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Abstract: In this paper, we study a class of nondifferentiable bilevel optimization problems in which uncertainty is
incorporated through both the upper- and lower-level constraints. By utilizing an optimal value reformulation, we reduce
the original hierarchical model to an equivalent single-level nonsmooth optimization problem. Under the assumptions
that the objective function is ∂c-pseudoconvex and the constraints are ∂c-quasiconvex, both characterized using Clarke
subdifferentials, we derive sufficient optimality conditions for the reformulated problem. Moreover, we develop a Mond-
Weir-type dual corresponding to the original bilevel model and derive several duality results under the same generalized
convexity framework. To demonstrate the practical relevance of our theoretical contributions, we provide numerical
examples of nonsmooth bilevel optimization problems in which uncertainty affects both the upper-level and lower-level
constraints.
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1. Introduction
Many real-world optimization problems incorporate uncertainties; they might arise from measurement or manu-

facturing errors, incomplete information, and various fluctuations or disturbances. Due to that, there has been a high
interest in taking up optimization problems under which uncertain data are presented. Robust optimization [1, 2] is one of
themost effectiveways to approach such a kind of difficulty; it seeks for solutions that can survive theworst-case scenarios
caused by data uncertainty. Over the years, robust optimization has attracted much interest from researchers exploring
theoretical problems and practical applications as seen in studies such as [3–12]. Recent contributions have significantly
advanced the study of optimization under uncertainty and robustness from various perspectives. Thuy and Su [8]
investigated robust optimality conditions and duality in nonsmooth multiobjective fractional semi-infinite programming
problems under data uncertainty. Hung et al. [9] analyzed robust optimization problems involving intersections of closed
sets, deriving corresponding optimality and duality results. Beck et al. [10] provided a comprehensive survey on bilevel
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optimization under uncertainty, highlighting key challenges and developments in the field. Saini et al. [11] examined
robust bilevel programming problems, establishing both optimality conditions and duality results. Similarly, Gadhi and
Ohda [12] proposed sufficient optimality conditions for robust multiobjective problems, further enriching the theoretical
foundation of robust optimization.

Bilevel programming is a prominent topic in contemporary optimization, driven by extensive applications across
finance, economics, chemistry, and logistics. It models hierarchical decision making with two tiers: an upper-level leader
problem and a lower-level follower problem, where the upper-level constraints depend on the solution set of the lower-
level task. Over time, researchers have shown growing enthusiasm for bilevel programming [13–21]. Several recent
studies have contributed significantly to the development of bilevel optimization theory and its applications. Chuong
[16] analyzed nonsmooth multiobjective bilevel problems and derived optimality conditions, while Dempe [17] provided
a comprehensive account of bilevel optimization, covering theoretical foundations, algorithms, and applications. Gadhi
and Ohda [18, 19] addressed bilevel optimization by establishing necessary optimality conditions through approximation
and applying tangential subdifferentials. Idrissi et al. [20] further advanced this area by employing directional upper
semi-regular convexificators to derive optimality results. Dardour et al. [21] investigated primal and dual second-order
necessary conditions for bilevel programming, offering a deeper understanding of higher-order analysis.

For each index r ∈ R = {1, 2, . . . , p} and s ∈ S = {1, 2, . . . , q}, we consider nonempty, convex, and compact sets
Ωr ⊆ Rmr and Λs ⊆ Rms , where mr and ms are positive integers representing the dimensions of the respective Euclidean
spaces.

Our investigation focuses on a bilevel optimization problem (BP) of the following form:

(BP):


min
z, k

Γ(z, k)

subject to Tr(z, ξr)≤ 0, ∀ r ∈ R, k ∈ F0(z)

where ξr ∈ Ωr, r ∈ R = {1, 2, . . . , p} are uncertain parameters. For each z ∈ Rn1 , the parametric optimization problem
(BPz) admits a set of solutions, denoted by F0(z),

(BPz):


min
k

ϒ(z, k)

subject to ζs
(
(z, k), ρs

)
≤ 0, ∀ s ∈ S ,

where ρs ∈ Λs, s ∈ S = {1, 2, . . . , q} are uncertain parameters, Γ, ϒ: Rn1 ×Rn2 −→ R, Tr: Rn1 ×Ωr −→ R, r ∈ R

and ζs: Rn1 ×Rn2 ×Λs −→ R, s ∈ S are given functions, where p, q, n1 and n2 are integers. Note that uncertainty
affects both upper- and lower-level constraints.

In this case, a robust strategy will be employed, which involves solving the bilevel optimization problem (BP)

through its robust counterpart (RC BP), defined as follows:

(RC BP):


min
z, k

Γ(z, k)

subject to Tr(z, ξr)≤ 0, ∀ ξr ∈ Ωr ∀ r ∈ R, k ∈ F(z),

where, for each z ∈ Rn1 , the parametric optimization problem (RC BPz) admits a set of solutions, denoted by F(z),
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(RC BPz):


min
k

ϒ(z, k)

subject to ζs
(
(z, k), ρs

)
≤ 0, ∀ ρs ∈ Λs, ∀ s ∈ S .

It is important to highlight that the robust counterpart is designed to handle the worst-case scenario caused by
uncertainty, without explicitly depending on the uncertain parameters. Let

G : =
{
(z, k) ∈ Rn1 ×Rn2 : Tr(z, ξr)≤ 0, ∀ ξr ∈ Ωr ∀ r ∈ R, k ∈ F(z)

}
(1)

is the feasible set of (RC BP).
A pair (z̃, k̃) is called a robust feasible solution of (BP), if it satisfies the feasibility conditions of its robust

counterpart (RC BP). Furthermore, a vector (z̃, k̃) ∈ G is called a robust optimal solution of (BP) if

Γ(z, k)−Γ(z̃, k̃)≥ 0 ∀(z, k) ∈ G . (2)

The study of robust bilevel optimization has gained significant attention in recent years due to its ability to address
hierarchical decision-making under uncertainty. Gadhi and Ohda [22] examined this challenge and derived necessary
optimality conditions by reformulating the bilevel model into a nonsmooth single-level program. They utilized Clarke
subdifferentials and introduced appropriate constraint qualifications, providing a solid foundation for analyzing robust
bilevel problems. Following this, Pandey et al. [23] established stabilized sufficient optimality conditions andWolfe-type
duality results under the assumptions of convexity. Their work extended the theoretical framework beyond just necessary
conditions. However, the reliance on convexity significantly limits the applicability of these results, as many practical
bilevel problems involving uncertainty do not meet such stringent structural assumptions.

To address this gap, the present work develops sufficient conditions for optimality together with Mond-Weir-type
duality results for robust bilevel optimization problems based on the weaker assumptions of ∂c-pseudoconvexity and
∂c-quasiconvexity. By relaxing the requirement for convexity, our results generalize existing research and broaden the
applicability of robust bilevel optimization theory to a wider range of uncertain and nonsmooth models.

This paper aims to establish sufficient optimality and duality results for the bilevel optimization problem (BP) by
employing Clarke subdifferentials within the framework of robust optimization. To achieve this, we first reformulate the
bilevel problem into an equivalent single-level problem using the optimal value function of the lower-level problem,
thereby preserving the structure and solution characteristics of the original model. Building upon the necessary
optimality conditions provided in [22], and utilizing the notions of ∂c-pseudoconvexity and ∂c-quasiconvexity, we derive
sufficient optimality conditions for (BP). Additionally, we develop a Mond-Weir-type dual problem based on
the primal formulation, incorporating Clarke subdifferentials of the associated nonsmooth functions. Several duality
theorems are then established under generalized convexity assumptions defined via Clarke subdifferentiability. To
make the effectiveness of the results concrete, a representative example is presented. As far as we are aware, no prior
work has provided sufficient optimality results alongside Mond-Weir-type duality for bilevel optimization problems
without requiring concavity assumptions, particularly in the presence of uncertainty at both hierarchical levels using ∂c-
pseudoconvex and ∂c-quasiconvex assumptions.

The structure of this paper is as follows. Section 2 establishes the foundational definitions and preliminary results
required for our analysis. Section 3 is dedicated to deriving sufficient optimality conditions for robust solutions. Following
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this, Section 4 proposes a Mond-Weir-type dual model and establishes duality theorems under assumptions of generalized
convexity. We conclude with a summary of findings in the final section.

2. Preliminaries
The following section establishes the fundamental mathematical framework for this analysis. We define Rn as n-

dimensional Euclidean space. The inner product in this space is denoted by 〈·, ·〉, the closed line segment connecting two
points a, b ∈ Rn is written as [a, b] = {µa+(1−µ)b: 0 ≤ µ ≤ 1}, while the open line segment from a ∈ Rn to b ∈ Rn is
denoted by (a, b) = {µa+(1−µ)b: 0 < µ < 1}.

For a nonempty subsetC⊆Rn, we denote the topological boundary, topological interior, convex hull, closure, convex
cone (including the origin), and cone of C by bdC, intC, coC, clC, posC, and coneC, respectively.

The negative polar cone and the strictly negative polar cone of C are defined, as follows:
(i) C◦: =

{
ρ ∈ Rn: 〈ρ, κ〉 ≤ 0, ∀ κ ∈ C

}
.

(ii) Cs: =
{

ρ ∈ Rn: 〈ρ, κ〉< 0, ∀ κ ∈ C\{0}
}
.

It is straightforward to see that Cs ⊂ C◦ and when Cs 6= /0, we have clCs = C◦. Moreover, by the bipolar theorem (see,
for example, [24]), it follows that C◦◦ = cl coneC.

A function Γ: E ⊂ Rn → R∪{+∞} is called locally Lipschitz around z̄ ∈ domΓ: = {z ∈ Rn | Γ(z) ∈ R} if there is
an open neighborhood N of z̄ and C > 0 (called the Lipschitz constant) such that,

|Γ(z)−Γ(k)| ≤C‖z− k‖, ∀z, k ∈ N ,

where ‖ · ‖ denotes the standard Euclidean norm in Rn.
Definition 1 [25] Let z̄ ∈ Rn. For a locally Lipschitz Γ: Rn → R, the Clarke directional derivative at z̄ in direction

δ ∈ Rn is defined by

Γ◦(z̄; δ ): = limsup
z→z̄
µ↓0

Γ(z+µδ )−Γ(z)
µ

. (3)

The Clarke subdifferential of Γ at z̄, denoted by ∂cΓ(z̄), is given by:

∂cΓ(z̄): =
{

κ∗ ∈ Rn:
〈
κ∗, δ

〉
≤ Γ◦(z̄, δ ) ∀ δ ∈ Rn}. (4)

We recall the following properties from [25], which will be used in the subsequent analysis.
Lemma 1 [25] Let Γ: Rn → R be a function that is locally Lipschitz near a point z̄ ∈ Rn. Then the following

properties hold:
(i) The Clarke directional derivative Γ◦(z̄; δ ) is finite for all δ ∈ Rn, and satisfies:
• Γ◦(z̄; 0) = 0,
• Γ◦(z̄; δ ) is positively homogeneous and subadditive in δ ,
• Γ◦(z̄; δ ) = maxκ∗∈∂cΓ(z̄)〈κ∗, δ 〉,
• ∂ (Γ◦(z̄; ·))(0) = ∂cΓ(z̄), where ∂ represents the subdifferential as defined in convex analysis.
(ii) The Clarke subdifferential ∂cΓ(z̄) is a nonempty, compact, and convex subset of Rn.
(iii) If φ is also a locally Lipschitz function near z̄, then:
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∂c(Γ+φ)(z̄)⊆ ∂cΓ(z̄)+∂cφ(z̄).

(iv) ∂c(α Γ)(z̄) = α ∂cΓ(z̄), ∀α ∈ R.
(v) If Γ is convex, then ∂cΓ(z̄) = ∂Γ(z̄) in the usual sense of convex analysis. If Γ is continuously differentiable at z̄,

then: ∂cΓ(z̄) = {∇Γ(z̄)}.
(vi) If Γ is locally Lipschitz on Rn, then the mapping z 7→ ∂cΓ(z) is upper semicontinuous set-valued function.
(vii) If Γ is locally Lipschitz on an open set containing [x, y], then

Γ(x)−Γ(y) = 〈x∗, y− x〉

for some a ∈ (x, y) and x∗ ∈ ∂cΓ(a).

3. Sufficient optimality conditions
Let (z, k) ∈ Rn1 ×Rn2 . Define the functions:

Φr(z): = max
ξr∈Ωr

Tr(z, ξr), for all r ∈ R, (5)

Ψs(z, k): = max
ρs∈Λs

ζs
(
(z, k), ρs

)
, for all s ∈ S . (6)

These functions act as technical tools to handle the uncertainty present in both the upper and lower-level constraints of
the bilevel optimization problem (BP). Using these formulations, the bilevel problem (RC BP) may be equivalently
rewritten as:


min
z, k

Γ(z, k)

subject to Φr(z)≤ 0, ∀ r ∈ R, k ∈ F(z),

where, for each z ∈ Rn1 , F(z) denotes the solution set of the following parametric optimization problem


min
k

ϒ(z, k)

subject to Ψs(z, k)≤ 0, ∀ s ∈ S .

To proceed, we impose the following assumptions.
Let
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∆: = {z ∈ Rn1 | Tr(z, ξr)≤ 0, ∀ ξr ∈ Ωr ∀ r ∈ R}.

• Assumption (K ) is said to hold for z̄ ∈ ∆ if there exists an open neighborhood ℵz̄ of z̄ such that:
� (K1): For each fixed z ∈ ℵz̄, the function ξr ∈ Ωr 7−→ Tr(z, ξr) ∈ R is upper semicontinuous. Moreover, Tr

is Lipschitz continuous in the first argument on ℵz̄, that is there exists a constant Cr > 0 such that

∣∣Tr(z0, ξr)−Tr(z1, ξr)
∣∣≤ Cr‖z0 − z1‖, ∀z0, z1 ∈ ℵz̄, ∀ξr ∈ Ωr. (7)

� (K2): The multifunction

(z, ξr) ∈ ℵz̄×Ωr ⇒ ∂cTr(·, ξr)(z)⊂ Rn1

is closed at every point (z̄, ξ̄r), with ξ̄r ∈ Ωr(z̄), where

Ωr(z̄): =
{

ξr ∈ Ωr | Tr(z̄, ξr) = Φr(z̄)
}
. (8)

• Assumption (V ) is said to hold at a point (z̄, k̄) ∈ G , if there exist open neighborhoods ℵz̄ and ℵk̄ of z̄ and k̄,

respectively, such that:
� (V1): For each (z, k) ∈ ℵz̄×ℵk̄, the function v ∈ Λs 7−→ ζs

(
(z, k), v

)
∈ R is upper semicontinuous. In addition,

ζs is Lipschitz continuous in the first argument on ℵz̄×ℵk̄, that is there exists a constant Ds > 0 such that

∣∣ζs((z0, k0), ρs

)
−ζs

(
(z1, k1), ρs

)∣∣≤ Ds‖(z0, k0)− (z1, k1)‖

∀ (z0, k0), (z1, k1) ∈ ℵz̄×ℵk̄, ∀ ρs ∈ Λs. (9)

� (V2): The multifunction

(
(z, k), ρs

)
∈
(
ℵz̄×ℵk̄

)
×Λs ⇒ ∂cζs(·, ρs)(z, k)⊂ Rn1 ×Rn2

is closed at every point
(
(z̄, k̄), ρ̄s

)
, where ρ̄s ∈ Λs(z̄, k̄), and

Λs(z̄, k̄): =
{

ρs ∈ Λs | ζs
(
(z̄, k̄), ρs

)
= Ψs(z̄, k̄)

}
. (10)

It is important to note that under assumptions (K1) and (V1), together with the compactness of the sets Ωr for all
r ∈ R and Λs for all s ∈ S , the functions defined in (5) and (6) are well-defined and locally Lipschitz. Specifically, they
are Lipschitz continuous with constants Cr (for each r ∈ R) and Ds (for each s ∈ S ), respectively (see, for instance, [25,
p.86]. Assumption (K1) has been widely used in the literature for studying the subdifferential properties of supremum (or
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maximum) functions over compact sets. This can be seen in various references such as [26–29] as well as in the citations
they include.

Outrata [30] demonstrated that the problem (RC BP) can be equivalently reformulated as the following single-level
optimization problem:

(S P)∗:



min
z, k

Γ(z, k)

subject to Φr(z)≤ 0, ∀ r ∈ R,

Ψs(z, k)≤ 0, ∀ s ∈ S ,

φ(z, k)≤ 0,

(z, k) ∈ Rn1 ×Rn2

where

φ(z, k): = ϒ(z, k)− v(z),

and for each z ∈ Rn1 ,

v(z) = min
k

{
ϒ(z, k): Ψs(z, k)≤ 0, ∀ s ∈ S

}

is the optimal value function of (RC BPz).

However, due to the nondifferentiability of the value function, the optimization problem (S P)∗ is generally
nonconvex and nonsmooth, even when all the functions involved are convex and continuously differentiable (see, for
example, [31]). Moreover, the Mangasarian-Fromovitz Constraint Qualification typically fails to hold for (S P)∗, owing
to its inherent bilevel structure (see, for instance, [32]). To address this challenge, we employ the partial calmness
technique introduced by Ye and Zhu [33].

Definition 2 [34] Let (z̄, k̄) be a local optimum of (RC BP). The problem (RC BP) is partially calm at (z̄, k̄) if
there exist d > 0 and a∗ > 0 such that, for all (z, k, z) ∈ Bd(z̄, k̄, 0) satisfying



Φr(z)≤ 0, r ∈ R,

Ψs(z, k)≤ 0, s ∈ S ,

φ(z, k)≤ z,

the following inequality holds: Γ(z, k)−Γ(z̄, k̄)+a∗|z| ≥ 0.
Remark 1 Partial calmness of (RC BP) at a local minimizer (z̄, k̄) implies that the mapping (z, k) 7−→ φ(z, k) acts

as a locally exact penalty function for problem (S P)∗ at the point (z̄, k̄); see [34, Lemma 3.1] for further details.
The idea of partial calmness is strongly connected to the notion of partial exact penalization, as highlighted by the

result established in [33].

Volume 7 Issue 1|2026| 371 Contemporary Mathematics



Theorem 1 [33] Suppose (z̄, k̄) is a local optimal solution of (RC BP). Then, (RC BP) is said to be partially
calm at (z̄, k̄) iff there exists a∗ > 0 such that (z̄, k̄) is a local optimal solution of the following partially penalized problem:

(S P)∗1



min
z, k

Γ(z, k)+a∗φ(z, k)

subject to Φr(z)≤ 0, r ∈ R,

Ψs(z, k)≤ 0, s ∈ S .

Let R: = {1, . . . , p+q}. Consider the functions ϕ : Rn1 ×Rn2 → R and Θ: Rn1 ×Rn2 → Rp+q defined by

ϕ(z, k): = Γ(z, k)+a∗φ(z, k)

and

Θr(z, k): =


Φr(z), if r= 1, . . . , p,

Ψr−p(z, k), if r= p+1, . . . , p+q.

Definition 3 [22]We say that the ExtendedNonsmoothMangasarian-Fromovitz Constraint Qualification (ENMFCQ)
is satisfied at a point (z̄, k̄) ∈ G if there exists a nonzero direction δ ∈ Rn1+n2\{0} such that

Θ◦
r

(
(z̄, k̄), δ

)
< 0, ∀ r ∈ R(z̄, k̄),

where the active index set R(z̄, k̄) is defined as:

R(z̄, k̄): =
{
r ∈ R: Θr(z̄, k̄) = 0

}
.

Gadhi and Ohda [22] have demonstrated the following result, which provides the necessary optimality conditions for
the bilevel optimization problem (BP).

Theorem 2 [22] Let (z̄, k̄) ∈ G . Assume that (ENMFCQ) holds at (z̄, k̄), and that Γ and ϒ are locally Lipschitz
continuous. Also, suppose that (RC BP) is partially calm at (z̄, k̄). If (z̄, k̄) is a local robust optimal solution of (BP),
then there exist x> 0, a∗ > 0, yr ≥ 0 for all r ∈ R, and fs ≥ 0 for all s ∈ S such that

(0, 0) ∈


x∂cΓ(z̄, k̄)+ xa∗∂cφ(z̄, k̄)+∑p

r=1 yr co

( ⋃
ξr∈Ωr(z̄)

∂cTr(·, ξr)(z̄)×{0}

)

+∑q
s=1 fs co

( ⋃
ρs∈Λs(z̄, k̄)

∂cζs
(
·, ρs

)
(z̄, k̄)

)


(11)
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and

yr max
ξr∈Ωr

Tr(z̄, ξr) = 0, r ∈ R, and fs max
ρs∈Λs

ζs
(
(z̄, k̄), ρs

)
= 0, s ∈ S . (12)

Before presenting the sufficient conditions for (BP), we first introduce certain convexity concepts inspired by Pham
[35].

Definition 4 We say that Γ is ∂c-pseudoconvex on G at (z̄, k̄) ∈ G if for all (z, k) ∈ G , there exist ϑ ∈ ∂cΓ(z̄, k̄) such
that

〈
ϑ , (z, k)− (z̄, k̄)

〉
≥ 0 =⇒ Γ(z, k)≥ Γ(z̄, k̄).

Definition 5 We say that Γ is strict ∂c-pseudoconvex on G at (z̄, k̄) ∈ G if for all (z, k) ∈ G , there exist ϑ ∈ ∂cΓ(z̄, k̄)
such that

〈
ϑ , (z, k)− (z̄, k̄)

〉
> 0 =⇒ Γ(z, k)> Γ(z̄, k̄).

Definition 6 We say that φ: Rn1 ×Rn2 −→ R, Tr: Rn1 ×Ωr −→ R, r ∈ R and ζs: Rn1 ×Rn2 ×Λs −→ R are
∂c-quasiconvex on G at (z̄, k̄) ∈ G if for all (z, k) ∈ G ,

φ(z, k)−φ(z̄, k̄)≤ 0 =⇒
〈

η , (z, k)− (z̄, k̄)
〉
≤ 0, ∀η ∈ ∂cφ(z̄, k̄),

ζs
(
(z, k), ρs

)
−ζs

(
(z̄, k̄), ρs

)
≤ 0 =⇒

〈
λs, (z, k)− (z̄, k̄)

〉
≤ 0, ∀λs ∈ ∂cζs

(
(z̄, k̄), ρs

)
, ∀ρs ∈ Λs(z̄, k̄), ∀ s ∈ S ,

Tr(z, ξr)−Tr(z̄, ξr)≤ 0 =⇒
〈

βr, (z, 0)− (z̄, 0)
〉
≤ 0, ∀βr ∈ ∂cTr(z̄, ξr), ∀ξr ∈ Ωr(z̄), ∀ r ∈ R.

We now establish sufficient optimality conditions for a feasible solution to be a robust optimal solution of the bilevel
optimization problem (BP).

Theorem 3 Let (z̄, k̄) ∈ G . Assume that Γ is ∂c-pseudoconvex at (z̄, k̄) on G , and that φ, ζs, s ∈ S and Tr, r ∈ R

are ∂c-quasiconvex at (z̄, k̄) on G , and that there exist x > 0, a∗ > 0, yr ≥ 0, r ∈ R and fs ≥ 0, s ∈ S , satisfying (11)
and (12). Then, (z̄, k̄) is a robust optimal solution of (BP).

Proof. Since (z̄, k̄) ∈ G satisfies (11) and (12), there exist x > 0, ϑ ∈ ∂cΓ(z̄, k̄), a∗ > 0, η ∈ ∂cφ(z̄, k̄), yr ≥
0, r ∈ R, ūri ≥ 0, βri ∈ ∂cTr(z̄, ξri), ξri ∈ Ωr(z̄), i ∈ Ir: = {1, . . . , nr}, nr ∈ N, and fs ≥ 0, s ∈ S , w̄s j ≥ 0, λs j ∈
∂cζs

(
(z̄, k̄), ρs j

)
, ρs j ∈ Λs(z̄, k̄), j ∈ Js: = {1, . . . , ns}, ns ∈ N, such that

nr

∑
i=1

ūri = 1,
ns

∑
j=1

w̄s j = 1,
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0 = x ϑ + xa∗η +
p

∑
r=1

yr

(
nr

∑
i=1

ūri βri

)
+

q

∑
s=1

fs

(
ns

∑
j=1

w̄s j λs j

)
(13)

and

yr max
ξr∈Ωr

Tr(z̄, ξr) = 0, r ∈ R, (14)

fs max
ρs∈Λs

ζs
(
(z̄, k̄), ρs

)
= 0, s ∈ S . (15)

- Since ξri ∈ Ωr(z̄),

Tr(z̄, ξri) = max
ξr∈Ωr

Tr(z̄, ξr), ∀ i ∈ Ir, ∀ r ∈ R.

Thus, it follows by (14) that

yrTr(z̄, ξri) = 0, ∀ i ∈ Ir, ∀ r ∈ R. (16)

And since ρs j ∈ Λs(z̄, k̄),

ζs
(
(z̄, k̄), ρs j

)
= max

ρs∈Λs

ζs
(
(z̄, k̄), ρs

)
, ∀ j ∈ Js, ∀ s ∈ S .

Thus, it follows by (15) that

fs ζs
(
(z̄, k̄), ρs j

)
= 0, ∀ j ∈ Js, ∀ s ∈ S . (17)

Using (z0, k0) ∈ G , and (z̄, k̄) ∈ G , we get the following relations

yrTr(z0, ξri)≤ yrTr(z̄, ξri) = 0 ∀ i ∈ Ir, ∀ r ∈ R,

fs ζs
(
(z0, k0), ρs j

)
≤ fs ζs

(
(z̄, k̄), ρs j

)
= 0, ∀ j ∈ Js, ∀ s ∈ S ,

φ(z0, k0)≤ φ(z̄, k̄) = 0.

(18)

Since Tr, r ∈ R, ζs, s ∈ S and φ are ∂c-quasiconvex at (z̄, k̄) on G , by Definition 6, the inequalities above yield,
respectively, for any βri ∈ ∂cTr(z̄, ξri), yr ≥ 0, r ∈ R, λs j ∈ ∂cζs

(
(z̄, k̄), ρs j

)
, fs ≥ 0, s ∈ S , and η ∈ ∂cφ(z̄, k̄),
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〈
yrβri, (z0, 0)− (z̄, 0)

〉
≤ 0 ∀ i ∈ Ir, ∀ r ∈ R,

〈
fsλs j, (z0, k0)− (z̄, k̄)

〉
≤ 0 ∀ j ∈ Js, ∀ s ∈ S ,

〈
η , (z0, k0)− (z̄, k̄)

〉
≤ 0.

(19)

As ūri ≥ 0, ∀ i ∈ Ir, ∀ r ∈ R, w̄s j ≥ 0, ∀ j ∈ Js, ∀ s ∈ S , x> 0 and a∗ > 0, therefore, the following inequality

〈
p

∑
r=1

( nr

∑
i=1

ūriyrβri

)
+

q

∑
s=1

( ns

∑
j=1

w̄s jfsλs j

)
+ xa∗η , (z0, k0)− (z̄, k̄)

〉
≤ 0 (20)

holds for any βri ∈ ∂cTr(z̄, ξri), r ∈ R, ξri ∈ Ωr(z̄), λs j ∈ ∂cζs
(
(z̄, k̄), ρs j

)
, s ∈ S , ρs j ∈ Λs(z̄, k̄) and η ∈ ∂cφ(z̄, k̄).

From (13), we can write

−

〈
xϑ , (z0, k0)− (z̄, k̄)

〉
=

〈
p

∑
r=1

( nr

∑
i=1

ūriyrβri

)
+

q

∑
s=1

( ns

∑
j=1

w̄s jfsλs j

)
+ xa∗η , (z0, k0)− (z̄, k̄)

〉
≤ 0. (21)

That is

〈
xϑ , (z0, k0)− (z̄, k̄)

〉
≥ 0.

Also, since x> 0, we obtain

〈
ϑ , (z0, k0)− (z̄, k̄)

〉
≥ 0, ∀ ϑ ∈ ∂cΓ(z̄, k̄). (22)

Since Γ is a ∂c-robust pseudoconvex at (z̄, k̄) on G , from (22),

=⇒ Γ(z0, k0)−Γ(z̄, k̄)≥ 0, ∀ (z0, k0) ∈ G . (23)

Which shows that (z̄, k̄) is a robust optimal solution of (BP).
Remark 2 A similar result can be derived for robust optimal solutions by assuming the strict ∂c-pseudoconvexity

of Γ, in place of mere ∂c-pseudoconvexity.
To illustrate the optimality conditions derived in this section, we present a concrete example of a bilevel optimization

problem.
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Example 1 Let Ω1 =
[
0, 1
]
, Λ1 =

[
0, 1
]
, Γ(z, k) = 1

2 |z|+
1
2 |k|+z+ 1

2 k,T1(z, ξ1) = 1−expz−ξ1, ϒ(z, k) = 5
4 |z|+k

and ζ1
(
(z, k), ρ1

)
= k2−k−ρ1

2 (Figure 1). Consider the following nondifferentiable bilevel optimization problem defined
by

(E H ):



min
z, k

Γ(z, k)

subject to T1(z, ξ1)≤ 0,

(z, k) ∈ R×R, k ∈ F0(z),

where for each z ∈ Rn1 , the parametric optimization problem (E H z) has a set of solutions denoted by F0(z)

(E H z):


min
k

ϒ(z, k)

subject to ζ1
(
(z, k), ρ1

)
≤ 0,

with ξ1 ∈ Ω1 and ρ1 ∈ Λ1.

Figure 1. The graph of the objective function Γ(z, k) = 1
2 |z|+

1
2 |k|+ z+ 1

2 k considered in Example 1

⋆ The robust counterpart of (E H ) is the bilevel optimization problem

Contemporary Mathematics 376 | Tareq Saeed, et al.



(RE H ):



min
z, k

Γ(z, k)

subject to T1(z, ξ1)≤ 0, ∀ ξ1 ∈ Ω1,

k ∈ F(z),

where for each z ∈ Rn1 , the parametric optimization problem (RE H z) has a set of solutions denoted by F(z)

(RE H z):


min
k

ϒ(z, k)

subject to ζ1
(
(z, k), ρ1

)
≤ 0, ∀ ρ1 ∈ Λ1.

- In this case, we have R = {1}, S = {1}, F(z) = {0}, v(z) = 5
4 |z| and

Φ1(z) = max
ξ1∈Ω1

T1(z, ξ1) = 1− expz,

Ψ1(z, k) = max
ρ1∈Λ1

ζ1
(
(z, k), ρ1

)
= k2 − k,

φ(z, k) = k.

As a consequence,

G =
{
(x, 0) ∈ R×R | x ∈ R+

}
,

where G is shown in Figure 2, and

Θ1(z, k) = 1− expz, Θ2(z, k) = k2 − k.

Observe that (z̄, k̄) = (0, 0) ∈ G and that Assumption (K ) and (V ) are satisfied for z̄ and (z̄, k̄), respectively.
Furthermore, we have

Ω1(z̄) = {0}, Λ1(z̄, k̄) = {0}, and R(z̄, k̄) = {1, 2}.

Remark that
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∂cΓ(z̄, k̄) =
{(3

2
, 0
)
,
(3

2
, 1
)
,
(1

2
, 0
)
,
(1

2
, 1
)}

, ∂cφ(z̄, k̄) = {(0, 1)},

∂cT1(·, 0)(z̄) = {−1} and ∂cζ2
(
(·, ·), 0

)
(z̄, k̄) = {(0, −1)}.

Figure 2. The feasible region G =
{
(x, 0) ∈ R×R | x ∈ R+

}
, considered in Example 1

⋆ Note that Γ(·, ·) is ∂c-pseudoconvex at (z̄, k̄), that φ(·, ·), T1(·, ξ1) and ζ1
(
(·, ·), ρ1

)
are ∂c-quasiconvex at (z̄, k̄).

- The constraint qualification (ENMFCQ) is satisfied at the point (z̄, k̄). Specifically, by selecting δ = (δ1, δ2) =

(2, 1) 6= (0, 0), we obtain

Θ◦
1
(
(z̄, k̄), δ

)
=−δ1 =−2 < 0

Θ◦
2
(
(z̄, k̄), δ

)
=−δ2 =−1 < 0.

- (RE H ) is partially calm at (z̄, k̄). Indeed, for d = 1 > 0 and a∗ = 2 > 0 and (z, k, z) ∈ Bd(0, 0, 0) satisfying

Φ1(z) = 1− expz≤ 0,

Ψ1(z, k) = k2 − k≤ 0,

φ(z, k) = k≤ z,

we have
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Γ(z, k)−Γ(z̄, k̄)+a∗|z|= 1
2
|z|+ 1

2
|k|+ z+

1
2
k+2|z|

=
1
2
|z|+ 1

2
|k|+ z+

1
2
k+2|k| ≥ 0.

⋆ For x= 1
3 , a∗ = 2, y1 =

1
2 and f1 = 2

3 . As a result, inclusion (11) and equality (12) are valid.
Hence, Theorem 3 implies that (z̄, k̄) is a robust optimal solution of the problem (E H ).

Algorithm 1. A method for determining robust optimal solutions to the problem (BP)

Step 1. Provide Problem Data
Start by supplying the input data for the given (BP) problem:
• Input Γ(·, ·), ϒ(·, ·), Tr(·, ξr), ξr ∈ Ωr, r ∈ R and ζs

(
(·, ·), ρs

)
, ρs ∈ Λs, s ∈ S .

Step 2. Identify the Feasible Set
• Construct the feasible region as follows:

G : =
{
(z, k) ∈ Rn1 ×Rn2 : Tr(z, ξr)≤ 0, ∀ ξr ∈ Ωr ∀ r ∈ R, k ∈ F(z)

}
.

Step 3. Select a Feasible Point
• If the feasible set G is empty, terminate the algorithm.
• Otherwise, choose any point (z̄, k̄) ∈ G , and update the feasible set by removing this point: G = G \{(z̄, k̄)}.
Step 4. Check the functions are locally Lipschitz continuous
• Verify whether each functions Γ(·, ·), ϒ(·, ·), Tr(·, ξr), ξr ∈ Ωr, r ∈ R and ζs

(
(·, ·), ρs

)
, ρs ∈ Λs, s ∈ S are

locally Lipschitz continuous at (z̄, k̄).
• If all functions are locally Lipschitz continuous at (z̄, k̄), proceed to Step 5.
• If any function fails this condition, return to Step 3.
Step 5. Verify Clarke subdifferentiability
• Compute the Clarke subdifferential of each function at (z̄, k̄).
Step 6. Choose arbitrary subdifferentials
Choose arbitrary elements from the subdifferentials:
• ϑ ∗ ∈ ∂cΓ(z̄, k̄), η∗ ∈ ∂cφ(z̄, k̄), β ∗

ri ∈ ∂cTr(z̄, ξri), r ∈ R and λ ∗
s j ∈ ∂cζs

(
(z̄, k̄), ρs j

)
, s ∈ S .

Step 7. Check the Extended Nonsmooth Mangasarian-Fromovitz Constraint Qualification (ENMFCQ)
• If the Extended Nonsmooth Mangasarian-Fromovitz constraint qualification holds at (z̄, k̄), proceed to the next step.
• If not, return to Step 3.
Step 8. Verification of KKT Conditions
Attempt to find multipliers x> 0, a∗ > 0, yr ≥ 0 for all r ∈ R, and fs ≥ 0 satisfy (11) and (12):
• If such multipliers can be found, then (z̄, k̄) is a local robust optimal solution of (BP).
• If not, return to Step 3.
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Step 9. Verify ∂c-pseudoconvexity and ∂c-quasiconvexity Conditions
At the point (z̄, k̄), confirm the following:
• The objective function Γ is ∂c-pseudoconvex.
• The functions φ, ζs, s ∈ S and Tr, r ∈ R are ∂c-quasiconvex.
If these conditions are not met, the problem cannot be solved using the current framework-return to Step 3.
Step 10. Output the solution
The point (z̄, k̄) obtained through this process is a robust optimal solution of (BP).

4. Duality in robust bilevel optimization
Establishing duality results for robust bilevel optimization can be challenging, often requiring strict assumptions to

ensure the validity of such results. In this section, we explore the connection between the primal and dual problems by
examining their respective solutions.

We begin by defining

RN1
+ : =

{
y: = (yr, ūri), r= 1, . . . , p, i = 1, . . . , nr: nr ∈ N, yr ≥ 0, ūri ≥ 0,

nr

∑
i=1

ūri = 1
}

and

RN2
+ : =

{
f: = (fs, w̄s j), s= 1, . . . , q, j = 1, . . . , ns: ns ∈ N, fs ≥ 0, w̄s j ≥ 0,

ns

∑
j=1

w̄s j = 1
}
.

Let (u, v) ∈ Rn1 ×Rn2 . For each ξri ∈ Ωr with r ∈ R and ρs j ∈ Λs with s ∈ S the Mond-Weir-type uncertain dual
problem (RC BD) corresponding to (RC BP) can be stated as follows:

(RC BD)



max
u, v

Γ(u, v)

subject to

(0, 0) ∈ x∂cΓ(u, v)+ xa∗∂cφ(u, v)+∑p
r=1 yr

(
∑nr

i=1 ūri βri

)

+∑q
s=1 fs

(
∑ns

j=1 w̄s j λs j

)
,

xφ(u, v)≥ 0,

yrTr(u, ξri)≥ 0, r ∈ R,

fsζs
(
(u, v), ρs j

)
≥ 0, s ∈ S ,

βri ∈
{
∪∂cTr(u, ξri), ξri ∈ Ωr(u)

}
,

λs j ∈
{
∪∂cζs

(
(u, v), ρs j

)
, ρs j ∈ Λs(u, v)

}
,

T∗ =
{(

x, y, f
)
: x> 0, y≥ 0, f≥ 0

}
.
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Here, Ωr(u) is defined as in (8), with z̄ replaced by u and Λs(u, v) is defined as in (10), with (z̄, k̄) replaced by (u, v).
The feasible set of (RC BD) is defined as

FRC BD =

{(
u, v, T∗) ∈ Rn1 ×Rn2 ×R×RN1

+ ×RN2
+ : (0, 0) ∈ x∂cΓ(u, v)+ xa∗∂cφ(u, v)

+
p

∑
r=1

yr

(
nr

∑
i=1

ūri βri

)
+

q

∑
s=1

fs

(
ns

∑
j=1

w̄s j λs j

)
, (24)

xφ(u, v)≥ 0, yrTr(u, ξri)≥ 0, r ∈ R, fsζs
(
(u, v), ρs j

)
≥ 0, s ∈ S

}
.

The following theorem presents the weak form of robust duality, linking the primal problem (RC BP) with its
corresponding dual problem (RC BD).

Theorem 4 (Weak Robust Duality): Suppose that (z0, k0)∈ G and (u, v, T∗)∈FRC BD . If Γ is a ∂c-pseudoconvex
at (u, v) on FRC BD , that φ, Tr, r ∈ R and ζs, s ∈ S are ∂c-quasiconvex at (u, v) on FRC BD , then

Γ(z0, k0)≰ Γ(u, v).

Proof. Assume, for the sake of contradiction, that

Γ(z0, k0)≤ Γ(u, v). (25)

Since Γ is a ∂c-pseudoconvex at (u, v) on FRC BD , by Definition 4, the inequality above yields, for any ϑ ∗ ∈
∂cΓ(u, v),

〈
ϑ ∗, (z0, k0)− (u, v)

〉
< 0.

By x> 0, the following inequality

〈
xϑ ∗, (z0, k0)− (u, v)

〉
< 0 (26)

holds for any ϑ ∗ ∈ ∂cΓ(u, v).
From (u, v, T∗) ∈ FRC BD , it follows that (u, v) ∈ Rn1 ×Rn2 , x> 0, y≥ 0, f≥ 0 and

(0, 0) ∈ x∂cΓ(u, v)+ xa∗∂cφ(u, v)+
p

∑
r=1

yr

(
nr

∑
i=1

ūri βri

)
+

q

∑
s=1

fs

(
ns

∑
j=1

w̄s j λs j

)
, (27)
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and

xφ(u, v)≥ 0, (28)

yrTr(u, ξri)≥ 0, r ∈ R, (29)

fsζs
(
(u, v), ρs j

)
≥ 0, s ∈ S . (30)

By (27), there exist ϑ ∗ ∈ ∂cΓ(u, v), η∗ ∈ ∂cφ(u, v), β ∗
ri ∈ ∂cTr(u, ξri), r ∈ R and λ ∗

s j ∈ ∂cζs
(
(u, v), ρs j

)
, s ∈ S

such that

x ϑ ∗+ xa∗η∗+
p

∑
r=1

yr

(
nr

∑
i=1

ūri β ∗
ri

)
+

q

∑
s=1

fs

(
ns

∑
j=1

w̄s j λ ∗
s j

)
= 0. (31)

By (z0, k0) ∈ G and (u, v, T∗) ∈ FRC BD , it follows that

xφ(z0, k0)≤ xφ(u, v),

yrTr(z0, ξri)≤ yrTr(u, ξri), r ∈ R, (32)

fsζs
(
(z0, k0), ρs j

)
≤ fsζs

(
(u, v), ρs j

)
, s ∈ S .

Since φ, Tr and ζs are ∂c-quasiconvex at (u, v) on FRC BD , by Definition 6, for any η∗ ∈ ∂cφ(u, v), β ∗
ri ∈

∂cTr(u, ξri), r ∈ R and λ ∗
s j ∈ ∂cζs

(
(u, v), ρs j

)
, s ∈ S

〈
η∗, (z0, k0)− (u, v)

〉
≤ 0,

〈
β ∗
ri, (z0, k0)− (u, v)

〉
≤ 0, ∀r ∈ R, (33)

〈
λ ∗
s j, (z0, k0)− (u, v)

〉
≤ 0, ∀s ∈ S .

Again using the feasibility of (u, v, T∗) in RC BD , we get that the following inequality

〈
xa∗η∗+

p

∑
r=1

( nr

∑
i=1

ūriyr β ∗
ri

)
+

q

∑
s=1

( ns

∑
j=1

w̄s jfs λ ∗
s j

)
, (z0, k0)− (u, v)

〉
≤ 0 (34)

holds for any η∗ ∈ ∂cφ(u, v), β ∗
ri ∈ ∂cTr(u, ξri), r ∈ R and λ ∗

s j ∈ ∂cζs
(
(u, v), ρs j

)
, s ∈ S . Adding both sides of the

inequalities (26) and (34), we get the following inequality
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〈
x ϑ ∗+ xa∗η∗+

p

∑
r=1

yr

(
nr

∑
i=1

ūri β ∗
ri

)
+

q

∑
s=1

fs

(
ns

∑
j=1

w̄s j λ ∗
s j

)
, (z0, k0)− (u, v)

〉
< 0

holds for any ϑ ∗ ∈ ∂cΓ(u, v), η∗ ∈ ∂cφ(u, v), β ∗
ri ∈ ∂cTr(u, ξri), r∈R and λ ∗

s j ∈ ∂cζs
(
(u, v), ρs j

)
, s∈S , contradicting

(31), thereby completing the proof.
The next theorem demonstrates the strong robust duality connection between the primal problem (BP) and its

associated dual problem (MH ).
Theorem 5 (Strong Robust Duality): Let (z̄, k̄) be a robust optimal solution of (BP), where (ENMFCQ) holds.

Then there exists T∗ =
{(

x, y, f
)
: x> 0, y≥ 0, f≥ 0

}
, such that ((z̄, k̄), T∗) is a feasible point of (RC BD). Moreover,

if Γ is a ∂c-pseudoconvex at (z̄, k̄), and if φ, Tr, r ∈ R and ζs, s ∈ S are ∂c-quasiconvex at (z̄, k̄), then ((z̄, k̄), T∗) is a
robust optimal solution of (RC BD).

Proof. Let (z̄, k̄) be a robust optimal solution of (BP), where (ENMFCQ) holds. Then, by Theorem 2, there exists
x > 0, ϑ ∗ ∈ ∂cΓ(z̄, k̄), a∗ > 0, η∗ ∈ ∂cφ(z̄, k̄), yr ≥ 0, r ∈ R, ūri ≥ 0, β ∗

ri ∈ ∂cTr(z̄, ξri), ξri ∈ Ωr(z̄), i ∈ Ir: =
{1, . . . , nr}, nr ∈N, and fs ≥ 0, s∈S , w̄s j ≥ 0, λ ∗

s j ∈ ∂cζs
(
(z̄, k̄), ρs j

)
, ρs j ∈ Λs(z̄, k̄), j ∈ Js: = {1, . . . , ns}, ns ∈N,

such that

nr

∑
i=1

ūri = 1,
ns

∑
j=1

w̄s j = 1,

0 = x ϑ ∗+ xa∗η∗+
p

∑
r=1

yr

(
nr

∑
i=1

ūri β ∗
ri

)
+

q

∑
s=1

fs

(
ns

∑
j=1

w̄s j λ ∗
s j

)
(35)

and

yr max
ξr∈Ωr

Tr(z̄, ξr) = 0, r ∈ R, (36)

fs max
ρs∈Λs

ζs
(
(z̄, k̄), ρs

)
= 0, s ∈ S . (37)

Since ξri ∈ Ωr(z̄),

Tr(z̄, ξri) = max
ξr∈Ωr

Tr(z̄, ξr), ∀ i ∈ Ir, ∀ r ∈ R.

Thus, it follows by (36) that

yrTr(z̄, ξri) = 0, ∀ i ∈ Ir, ∀ r ∈ R. (38)

And since ρs j ∈ Λs(z̄, k̄),
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ζs
(
(z̄, k̄), ρs j

)
= max

ρs∈Λs

ζs
(
(z̄, k̄), ρs

)
∀ j ∈ Js, s ∈ S .

Thus, it follows by (37) that

fs ζs
(
(z̄, k̄), ρs j

)
= 0 ∀ j ∈ Js, s ∈ S . (39)

Since φ(z̄, k̄) = 0, letting y: = (yr, ūri) and f: = (fs, w̄s j), one deduces that

((z̄, k̄), T∗) ∈ FRC BD .

Let us demonstrate that ((z̄, k̄), T∗) is a robust optimal solution of (RC BD). Conversely, suppose that there
exists a point ((z1, k1), T

∗
1) ∈ FRC BD such that

Γ(z̄, k̄)−Γ(z1, k1)< 0.

Since
(
(z̄, k̄

)
, T∗) ∈ FRC BD and (z̄, k̄) ∈ G , we conclude from Theorem 4 that

Γ(z̄, k̄)−Γ(z1, k1)≥ 0.

Which leads to a contradiction. Hence, the proof is complete.
Finally, we provide a numerical example to demonstrate the practical utility of our duality results.
Example 2 Revisiting the problem (E H ) discussed in Example 1, we now examine its Mond-Weir type dual

problem

(ME H )



max
u, v

Γ(u, v) = 1
2 |u|+

1
2 |v|+u+ 1

2 v

subject to
xφ(u, v)≥ 0, y1T1(u, ξ1)≥ 0, f1ζ1

(
(u, v), ρ1

)
≥ 0,

(0, 0) ∈ x∂cΓ(u, v)+ xa∗∂cφ(u, v)+y1 ∂cT1(u, ξ1)+ f1 ∂cζ1
(
(u, v), ρ1

)
,

T∗ =
{(

x, y1, f1
)
: x> 0, y1 ≥ 0, f1 ≥ 0

}
,

(u, v) ∈ R2.

We assert that (u, v) = (−1, 0) is a feasible solution of (ME H ).
Remark that
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∂cΓ(−1, 0) =
{(1

2
, 1
)
,
(1

2
, 0
)}

, ∂cφ(−1, 0) = {(0, 1)},

∂cT1(·, 0)(−1) =
{−1

exp

}
, and ∂cζ1

(
(·, ·), 0

)
(−1, 0) = {(0, −1)}.

Note that Γ(·, ·) is ∂c-pseudoconvex at (−1, 0), that φ(·, ·), T1(·, ξ1) and ζ1
(
(·, ·), ρ1

)
are ∂c-quasiconvex at

(−1, 0).
For T∗ =

(
1
4 ,

exp
8 , 3

4

)
, we have

1
4

(1
2
, 1
)
+2

1
4

(
0, 1
)
+

exp
8

(
− 1

exp
, 0
)
+

3
4

(
0, −1

)
=
(

0, 0
)
.

This simplifies

(0, 0) ∈ x∂cΓ(−1, 0)+ xa∗∂cφ(−1, 0)+y1 ∂cT1(−1, ξ1)+ f1 ∂cζ1
(
(−1, 0), ρ1

)
.

Furthermore, we have

xφ(−1, 0) = 0 ≥ 0, y1T1(−1, ξ1) = 1− exp(−1)≥ 0,

f1ζ1
(
(−1, 0), ρ1

)
= 0 ≥ 0.

∗ Since G =
{
(x, 0) ∈ R×R | x ∈ R+

}
, for any feasible solution (z, k) ∈ G of (E H ) and any feasible solution

(u, v, T∗) ∈ FME H of (ME H ), we have

Γ(z, k)−Γ(u, v)≥ 0.

Therefore, Theorem 4 is applicable to both (E H ) and (ME H ).
∗ It is known that (z̄, k̄) = (0, 0) is a robust optimal solution of (E H ) where (ENMFCQ) holds and that (11) and

(12) is satisfied at (z̄, k̄, T∗) =
(
(0, 0), 1

3 ,
1
2 ,

2
3

)
. Since (z̄, k̄, T∗) is a feasible point of (ME H ), then for any feasible

point (u, v, T∗) of (ME H ), we have

Γ(u, v)−Γ(0, 0) =
1
2
|u|+ 1

2
|v|+u+

1
2

v ≤ 0.

Therefore, (z̄, k̄, T∗) is robust optimal solution for (ME H ), which proves that Theorem 5 is valid.
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5. Conclusion
This paper has examined nondifferentiable bilevel optimization problems that involve both upper- and lower-level

constraints under uncertainty. For the considered nonsmooth framework, we have established sufficient optimality
conditions by employing generalized convexity concepts defined via Clarke subdifferentials. In addition, we have
formulated the associated Mond-Weir-type dual problem and derived several duality theorems between the primal and
dual formulations under similar generalized convexity assumptions. These results not only extend but also generalize
existing findings in the literature concerning nonsmooth bilevel optimization.

As far as we are aware, this is the first study to establish sufficient optimality conditions andMond–Weir-type duality
results for such a wide class of nonsmooth bilevel optimization problems within the framework of generalized convexity.

Nevertheless, several avenues remain open for future exploration. In particular, it would be worthwhile to develop
analogous optimality and duality results for other variants of bilevel problems. We aim to address these directions in
future research.

As ∂c-pseudoconvexity and ∂c-quasiconvexity are weaker than ∂c-convexity, the sufficient optimality theorem using
a ∂c-pseudoconvex objective function and ∂c-quasiconvex constraints generalizes the sufficient theorem requiring ∂c-
convexity for both the objective and constraints. Therefore, our results offer a broader and more refined framework
compared to the results presented in [23].
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