t)=A(X'(t))dt+D(X'(r)) B> -dW'(z), (1)
where the exact meaning of the drift term A(x) is as follows:

((n+9f) =Biln(xi — 7)) (x1 =)
Ax) = | ((2+@}) —Bln(xx—1)) (2—1) |, ()

(a4 ) — B3In(x3 — 1)) (x3—73)
, 1
also the diffusion matrix D (X(r)) B* has the following definition:

XI—N 0 0
D(x) = 0 X—7 0 , 3)
0 0 X3—7

011 O12 O13
B=| o on o3 |. 4
013 023 033

Here, the independent trivariate Brownian motions are W(r) = (W{(t), Wi(t), Wi (t))T, i=1, ..., M; given a
symmetric matrix B that is positive definite, B2 is the Cholesky factorization resulting from the transposition of a
lower triangular matrix and its counterpart; if = o, then an initial status looks like this X’ (fy) = xo = (x10, &, x30)T

is a degenerate vector P(Xi (t0) :xo) = 1; the independent, normally distributed random effects (pj-, j=1,...,3,
having zero means and constant variances, respectively @; ~ N (O; sz), @' = (@}, 93, 9}); @} is a random variable

that is independent to Wi (t); and the parameters for fixed effects that require estimation are 6 = (o, o, a3, ¥, 1,
1, Bi1, B2, B3, O11, O12, O13, O, O23, O33, O1, Oz, 03, 0). In this setting, @, &, o are the intrinsic growth rates;
B1, B2, B3 are the growth deceleration factors; ¥;, 12 , v3 is the threshold parameters; 011, 022, 033 are the coefficients
of volatility; 012, 013, 023 are the coefficients of dependency; and o1, 0>, 03 are the standard deviations of the normal
distribution for the diameter, occupied area and height, respectively.

Stochastic modifications of the Gompertz-type ordinary differential equation are possible in a few distinct ways.
This study modeled the randomness of tree diameter, occupied area, and height using a standard Brownian motion. For
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the 3-parameter sigmoidal model, the following ordinary differential equation describes a Gompertz-type deterministic
trajectory for diameter, occupied area, and height, respectively:

dxj(t) = (o — BjIn(x; (1) = 1)) (x;(t) — ;). )

Thus, assuming that the deterministic parameter, ¢;, fluctuates randomly around the mean, o;(¢) = «; + o;;W;(t)
(W;(t) is the Brownian motion), the complete deterministic model as defined by Eq. (5) has been transformed into a
stochastic model (1).

The forecasts of stand attributes, including mean tree height and mean tree volume, can be significantly impacted by
unmeasured environmental factors. Environmental fluctuations, such as changes in temperature, humidity, pollution, and
other factors, are fundamental to forest yield and growth. This work incorporates random effects, (pj., i=1,...,M, j=
1, ..., 3, to account for the impacts of unmeasured forces.

A stochastic differential equations model, in which the relevant parameters are described as random processes of
some appropriate form, is a logical extension of a deterministic ordinary differential equations model. This results in
a mixed system that contains both stochastic (diffusion part) ,/G;;(X j(t) —%;) - dWj(t), and deterministic (drift part),
(at; — BjIn(X;(r) — ¥;)) (X ;(t) — ¥;)dt, components, where, in contrast to equation (5), X;(#) is a stochastic process is a
stochastic process instead of a deterministic function. The deterministic component provides sigmoidal growth in tree
size variables and describes the growth pattern in which a tree begins slowly, increases in speed to an extremely fast rate,
and then slows down once again as it gets closer to maturity. The diffusion component, which produces the diffusion rate,
demonstrates that process volatility fluctuates according to the present state of the tree size variable rather than remaining
constant.

Applying the transformation Y(t) = (P In (Xi (1) — 1) , P In (X5 (1) — ) , P In (X5 (t) — 13)) " and Ito’s formula
[31], we can conclude that the trivariate lognormal distribution LN3 (u/(¢); £(t)) characterizes the solution (X{(r) — ¥,
Xi(t) — 1, Xi(t) — 13)" of our starting stochastic differential equation (1) and that the mean vector u'(z) is defined as
follows:

1— eiﬁl (tit())

By (1— ;i ©O1
R A CRUREY
i i i i T 1— e—ﬁz(f—fo) . (2%
p'(t) = (ﬂl (1), uy(2), ﬂ3(f)) = e P=0)In (5 —p) + T (O‘Z‘Hpé - 7) J (6)
e 1 — e Pslt—t0) . 033
e Psle ’O)ln(x30—y3)+T<a3+(p3—7>
the matrix X(#) of variance and covariance:
Ojk —(B; -
(1) = (vie(t)) = k(1 — e (Bithe) (=) ) , 7
()= (vix(1) ;41,3 (Bj+ﬁk ( € ) PR Q)

and the probability density function f (xi, x2, x3,7|6, @ ):
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. 1 )
f ’ P , 1 Ga(pl = 3 1 <_'Q' ) ) ‘7t|97(pl>7 (8)
1 1, 0 = O (o o) (e Gy P\ 2R ot 20 )
In(xi—7)— i) \ In(x1 — 1) — i (1)
Qx1,x2,x3,110,0) = | In(xa—p)—ps(t) | E@)"| In(xa—1p)—ui@) ©)
In(xs —15) — i (1) In (xs — y5) — (1)

All tree size variables (diameter, occupied area, and height) have lognormal-type univariate marginal distributions;
moreover, all distributions in two dimensions are also lognormal. The conditional univariate or bivariate distributions of
all tree size variables are also lognormal.

2.2 Dynamics of the mean tree volume

As a result of the above discussion, the mean tree volume in a stand for various scenarios of tree species (k € SP =
{p, s, b} = {pine, spruce, birch}), V%‘ (1), may be defined by utilizing the joint probability density function of tree diameter
and height:

/ / 100 fl'; (xl,X3,t|913, ((plk,(p3k))dx1dx3, i=1,...,M, (10)
i i 1 1 i i
Nie (xl’x3’ t] 615, (ol (P3k)) = T exp (-291f3 ('x]ax37 t] 65, (o, (Psk))) ;o (1D
270|203 (1) (x1 =) (33— 13)

In (1 —n) - ”.“)>T(zlg<t>>1 (ln(x“”)‘“ﬁ(”)

i o)) — I i
QlfS (xla X3, 1 | 91]{3’ ((Plkv (P3k)> - (ln (x3 ,},3) u;(t) In (x3 _ },3) —u;(t) (12)
. Vll(t) v13(t)
213(t) - ( V]3(t) V33(t) > ° (13)

In Equation (10), v¢(u, v) is the stem volume regression equation, which is based on a g-exponential function [32],

0f5, k € SP, is the vector of the fixed-effect parameters estimates (&T, o, %, %, Bi, B3, 011, 013, 033, OF, a) calculated

using an approximate maximum likelihood procedure [29], and using method in [29] calibrated random effects ((pi o (pé k)
were computed.
The g-exponential function of tree stem volume is defined as:

1

ve(u, v) = v [— (1—exp (1 —t3)u))] . °, keSP (14)

a, if a>0 . .
here [a]+ = ..~ 7 (1, m, 13) is the vector of evaluated parameters, and both u and v are measured in meters.
- 0, if a<0,
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Table 1 displays the least squares parameter estimates based on a sample size of a few hundred or a few thousand
trees that have been felled for different tree species. All the parameters are significant (p < 0.05).

Table 1. Parameter estimators (standard errors) of the individual-tree volume Eq. (14)

Tree species Number of trees T T T3
. 0.3269 1.0597 0.3711
Pine 1,914
(0.0285) (0.0195) (0.0046)
0.1701 1.2300 0.3459
Spruce 911
(0.0228) (0.0303) (0.0071)
. 0.2924 1.0452 0.3603
Birch 333
(0.0902) (0.0736) (0.0139)

2.3 Data collection and processing

Table 2. Summary statistics for tree size variables in the observed dataset

Tree species Variable Number of trees Min Max Mean St. Dev.

v (cm?) 6,774 3.03x107°° 4.002 0.41 0.472

t (year) 36,689 12.0 211.0 53.8 23.6
Pine d (cm) 36,689 0.1 60.9 19.2 9.5
p (m?) 36,689 0.1 124.2 10.1 8.1
h (m) 6,774 1.3 38.1 17.8 8.5

v (em?®) 3,485 2.83x 10766 4787 0.206 0.412

t (year) 18,738 8.0 206.0 62.7 223
Spruce d (cm) 18,738 0.2 63.6 122 8.0
p (m?) 18,738 0.1 160.2 9.4 8.2
I (m) 3,485 1.3 38.0 125 8.0

v (cm?) 510 1.57x 1076 1.891 0.245 0.301

1 (year) 3,270 11.0 127.0 50.9 19.8
Birch d (cm) 3270 0.8 50.2 15.4 8.7
p (m?) 3,270 0.3 173.8 102 8.7

I (m) 510 1.3 31.9 16.1 7.87

v (em?®) 10,796 2.83 x 10766 4.787 0.337 0.458

1 (year) 58,829 8.0 211.0 56.5 234
All d (cm) 58,829 0.1 63.6 16.8 9.6
p (m?) 58,829 0.1 173.8 9.9 8.1
I (m) 10,796 1.3 38.1 16.0 8.7
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Plot data were collected from 48 experimental sample plots of mixed-species pine (Pinus sylvestris), spruce (Picea
abies), and silver birch (Betula pendula Roth and Betula pubescens Ehrh) tree stands, which predominate in Lithuanian
forests, throughout the municipality of Kazly Riida in Lithuania between 1983 and 2020. The data from Kazly Rida
forests consisted of a range of afforestation time frames, which was a crucial criterion in the selection of simulation data.
The sample plots ranged in size from 0.16 to 0.72 hectares and were remeasured between 2 and 6 times at intervals of 2 to
37 years. In the first measurement cycle, how old the ith tree was (i from all trees to the tenth) was determined through the
growth core’s growth rings (considering even-aged stands, what is recorded). The diameter values were rounded to the
closest value of 1 mm, while the plane coordinates had a position accuracy of 1 dm. The height of nearly every fifth tree
was measured, with a measurement precision of about 1 dm. When the tree’s potentially available area was calculated,
the Voronoi diagram’s dynamics were considered [33]. For each tree in a plot, the area of the Voronoi polygon was used
to assess the potentially available area. Equation (14) was used to calculate the volume of each tree in a plot. Table 2
provides a summary of the measurements.

3. Results

One of the main challenges in forest modeling is properly forecasting long-term changes in the volume of individual
trees or whole stands via basic tree size variables such as diameter, height, age, and potentially available area, which are
crucial elements that influence tree growth and yield in a forest. The diffusion process described in section 2.1 and the
longitudinal remeasurements of trees of different species, ages, and sizes that have been observed allow us to obtain highly
accurate yield and growth dynamic curves for various tree species and to examine their features. It is necessary to address
the problem of random effects in stand development since stands individually evolve to natural environmental conditions
and random perturbations. Considering that the stochastic differential equation approach is used to evaluate a wide range
of compound multidimensional issues in numerous fields of mathematical modeling, including forestry, it is reasonable
to argue that it is a type of artificial intelligence.

3.1 Estimation of parameters

The estimation of parameters is required if we see the sample dataset in section 2.3 as a realization of a trivariate
stochastic process, the solution of which has an exact parametric probability density function described by Egs. (6)-(9).
The approximated maximum likelihood estimation procedure [29] for determining values for the fixed- and random-effects
parameters of the newly derived probability density function (8) is used in this section. The parameters are set to maximize
the approximated log-likelihood that the process described by the model forms the observed data. This work aims to
separately estimate the parameters of the tree diameter, potentially occupied area, and height development processes to
ensure fast convergence of the approximated maximum likelihood technique in the case of mixed effects scenario. The
estimates of the correlations, (P12, P13, P23), between the tree size variables and the volatility parameters, (671, 622, 033),
of the three separate SDE were used to calculate the estimates of the covariances, (612, 613, 023), as follows:

6 =/ Pububu, k=1,2, 1=2,3; k#l (15)

The parameter estimates (standard errors) calculated via the approximated maximum likelihood technique using the
data described in section 2.3 for both live and dying trees are displayed in Table 3. The diagonal components of the inverse
of the observed Fisher information matrix [34] were used to compute the standard errors of the parameter estimations. All
estimates of the parameters are significant (p < 0.05). For both live and dying trees, Table 4 displays the estimates of the
correlations (standard errors) between tree diameter (j = 1), potentially occupied area (j = 2), and height (j = 3). The

—p?
Vn—73

standard errors of the correlation coefficient estimates are calculated as

[35] (n is the number of observed trees).
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The intrinsic growth rates (@, 0, a3) represent the idealized growth dynamics per time unit, assuming exponential
population changes. Table 3 reveals that birch trees have the highest intrinsic rate of change in terms of tree diameter,
followed by spruce trees and then pine trees. According to Table 3, birch trees have the highest intrinsic rate of change in
relation to tree height, followed by pine trees and spruce trees. The stochastic differential equation’s volatility amplitudes
(v/O11, v/022, \/033) show how strong the random fluctuations are. Table 3 indicates spruce trees have the highest growth
process fluctuation in terms of diameter, followed by birch and then pine trees; spruce trees have the highest growth
process fluctuation in terms of height, followed by pine and then birch trees; and spruce trees have the highest growth
process fluctuation in terms of area occupied, followed by birch and then pine trees. Table 4 shows that for all tree species,
the highest correlation of tree size variables is between tree diameter and height, while tree diameter and height are almost
equally correlated with the area occupied by the tree.

Table 3. Parameter estimators (standard errors) computed from the SDE (1) for live and dying trees

Tree species Variable o; E, 7 s Gjj o;

Diameter 0.0905 0.0252 -6.3143 - 0.0051 0.0074
=1 (0.0006) (0.0002) (0.079) - (0.0001) (0.0011)

All Area 0.0578 0.0179 -1.3723 1.7773 0.0097 0.0099
(=2 (0.0005) (0.0002) (0.079) (0.0236) (0.0001) (0.0014)

Height 0.0655 0.0155 -28.358 - 0.0004 0.0024
(j=3) (0.001) (0.0003) (0.5052) - (1.3x107%) (0.0003)

Diameter 0.0815 0.0198 -20.086 - 0.0008 0.0027
(=1 (0.0005) (0.0001) (0.24) - (1.3x107%) (0.0004)

Pine Area 0.0633 0.0177 -1.9263 1.1978 0.0074 0.0083
(j=2) (0.0006) (0.0003) (0.045) (0.0291) (0.0001) (0.0012)

Height 0.1279 0.0358 -9.5142 - 0.0009 0.0052

(j=3) (0.0008) (0.0003) (0.2671) - (2.9x107%) (0.000)

Diameter 0.0967 0.0296 -1.5744 - 0.0098 0.0102
=1 (0.0011) (0.0005) (0.0583) - (0.0002) (0.0017)

Spruce Area 0.0568 0.018 -0.8857 2.1211 0.0131 0.01

(=2 (0.001) (0.0004) (0.054) (0.0482) (0.0003) (0.0017)

Height 0.0845 0.0245 -3.3976 - 0.0046 0.0065
(j=3) (0.0022) (0.0008) (0.2627) - (0.0003) (0.0012)

Diameter 0.1422 0.0427 -4.7118 - 0.0071 0.0158
=1 (0.0022) (0.0008) (0.1953) - (0.0003) (0.0025)

Birch Area 0.0585 0.0177 -2.0636 2.0184 0.0083 0.0093
(=2 (0.0026) (0.0011) (0.1909) (0.0083) (0.0005) (0.0015)

Height 0.1632 0.04 -37.454 - 0.0005 0.0051
(j=3) (0.0096) (0.0022) (0.125) - (4.3x107%) (0.0009)
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Table 3. (cont.)

Tree species Variable o; B Yi o G o;
Dying trees

Diameter 0.1813 0.0659 -1.2632 - 0.0192 0.0201
G=1 (0.0015) (0.0006) (0.0452) - (0.0004) (0.0029)

All Area 0.0555 0.0179 -0.8279 1.7773 0.0115 0.0112
(=2 (0.001) (0.0005) (0.0383) (0.0334) (0.0002) (0.0016)

Height 0.1228 0.0364 -3.1174 - 0.007 0.0113
G=1 (0.0025) (0.0009) (0.188) - (0.0004) (0.0017)

Diameter 0.1044 0.0292 -7.3251 - 0.0021 0.0067

=0 (0.0009) (0.0003) (0.1474) - (4.9 x107) (0.001)

Pine Area 0.0618 0.0181 -0.9726 1.1978 0.0095 0.0115
(=2 (0.0012) (0.0006) (0.0471) (0.0361) (0.0002) (0.0017)

Height 0.151 0.0395 -24.1669 - 0.0003 0.0046
(j=3) (0.0025) (0.0005) (0.8295) - (1.6 x 107%) (0.0007)

Diameter 0.1415 0.0564 -0.5799 - 0.0185 0.0233
G=1 (0.0027) (0.0013) (0.0552) - (0.0007) (0.0044)

Spruce Area 0.0539 0.018 -0.6066 2.1211 0.015 0.0102
(=2 (0.0021) (0.0011) (0.0734) (0.0804) (0.0007) (0.0021)

Height 0.1019 0.0297 -1.2044 - 0.0095 0.0135

(j=3) (0.0041) (0.0016) (0.1618) - (0.0009) (0.003)

Diameter 0.4667 0.1865 0.0487 - 0.0504 0.0937
G=0 (0.0232) (0.0096) (0.018) - (0.0018) (0.0305)

Birch Area 0.0554 0.0177 -2.8847 2.0184 0.0064 0.0091
(=2 (0.0055) (0.0024) (0.4101) (0.2102) (0.0007) (0.0016)

Height 0.3191 0.1108 -2.9596 - 0.0121 0.0454
(ji=3) (0.0211) (0.0066) (0.7469) - (0.0018) (0.0096)

Table 4. Estimators of the correlation coefficients (standard errors) between tree size variables (j = 1, 2, 3) for live and dying trees

Live tree Dying tree
Tree species
pi2 P13 P23 P12 P13 p23
All 0.4511 (0.0033)  0.9224 (0.0013)  0.4732 (0.0075)  0.4622 (0.0061)  0.942 (0.0017)  0.5114 (0.0109)
Pine 0.5179 (0.0038)  0.9198 (0.0019)  0.5099 (0.009)  0.5376 (0.0069)  0.9357 (0.0024)  0.5632 (0.0133)
Spruce 0.3732 (0.0063)  0.9487 (0.0017)  0.4376 (0.0137)  0.4234 (0.0116)  0.9551 (0.0022)  0.531 (0.0176)
Birch 0.336 (0.0155) 0.917 (0.0071)  0.2908 (0.0407)  0.2155(0.0287)  0.906 (0.0134)  0.2013 (0.0717)
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3.2 Dynamics of mean tree volume

The dynamics of individual tree size variables are the outcome of interactions between trees’ neighbors and the
surrounding environment, including physical site characteristics, climate changes, air pollution, insect damage, and
other factors. To forecast future wood supply and assortment, as well as those associated with sustainable forest stand
management, the mean tree volume dynamics must be formalized. The dynamics of a tree’s mean volume in a forest
stand can be described by the age-dependent relationship, which is defined by Equation (10). Tables 3 and 4 are used to
obtain the fixed effect parameters. Furthermore, the mean tree volume equation for mixed-species stands is written with
the relative composition of different tree species considered as follows:

VE(t) = kiVE(t) + kaVi (1) + ks VP(2) (16)

where k| is the proportion of pine trees, & is the proportion of spruce trees, and k3 is the proportion of birch trees. Since
the g-exponential function (14) and the lognormal probability density function (11) are continuously differentiable in
R, the integral (10) exists and has derivatives of the first and second orders. Unfortunately, the integral (10) cannot be
expressed in an explicit form, hence all computations are conducted using numerical methods. The dynamics of the live
and dying tree’s mean volume, as defined by Equation (10), as well as its current volume increment, cail} (t), and mean
volume increment, mai% (t), relative increment, rai%(t), and growth acceleration, ga% (), across the age are defined by:

cat (1) = S vEQ), (17
p Vi ()

maiy(t) = Tt , (18)
k d k

raip(t) = aln (VT(I)) , (19)
Koy 4

gar(1) = T (2)- (20)

4. Discussion

Figures 1 and 2 were created to illustrate the distinct growth characteristics of living and dying trees, and to visually
demonstrate the evolution of mixed-species forest stands using the given tree size variables (diameter, potentially occupied
area, and height). Numerous recent studies have suggested that mixed-species forests may differ significantly from
monocultures in terms of growth and structure [36, 37]. In a scenario with fixed effects, where random effects are set to
zero, Figure 1 shows the trajectories of the live tree’s mean volume, as defined by Eq. (16), as well as its current volume
increment, cai%(t), and mean volume increment, maik.(¢), relative increment, rai% (t), and growth acceleration, ga(¢),
across the age. A comparison of the mean tree volume trajectories of living and dying trees in Figures 1L1 and 1D1 reveals
that the volumes of living trees were almost twice as large as those of falling trees. The newly proposed nonlinear model,
as given by Eq. (16), has a continuous-time formulation, a sigmoidal shape, and an asymptotic final volume size under
both cases of live and dying trees. The implicit (and, in most cases, irrational) assumption that growth never stops is made

by non-asymptotic models [38, 39]. As determined by Equation (16), the inflection point of the mean tree volume curve is
Vi(66)  0.4995 0.331

Vi(+e0) 15094
The volume’s current annual increment for dying trees peaks earlier (approximately in 55 years), but for surviving trees,

located at approximately 33% of the asymptotic volume, as shown in Figures 111 and 1L4:
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it peaks at approximately 65 years, as shown in Figures 1L2 and 1D2. On the other hand, dying trees demonstrate almost
two times lower current annual volume increment than live trees do, as illustrated in Figures 1L.2 and 1D2. In addition,
Figures 1L.2 and 1D2 demonstrate that the volume’s current annual increment for living trees approaches the mean annual
increment (approximately in 105 years) later than that for dying trees (approximately in 85 years). The relative increase
in the volume of living and dying trees remained similar over time, as shown in Figures 1L3 and 1D3. Furthermore, as
shown in Figures 1L4 and 1D4, the volume growth acceleration (see [38]) of living trees is considerably faster than that
of dying trees, and it peaks for both types of trees at roughly the same age (approximately 30 years).

To evaluate the influence of tree size variables, such as height, diameter, and potentially available area, Figure 2
shows the mean tree volume current increment trajectory as a function of the mean tree size variable. The tree volume’s
current annual increment of living trees over the mean tree diameter, potentially occupied area, and height peaks far
sooner than that of dying trees, as seen when comparing Figures 2L1-3 and 2D1-3. Figure 2 shows that the maximum tree
volume’s current annual increment of living trees (0.0142 m>yr~!) is almost twice that of dying trees (0.0081 m>yr—").
When investigating how the mean tree diameter affects the tree volume’s current annual increment, we find that the tree
volume’s current annual increment of living trees peaks considerably later (20 cm), whereas the volume’s current annual
increment of dying trees peaks at 13 cm (see Figures 2L1 and 2D1). It should be emphasized that the situation is similar
when examining how a mean tree’s height and potentially occupied area affect the current annual volume increment.
Specifically, living trees peak at 11.5 m? in terms of the mean potentially occupied area, while dying trees peak at 8 m?,
living trees peak at 20.5 m, and dying trees peak at 17.5 m in mean height (see Figures 21.2-3 and 2D2-3).

It makes practical sense to examine the degree to which the growth of different tree species varies in this experimental
area. Plot data were collected from experimental sample plots of pine (Pinus sylvestris), silver birch (Betula pendula Roth
and Betula pubescens Ehrh), and spruce (Picea abies) tree stands that were either pure or mixed species. The examination
of Figure 3 validates the general information discussed in Figures 1 and 2. We highlight the most obvious and significant
differences in the development processes of different species of trees. The highest asymptote of the mean tree volume
for living pine species trees is approximately 1.8 m?, followed by spruce trees at approximately 0.6 m? and birch trees at
approximately 0.5 m?, as shown in Figures 3P1, 3S1, and 3B1. The mean tree volume of dead trees has asymptotes of 0.8
m3, 0.4 m3, and 0.1 m? for pine, spruce, and birch trees, respectively, which are much smaller than those of living trees
(see Figures 3P1, 3S1, and 3B1). Pine and spruce peak in the current annual increment of live trees at approximately the
same age of 65, whereas birch peaks at 35 (see Figures 3P2, 3S2, and 3B2). Furthermore, the current annual increment of
all tree species is substantially lower for dying trees than for living trees, as shown in Figures 3P2, 3S2, and 3B2. Based on
an investigation of the growth acceleration of all the tree species displayed in Figures 3P3, 3S3, and 3B3, we can deduce
that the inflection point of a tree volume growth curve for dying trees occurred much earlier than that of living trees.

Because the study characterizes tree growth in terms of a three-dimensional (tree height, diameter, and occupied area)
diffusion process, it makes sense to examine the degree to which tree size components affect tree volume growth rates.
Overall, Figure 4 shows that the asymptotes of the tree size component trajectory of all variables (diameter, occupied
area, and height) of living trees are significantly greater than those of dying trees. Figure 4 shows that the volume growth
rate of live trees is the highest for the pine species and the lowest for the spruce species. The rate of the current annual
increment in the volume of dying trees was the highest for trees of the pine species and the lowest for trees of the spruce
species (see Figure 4 in red). Figures 4P1-3 show that the current annual increment in the volume of live trees for the pine
species peaks at a mean tree diameter of approximately 28 cm, a mean potentially occupied area of approximately 12.5 m?,
and a mean tree height of approximately 24 m. Figures 4S1-3 demonstrate that the tree volume current annual increment
for live spruce peaks at lower mean tree size variables than that of pine, namely, at a mean diameter of approximately
14 cm, a mean occupied area of approximately 10.5 m?, and a mean height of approximately 17 m. The current annual
increment in the volume of live trees for birch species, as shown in Figures 4B1-3, peaks on average earlier than that for
other species. This peak has a mean height of approximately 15 m, a mean occupied area of approximately 6.5 m?, and a
mean diameter of approximately 12.2 cm. In general, Figure 4 allows us to conclude that, for all tree size variables, the
volume current increment of dying trees peaks far earlier than that of living trees.
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Figure 1. Trajectories of the mean tree volume and its growth for mixed species: (L1, L2, L3, L4) the case of live trees; (D1, D2, D3, D4) the case of
dying trees; (L1, D1) the mean tree volume dynamics; (L2, D2) the current (solid line) and mean (dotted line) annual increments of the mean volume of
trees; (L3, D3) the relative increments of the mean volume of trees; (L4, D4) the growth accelerations of the mean volume of trees; the mean observed

tree volume of th