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Abstract: Let T (X) be the full transformation semigroup on a set X . For an equivalence relation E on X , define a
subsemigroup TE∗(X) of T (X) by

TE∗(X) = {α ∈ T (X) : for all x, y ∈ X , (x, y) ∈ E ⇔ (xα, yα) ∈ E}.

Let QE∗(X) be the subset of TE∗(X) consisting of all transformations that each E-class contains exactly one element of
its image. Then QE∗(X) forms a right group. In addition, for a nonempty subset Y of X , define SY (X) as a subset of
T (X) consisting of all transformations mapping X onto Y such that the restriction on Y is a permutation. Then SY (X) is
a left group. Furthermore, QE∗(X) and SY (X) can be expressed as a union of symmetric groups. This paper investigates
some algebraic properties of QE∗(X) and SY (X), calculates their ranks when X is finite, and establishes conditions for
isomorphism. We also characterize and enumerate all maximal subsemigroups when X is finite. Finally, we address
the problem of embedding arbitrary left groups into SY (X). Our results provide a complete algebraic classification of
these transformation semigroups and demonstrate their significance as representations for right and left groups, thereby
contributing to the broader understanding of transformation semigroups that decompose as unions of symmetric groups.
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1. Introduction
The set of all functions from a set X into itself, denoted as T (X), forms a regular semigroup under the composition

of functions. This semigroup is known as the full transformation semigroup on X and is important in algebraic semigroup
theory. Similar to Cayley’s Theorem for groups, it can be shown that any semigroup S can be embedded in the full
transformation semigroup T (S1) where S1 is the monoid obtained from S by adjoining an identity if necessary.

For an equivalence relationE on a setX , in 2010, Deng et al. [1] introduced a new semigroup called the transformation
semigroup that preserves double direction equivalence, denoted by TE∗(X), defined by
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TE∗(X) = {α ∈ T (X) : ∀x, y ∈ X , (x, y) ∈ E ⇔ (xα, yα) ∈ E}.

This semigroup is a generalization of the full transformation semigroup T (X) and is defined as a subsemigroup of
T (X). In the field of topology, TE∗(X) is a semigroup consisting of continuous self-maps of the topological space X ,
where the E-classes form a basis. In [1], the authors investigated the regularity of elements and Green’s relations in
TE∗(X). Further research is available in references [2–4].

In a recent study, Sangkhanan [5] investigated the regular part, denoted by Reg(T ), of the transformation semigroup
TE∗(X) and showed that it is the largest regular subsemigroup of TE∗(X). He also described Green’s relations and ideals
of Reg(T ). If the set X is partitioned by the equivalence relation E into subsets Ai for all i in the index set I, the author
defined the subsemigroup now denoted QE∗(X) (originally written as Q(2)) of Reg(T ) as follows:

QE∗(X) = {α ∈ Reg(T ) : |Aiα|< 2 for all i ∈ I},

or, equivalently,

QE∗(X) = {α ∈ TE∗(X) : |Aiα|= 1 and Ai ∩Xα 6= /0 for all i ∈ I}.

He also proved that for eachα ∈QE∗(X), |Xα∩Ai|= 1 for all i∈ I, meaning that Xα is a cross section of the partition
X/E induced by the equivalence relation E; i.e., each E-class contains exactly one element of Xα . He then showed that
QE∗(X) is the (unique) minimal ideal of Reg(T ), which is referred to as the kernel of Reg(T ) (see [6] for details). Finally,
the author demonstrated that the kernel QE∗(X) of Reg(T ) is a right group and can be expressed as a union of symmetric
groups, and that every right group can be embedded in the kernel QE∗(X).

To improve clarity, we unify the notation by using QE∗(X) throughout, where E represents the same equivalence
relation as in TE∗(X).

Let Y be a nonempty subset of a set X . In [7], Laysirikul defined a subsemigroup PGY (X) of the full transformation
semigroup T (X) by

PGY (X) = {α ∈ T (X) : α|Y ∈ Sym(Y )},

where Sym(Y ) is the symmetric group on Y . The author demonstrated that PGY (X) is regular, and provided characteriza-
tions of left regularity, right regularity, and complete regularity of elements in PGY (X). Subsequent research on this
semigroup has been conducted in [8–10].

Consider a nonempty subset Y of X and a subsemigroup S(Y ) of T (Y ). In 2022, Konieczny [11] introduced TS(Y )(X)

as the collection of all transformations α ∈ T (X) that satisfy α|Y ∈ S(Y ). We note that TS(Y )(X) is a generalization of
PGY (X). In [11], the author provided a characterization of regular elements within TS(Y )(X) and established conditions
under which TS(Y )(X) constitutes a regular semigroup (with further specifications regarding inverse semigroups and
completely regular semigroups). Under the assumption that S(Y ) includes the identity mapping idY on Y , Green’s
relations in TS(Y )(X) were expressed through the corresponding Green’s relations in S(Y ). These broader findings were
subsequently applied to derive specific results for the semigroup TΓ(Y )(X), where Γ(Y ) represents the semigroup of all
full injective transformations on Y . The work concluded with discussions on generalizations and extensions of TS(Y )(X).
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Recently, Sangkhanan [12] examined the transformation semigroup TG(X), which consists of all transformations on
a set X that, when restricted to a subsetY , belong to a permutation group G onY . More precisely, this semigroup is defined
as:

TG(X) = {α ∈ T (X) : α|Y ∈ G}

where G is a subgroup of Sym(Y ). Obviously, TG(X) is a subsemigroup of PGY (X). It is worth noting that TG(X)

represents a special case of TS(Y )(X). At the same time, it generalizes PGY (X) in the sense that when G equals the
symmetric group Sym(Y ), we have TG(X) = PGY (X). In [12], the author investigated this semigroup using an approach
similar to that employed in [9].

By [12, Corollary 3.8 and Theorem 3.10], the minimal ideal of TG(X) is given by

Q = {α ∈ TG(X) : |Xα \Y |= 0}= {α ∈ TG(X) : Xα = Y},

which forms a left group. Furthermore, [12, Theorem 3.13] establishes that Q can be expressed as a union of permutation
groups. Taking G = Sym(Y ) yields TG(X) = PGY (X), and in this case the minimal ideal of PGY (X) is

SY (X) = {α ∈ PGY (X) : |Xα \Y |= 0}= {α ∈ PGY (X) : Xα = Y},

which is a left group and can be represented as a union of symmetric groups.
In this paper, we will examine the semigroups QE∗(X) and SY (X) more thoroughly. Our study will include proving

certain algebraic properties of these semigroups, determining their ranks when X is finite, and exploring isomorphism
conditions. Furthermore, we will identify and count all maximal subsemigroups for finite X . Finally, we will study the
problem of embedding arbitrary left groups into SY (X).

2. Basic properties
We begin by establishing some notations and results that will be used throughout this work. For all undefined notions,

the reader is referred to [6, 13, 14].
For each α ∈ T (X) and A ⊆ X , let Aα = {aα : a ∈ A}. Evidently, by this notation, Xα means the range or image of

α . Let S be a subsemigroup of T (X). The partition of a member α in S, denoted π(α), is the family of all inverse images
of elements in the range of α , that is

π(α) = {xα−1 : x ∈ Xα}.

It is easy to see that π(α) is a partition of X induced by α . In addition, due to [1], define a mapping α∗ from π(α)

onto Xα by

(xα−1)α∗ = x for each x ∈ Xα.
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In accordance with the notation established in [13, p.241], we represent any transformation α ∈ T (X) using the
following matrix form:

α =

(
Xi

ai

)
.

In this representation, the index i ranges over some unspecified index set I. We use {ai} as shorthand for the set
{ai : i ∈ I}. Additionally, we employ the notational conventions where Xα represents the image set {ai}, and aiα−1

denotes the preimage Xi. If Xi = {xi} is a singleton, then we also write

(
Xi

ai

)
as

(
xi

ai

)
.

We now recall some key definitions used throughout this work. For an equivalence relation E on a nonempty set X ,
we define the semigroup TE∗(X) as

TE∗(X) = {α ∈ T (X) : ∀x, y ∈ X , (x, y) ∈ E ⇔ (xα, yα) ∈ E}.

When the equivalence relation E partitions X into equivalence classes Ai indexed by i ∈ I, we define the right group

QE∗(X) = {α ∈ TE∗(X) : |Aiα|= 1 and Ai ∩Xα 6= /0 for all i ∈ I},

which can be expressed equivalently as

QE∗(X) = {α ∈ TE∗(X) : π(α) = X/E and A∩Xα 6= /0 for all A ∈ X/E}.

Furthermore, for any nonempty subset Y of X , we define the left group

SY (X) = {α ∈ T (X) : Xα = Y and α|Y ∈ Sym(Y )}.

To illustrate these definitions concretely, consider the following example.
Example 1 Let X = {1, 2, 3}, Y = {2, 3} and X/E = {{1, 2}, {3}}. Then

QE∗(X) =

{(
{1, 2} 3

1 3

)
,

(
{1, 2} 3

2 3

)
,

(
{1, 2} 3

3 1

)
,

(
{1, 2} 3

3 2

)}

and

SY (X) =

{(
1 2 3
2 2 3

)
,

(
1 2 3
2 3 2

)
,

(
1 2 3
3 2 3

)
,

(
1 2 3
3 3 2

)}
.
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We recall that the relations L , R, H , D , and J are Green’s relations on a semigroup S. For each a ∈ S, we
denote the L -class, R-class, H -class, D-class, and J -class containing a in a semigroup S by La, Ra, Ha, Da, and Ja,
respectively.

A semigroup in which every element acts as a right zero is called a right zero semigroup; equivalently, a semigroup
S is right zero if xy = y for all x, y ∈ S. Dually, a left zero semigroup satisfies xy = x for all x, y ∈ S.

A semigroup S is called a right simple semigroup when it contains no proper right ideals, and similarly, a left simple
semigroup when it contains no proper left ideals. A semigroup is classified as a right group if it satisfies two conditions:
being right simple and left cancellative. Likewise, a left group is both left simple and right cancellative. An equivalent
characterization states that S is a right group if and only if for any two elements a and b in S, there exists exactly one
element x in S that satisfies the equation ax = b. Similarly, S is a left group if and only if for any a and b in S, there exists
exactly one x in S such that xa = b. As a consequence, the R-relation on a right group S is trivial, while the L -relation is
trivial on a left group. Further details about these properties can be found in the lemma that follows, which incorporates
dual statements from [6, Exercises 2 and 4 in §1.11].

Lemma 2 Let S be a semigroup. The following statements are equivalent.
1. S is a right [left] group.
2. S is a union of disjoint groups such that the set of identity elements of the groups is a right [left] zero subsemigroup

of S.
3. S is regular and left [right] cancellative.
Refer to [6, Exercise 3 for §1.11] and [14, Exercise 6 for §2.6], every right group S can be written as a union of disjoint

subgroups, each of which is isomorphic to one another. These subgroups are given by Se, where e is an idempotent element
of S and serves as the group identity for Se. If e and f are distinct idempotent elements of S, then the map x 7→ x f is an
isomorphism between the subgroups Se and S f . Additionally, the H -class He and the subgroup Se are equal for all
idempotent elements e of S. This allows us to express a right group S as the (disjoint) union of all of its subgroups:

S =
⋃

e∈E(S)

Se =
⋃

e∈E(S)

He.

Moreover, we can use the dual statements of the above results to apply for a left group (e.g. change Se to eS). It
should be observed that the number of H -classes and idempotents in E(S) are identical.

For the right group QE∗(X), several important structural properties were established in [5]. Specifically, for any
element α in QE∗(X), the set Hα = {β ∈ QE∗(X) : Xα = Xβ} forms a subgroup of QE∗(X) as shown in [5, Corollary 3.8].
Furthermore, [5, Theorem 3.9] demonstrates that QE∗(X) can be represented as a union of symmetric groups. From the
proof of this theorem, we can observe that for any α ∈ QE∗(X), the subgroup Hα is isomorphic to the symmetric group
on the set Xα . For clarity, we provide a brief explanation of this isomorphism here.

For each β ∈ Hα , by the definition of QE∗(X), we have π(β ) = π(α) = X/E. Thus, the mapping β∗ : π(α)→ Xα
is a bijection from X/E to Xα . Moreover, we note that A∩Xα is a singleton for all A ∈ X/E. It follows that the set Hα
can be identified with the group of all bijections from Xα to itself, which is isomorphic to the symmetric group on the set
Xα , denoted by Sym(Xα). Since QE∗(X) can be expressed as the union of all such subgroups Hα for α ∈ QE∗(X), we
conclude that QE∗(X) is a union of symmetric groups.

Let S be a subsemigroup of the transformation semigroup T (X), where X is a finite set. The classical characterization
from [6, Exercise 8 of §2.2] provides necessary and sufficient conditions for S to be a right group or a left group. For
convenience, we restate these fundamental results below.

Proposition 3 [6, Exercise 8 of §2.2] Let S be a subsemigroup of the semigroup T (X) of all transformations on a
finite set X . S is a left group if and only if all its members have the same range; S is a right group if and only if all its
members have the same partition of X .
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In what follows, we will generalize this characterization to an arbitrary (possibly infinite) set X and establish its
connection to the right group QE∗(X). This extension relies on a key result from [6, Lemma 2.6], which states that for any
two transformations α, β ∈ T (X), they are R-related if and only if their partitions are identical, that is, π(α) = π(β ).

Theorem 4 Let X be a nonempty set and S be a subsemigroup of T (X). The following statements are equivalent.
1. S is a right group.
2. S is regular and all members of S have the same partition.
3. S is a regular subsemigroup of QE∗(X) for some equivalence relation E on X .
Proof. (1)⇒ (2). Assume that S is a right group. Then S is regular. By a direct consequence of [6, Lemma 2.6], all

members of S have the same partition since the R-relation on the right group S is trivial.
(2)⇒ (3). Suppose that all members of S have the same partition P of X . Let P = {Pi : i ∈ I} where I is an index

set. Let α ∈ S. Clearly, |Piα|= 1 for all i ∈ I. Next, we will show that Xα is a cross section of P for all α ∈ S.
First, we claim that |Pi ∩Xα| ≤ 1 for all i ∈ I. Suppose to the contrary that |P0 ∩Xα| > 1 for some P0 ∈ P . Then

there exist two distinct elements a, b ∈ P0 ∩Xα . Note that aα−1, bα−1 ∈ P such that aα−1 6= bα−1. Let x ∈ aα−1 and
y ∈ bα−1. Since |P0α|= 1, we obtain aα = bα which implies that

xα2 = (xα)α = aα = bα = (yα)α = yα2.

Then x, y ∈ P for some P ∈ π(α2). Since α2 ∈ S, we have π(α2) = P from which it follows that x and y are in
the same class in P which is a contradiction. Thus |Pi ∩Xα| ≤ 1 for all i ∈ I. Now, suppose that P1 ∩Xα = /0 for some
P1 ∈ P . Observe that since S is regular, there exists some element β in S such that the relation α = αβα holds. Assume
that

P1β∗ ∈ P2 and P2α∗ ∈ P3

for some P2, P3 ∈ P . Observe that P3 6= P1 since Xα ∩P1 = /0. From α = αβα , we obtain that

(P3β∗)α = (P2α∗)βα = P2α∗ ∈ P3 and (P1β∗)α = P2α∗ ∈ P3.

Hence (P3β∗)α = (P1β∗)α since |P3 ∩Xα| ≤ 1. Because βα ∈ S, it follows that P3 and P1 are the same class in P ,
a contradiction. Thus |Pi ∩Xα|= 1 for all i ∈ I. It follows that Xα is a cross section of P for all α ∈ S.

Let E be the equivalence relation on X induced byP . Then by the definition of QE∗(X), S is a regular subsemigroup
of QE∗(X).

(3) ⇒ (1). Suppose that (3) holds. Then S is regular and left cancellative since QE∗(X) is a right group. Hence S is
a right group.

Next, we present an additional property of finite right groups that will be instrumental in our subsequent discussions.
We begin by recalling a fundamental structure theorem for right groups which can be found in [6, Theorem 1.27].

Theorem 5 [6, Theorem 1.27] The following assertions concerning a semigroup S are equivalent.
1. S is a right group.
2. S is right simple and contains an idempotent.
3. S is the direct product G×E of a group G and a right zero semigroup E.
In the proof of [6, Theorem 1.27], the group G is identified with Se for a fixed idempotent e, while the right zero

semigroup E is identified with E(S), the set of all idempotents in S. By combining these identifications with the dual
results for left groups, we derive the following characterization.
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Theorem 6 A right [left] group S is isomorphic to the direct product G×E of a group G and a right [left] zero
semigroup E where E is the set E(S) of all idempotents in S and G is the group Se [eS] (= He) where e ∈ E(S).

Theorem 7 Every subsemigroup of a finite right group is also a right group.
Proof. Let T be a subsemigroup of a finite right group S. Then S is isomorphic to the direct product G×E of a group

G and a right zero semigroup E. Thus, T is isomorphic to a subset T of G×E. Let π1 and π2 be the projection maps of
T into G and E, respectively. It is clear that T π2 is a right zero subsemigroup of E. To verify that T π1 is a subgroup of
G, take g, h ∈ T π1. Then there exist e, f ∈ T π2 with (g, e), (h, f ) ∈ T . Because T ⊆ G×E is a subsemigroup, we get
(g, e)(h, f ) = (gh, e f ) ∈ T , hence gh ∈ T π1. Since G is finite, closure under multiplication already implies that T π1 is a
subgroup of G. We claim that T is the direct product of T π1 and T π2. For, let (g, e) ∈ T π1×T π2. Then there are h ∈ T π1

and i ∈ T π2 such that (h, e) ∈ T and (g, i) ∈ T . Moreover, since T π1 is a group, there is h−1 ∈ T π1 and f ∈ T π2 such
that (h−1, f ) ∈ T . Hence (g, e) = (gh−1h, i f e) = (g, i)(h−1, f )(h, e) ∈ T from which it follows that T = T π1 ×T π2.
Therefore, T is isomorphic to the direct product of the group T π1 and the right zero semigroup T π2, and so T is a right
group.

In the remainder of this section, we present a property of the semigroup SY (X).
Based on [6, Exercise 8 of §2.2], for a finite set X , a subsemigroup S of T (X) is a left group if and only if all its

elements have an identical image. We now extend this characterization to encompass an arbitrary (potentially infinite) set
X and demonstrate its relationship to the left group SY (X). This generalization builds upon an essential result from [6,
Lemma 2.5], which establishes that two transformations α, β ∈ T (X) are L -related exactly when their images coincide,
specifically when Xα = Xβ . The proof of the subsequent theorem closely mirrors that of Theorem 4.

Theorem 8 Let X be a nonempty set and S a subsemigroup of T (X). The following statements are equivalent.
1. S is a left group.
2. S is regular and all members of S have the same image.
3. S is a regular subsemigroup of SY (X) for some subset Y of X .

3. Isomorphism conditions
Having established the fundamental characterizations of right groups and left groups as subsemigroups of T (X) in

the preceding section, we now shift our focus to the question of when two such semigroups are isomorphic. Specifically,
we examine the structural conditions under which QE∗(X) is isomorphic to QF∗(Y ) for equivalence relations E and F on
sets X and Y , respectively, and similarly for left groups SY (X) and SZ(W ). The characterization results from the previous
section provide the foundation for determining these isomorphism conditions.

To establish a criterion for isomorphism, we present a useful result in the following theorem.
Theorem 9 Let S and T be right [left] groups which can be written as direct products of groups and right [left] zero

semigroups G1 ×E1 and G2 ×E2, respectively. Then S ∼= T if and only if G1 ∼= G2 and |E1|= |E2|.
Proof. We first establish our result in the context of a right group. Following analogous reasoning, we then derive the

corresponding result for a left group. Assume that S ∼= T via an isomorphism ϕ : S → T . As we mentioned above, G1 ∼= Se
for some idempotent e ∈ E(S). It is straightforward to verify that Se ∼= T (eϕ). Hence G1 ∼= Se ∼= T (eϕ) = T f ∼= G2 for
some f = eϕ ∈ E(T ). Moreover, E1 ∼= E(S)∼= E(T )∼= E2 which implies |E1|= |E2| since any two right zero semigroups
of the same cardinality are isomorphic. The converse is clear.

For an indexed collection of sets {Ai}i∈I , we denote their product as ∏
i∈I

Ai and an element in ∏
i∈I

Ai with i-coordinate

ai is designated as (ai)i∈I .
Let I be an index set (finite or infinite), let {ai}i∈I be a family of cardinal numbers, and let {Ai}i∈I be a family of sets

such that |Ai|= ai for all i ∈ I. Then the product of the cardinals {ai}i∈I is the cardinal defined by

∏
i∈I

ai : =

∣∣∣∣∣∏i∈I
Ai

∣∣∣∣∣ .
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By combining [15, Exercise 10, p.40 and Exercise 8, p.151], we obtain an isomorphism condition for two symmetric
groups, as follows.

Lemma 10 Let A and B be any nonempty sets. Then

Sym(A)∼= Sym(B) if and only if |A|= |B|.

To establish an isomorphism theorem for QE∗(X), we require the following two lemmas.
Lemma 11 [5, Lemma 4.1] Let α ∈ QE∗(X). Then α is an idempotent if and only if Aα ⊆ A for all A ∈ X/E.
By Lemma 11, for each idempotent ε ∈ E(QE∗(X)), we can express ε in the form

ε =

(
Ai

ai

)

where ai ∈ Ai for all i ∈ I and X/E = {Ai : i ∈ I}.
Lemma 12 Let X/E = {Ai : i ∈ I}. Then |E(QE∗(X))|= ∏

i∈I
|Ai|.

Proof. For each ε ∈ E(QE∗(X)), we have Aiε ⊆ Ai for all i ∈ I. So we can write ε =

(
Ai

ai

)
where ai ∈ Ai. Define a

function φ : E(QE∗(X))→ ∏
i∈I

Ai by

εφ = (Aiε∗)i∈I = (ai)i∈I ∈ ∏
i∈I

Ai.

To show that φ is an injection, let ε1 =

(
Ai

ai

)
and ε2 =

(
Ai

bi

)
in E(QE∗(X)) such that ε1φ = ε2φ . Then ai =

Aiε1∗ = Aiε2∗ = bi for all i ∈ I. Hence ε1 = ε2, which implies that φ is an injection. Finally, let (ai)i∈I ∈ ∏
i∈I

Ai. Define

ε ∈ E(QE∗(X)) by ε =

(
Ai

ai

)
. We obtain (ai)i∈I = (Aiε∗)i∈I = εφ . Hence φ is a surjective map, implying that φ is also

a bijection. Therefore, |E(QE∗(X))|=
∣∣∣∣∏
i∈I

Ai

∣∣∣∣= ∏
i∈I

|Ai|.

By [5, Theorem 3.8], the author proved that the subgroup Hα of QE∗(X) is isomorphic to the symmetric group on
the set Xα . Since Xα is a cross section of the partition X/E, it is obvious that the symmetric group on the set Xα is
isomorphic to the symmetric group on X/E. To sum it up with Theorem 6, we state the useful proposition as follows.

Proposition 13 QE∗(X) is isomorphic to the direct product Sym(X/E)×E(QE∗(X)).
We can prove the proposition directly by constructing an explicit isomorphism between QE∗(X) and Sym(X/E)×

E(QE∗(X)). For completeness, we present the construction. For convenience, denote by [x] the equivalence class of x ∈ X
in X/E.

Given α ∈ QE∗(X), define α̂ : X/E → X/E by

Aα̂ = [Aα∗] for all A ∈ X/E,

where α∗ : π(α)→ Xα is the map introduced in Section 2.
Since α ∈ QE∗(X), we have π(α) = X/E, and thus α̂ : X/E → X/E is a bijection; hence α̂ ∈ Sym(X/E).
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Next, forα ∈QE∗(X), define ᾱ : X →X by sending each x∈X to the unique element of [x]∩Xα . It is straightforward
to verify that ᾱ ∈ E(QE∗(X)).

Define

φ : QE∗(X)→ Sym(X/E)×E(QE∗(X)), α 7→ (α̂, ᾱ).

We claim that φ is an isomorphism. Let α, β ∈ QE∗(X). For the first coordinate, for any A ∈ X/E,

Aα̂β = [A(αβ )∗], Aα̂ = [Aα∗], Aα̂β̂ = [[Aα∗]β∗].

Using (αβ )∗ = α∗β , we obtain [A(αβ )∗] = [(Aα∗)β ] = [[Aα∗]β∗], whence α̂β = α̂β̂ .
For the second coordinate, if x ∈ X , then xαβ is the unique element of [x]∩X(αβ ) = [x]∩Xβ . Writing xᾱ = b ∈

[x]∩Xα , we have bβ̄ = c ∈ [b]∩Xβ = [x]∩Xβ , and uniqueness yields xαβ = c = bβ̄ = xᾱβ̄ . Hence αβ = ᾱβ̄ .
Thus φ is a homomorphism. It is routine to verify that φ is bijective. Therefore, φ is an isomorphism.
Through the integration of results established in Theorem 9, Lemma 10, and Proposition 13, we can derive the

following theorem.
Theorem 14 Let E and F be equivalence relations on nonempty sets X and Y , respectively. Then QE∗(X)∼= QF∗(Y )

if and only if |X/E|= |Y/F | and ∏
A∈X/E

|A|= ∏
B∈Y/F

|B|.

Next, we will calculate the cardinality of the set QE∗(X). Let X be a finite set and E an equivalence relation on X
such that X/E = {A1, A2, . . . , An} and |A1||A2| · · · |An|= m. By Proposition 13 and Lemma 12, we have

|QE∗(X)|= |Sym(X/E)||E(QE∗(X))|= n! ·m.

If A and B are sets, the set of all functions from A to B is denoted by BA. The number of such functions is the cardinal
number of this set, defined as:

|BA|= ba

where a = |A| and b = |B|. For finite sets, if A has m elements and B has n elements, this becomes nm.
Now, we establish a theorem that characterizes when two transformation semigroups SY1(X1) and SY2(X2) are

isomorphic. To accomplish this, we require the following preliminary results.
Lemma 15 Let Y be a nonempty subset of X . Then |E(SY (X))|= |Y ||X\Y |.
Proof. For each α ∈ E(SY (X)), we have α|Y as the identity map. By the definition of SY (X), we see that |E(SY (X))|

is the number of all functions from X \Y to Y . Hence |E(SY (X))|= |Y ||X\Y |.
For the subset Q of the semigroup TG(X) defined previously, Sangkhanan [12, Corollary 3.12] established that, for

every α ∈ Q, the H -class Hα constitutes a subgroup of Q. Furthermore, this subgroup is isomorphic to the permutation
group G on the set Y . In the context of SY (X), we can employ a similar approach to demonstrate that, for each α ∈ SY (X),
the H -class Hα forms a subgroup of SY (X) isomorphic to the symmetric group on the set Y . Merging this insight with
Theorem 6, we present this significant finding in the subsequent proposition.

Proposition 16 SY (X) is isomorphic to the direct product Sym(Y )×E(SY (X)).
By combining Theorem 9, Lemma 10, and Proposition 16, we obtain the following theorem.
Theorem 17 Let Y1 and Y2 be nonempty subsets of X1 and X2, respectively. Then
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SY1(X1)∼= SY2(X2) if and only if |Y1|= |Y2| and |Y1||X1\Y1| = |Y2||X2\Y2|.

We conclude this section by calculating the cardinality of the set SY (X). Let Y be a nonempty subset of a finite set
X such that |X |= n and |Y |= m. By Proposition 16 and Lemma 15, we have

|SY (X)|= |Sym(Y )||E(SY (X))|= m! ·mn−m.

4. Ranks
In this section, we will find a generating set and compute the rank of QE∗(X) and SY (X). Recall that a generating

set of a semigroup S that has the smallest possible number of elements is called a minimal generating set. The rank of S,
represented as rank(S), refers to the number of elements in a minimal generating set of S. In other words, the rank of a
semigroup S indicates the minimum number of elements needed to generate S; that is

rank(S) = min{|T | : T ⊆ S, 〈T 〉= S}.

To compute the rank of QE∗(X), we consider a generating set of any right groups. The following lemmas will be
necessary in order to prove the main theorem of this section.

Lemma 18 Let G be a generating set of a right group S. Then G∩He is nonempty for all idempotents e in S.
Proof. Let e ∈ E(S). Then there are g1, g2, . . . , gm ∈ G such that g1g2 · · ·gm = e. Let gm ∈ H f for some idempotent

f in S. Then e = g1g2 · · ·gm f = e f = f since f is the identity in H f and E(S) is right zero. Hence gm ∈ G∩He 6= /0.
By the above lemma, any generating set G of a right group S contains at least one element in each H -class. Hence

rank(S)≥ |E(S)|.
At this point, we can acquire a generating set for any right group.
Theorem 19 Let S be a right group and e∈E(S). IfG is a generating set of the groupHe, thenG∪E(S) is a generating

set of S.
Proof. Assume that G is a generating set of the group He. Let x ∈ S. Then x ∈ H f for some idempotent f in S. We

have xe ∈ Se = He and xe = g1g2 · · ·gm for some g1, g2, . . . , gm ∈ G. Hence x = x f = xe f = g1g2 · · ·gm f , which implies
that x ∈ 〈G∪E(S)〉.

Theorem 20 Let S be a finite right group and e ∈ E(S). If G is a minimal generating set of the group He, then

rank(S) = max{|G|, |E(S)|}.

Proof. Suppose that G is a minimal generating set of the group He. If |G| ≤ |E(S)|, then there is an injection
ϕ : G → E(S). By [6, Theorem 1.27], we have S ∼= He ×E(S). Let

H = {(g, gϕ) : g ∈ G} and K = {(e, f ) : f ∈ E(S)\Gϕ} .

We assert that H ∪K is a generating set of He ×E(S). For, let (x, h) ∈ He ×E(S). If h = gϕ for some g ∈ G, then
xg−1 = g1g2 · · ·gm for some g1, g2, . . . , gm ∈ G. Hence,
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(x, h) = (xg−1g, h) = (g1g2 · · ·gmg, gϕ).

Since E(S) is right zero, we obtain

(g1g2 · · ·gmg, gϕ) = (g1, g1ϕ)(g2, g2ϕ) · · ·(gm, gmϕ)(g, gϕ),

which implies that (x, h) ∈ 〈H〉 ⊆ 〈H ∪K〉. If h ∈ E(S)\Gϕ , then x = g1g2 · · ·gm for some g1, g2, . . . , gm ∈ G and so

(x, h) = (xe, h) = (g1g2 · · ·gme, h) = (g1, g1ϕ)(g2, g2ϕ) · · ·(gm, gmϕ)(e, h).

Thus (x, h) ∈ 〈H ∪K〉. We conclude that

rank(S) = rank(He ×E(S))≤ |H ∪K|= |H|+ |K|= |G|+(|E(S)|− |G|) = |E(S)|.

As mentioned before, we have rank(S)≥ |E(S)|. Therefore,

rank(S) = |E(S)|= max{|G|, |E(S)|}.

On the other hand, assume that |G|> |E(S)|. Then there is a surjection ϕ : G → E(S). Let H = {(g, gϕ) : g ∈ G}. By
the same argument as above, we can show that H is a generating set of S (up to isomorphism). Hence rank(S)≤ |H|= |G|.
Since G is a minimal generating set of the group He, we obtain

rank(S) = |G|= max{|G|, |E(S)|}.

We observe that, by applying similar arguments, all the results established above can be analogously derived for the
case of a left group.

Let X/E = {Ai : i ∈ I}. We have |E(QE∗(X))| = ∏
i∈I

|Ai|. By Proposition 13, QE∗(X) is isomorphic to the direct

product of Sym(X/E) and E(QE∗(X)). Moreover, it is well-known that the symmetric group on a set Y has rank 2 when
|Y | ≥ 2. By using Theorem 20, we obtain the rank of QE∗(X) as follows.

Corollary 21 Let E be a nontrivial equivalence relation on a nonempty finite set X . Let X/E = {Ai : i ∈ I} such that
∏
i∈I

|Ai|= m. Then rank(QE∗(X)) = max{2, m}.

We note that if |X | = 1, then QE∗(X) = T (X) which is a trivial semigroup with rank 1. If |X | > 1 and E is the
universal relation X ×X , then QE∗(X) is the set of all constant maps on X , which is a right zero semigroup with order
|X |. It is straightforward to verify that the minimal generating set of any right zero semigroup with cardinality n has size
n. Hence, rank(QE∗(X)) = |X |, which is consistent with Corollary 21.

We illustrate QE∗(X) with a finite example and determine its rank along with a minimal generating set, connecting
to the results of this section. For convenience, we use the abbreviated notation
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α =

(
A1 A2 · · · An

a1 a2 · · · an

)
≡ (a1, a2, . . . , an).

The same convention applies when some Ai are singletons.
Example 22 Let X = {1, 2, 3, 4, 5, 6} and let E be an equivalence relation on X with

X/E = {A1, A2, A3}, A1 = {1, 2, 3}, A2 = {4, 5}, A3 = {6}.

Then QE∗(X) = {α1, α2, . . . , α36}, where

α1 = (1, 4, 6), α2 = (2, 4, 6), α3 = (3, 4, 6), α4 = (1, 5, 6), α5 = (2, 5, 6),

α6 = (3, 5, 6), α7 = (4, 1, 6), α8 = (4, 2, 6), α9 = (4, 3, 6), α10 = (5, 1, 6),

α11 = (5, 2, 6), α12 = (5, 3, 6), α13 = (4, 6, 1), α14 = (4, 6, 2), α15 = (4, 6, 3),

α16 = (5, 6, 1), α17 = (5, 6, 2), α18 = (5, 6, 3), α19 = (6, 1, 4), α20 = (6, 2, 4),

α21 = (6, 3, 4), α22 = (6, 1, 5), α23 = (6, 2, 5), α24 = (6, 3, 5), α25 = (1, 6, 4),

α26 = (2, 6, 4), α27 = (3, 6, 4), α28 = (1, 6, 5), α29 = (2, 6, 5), α30 = (3, 6, 5),

α31 = (6, 4, 1), α32 = (6, 4, 2), α33 = (6, 4, 3), α34 = (6, 5, 1), α35 = (6, 5, 2),

α36 = (6, 5, 3).

By Lemma 11, the idempotent set is

E(QE∗(X)) = {α1, α2, α3, α4, α5, α6}.

To construct a minimal generating set for QE∗(X), select the idempotent e = α1 = (1, 4, 6). Its H -class is

He = {(1, 4, 6), (4, 1, 6), (4, 6, 1), (6, 1, 4), (1, 6, 4), (6, 4, 1)}= {α1, α7, α13, α19, α25, α31}.

Since He ∼= Sym({1, 4, 6}), the set G = {(1, 4, 6), (4, 1, 6)}= {α1, α7} generates He. By Theorem 19, the set
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G∪E(QE∗(X)) = {α1, α2, α3, α4, α5, α6, α7}

generates QE∗(X). Observing that α2
7 = (4, 1, 6)2 = (1, 4, 6) = α1 yields

QE∗(X) = 〈α2, α3, α4, α5, α6, α7〉.

Since |{α2, α3, α4, α5, α6, α7}| = 6 = max{2, m}, where m = |A1| |A2| |A3| = 3 · 2 · 1 = 6, Corollary 21 confirms
that {α2, α3, α4, α5, α6, α7} is a minimal generating set of QE∗(X) and rank(QE∗(X)) = 6.

By Proposition 16, SY (X) is isomorphic to the direct product of Sym(Y ) and E(SY (X)). By using the dual statements
of Theorem 20 and Lemma 15, we obtain the rank of SY (X) as follows.

Corollary 23 Let X be a nonempty finite set and let Y be a subset of X such that |Y | ≥ 2. Then rank(SY (X)) =

max{2, |Y ||X\Y |}.

5. Maximal subsemigroups
We now return to examining maximal subsemigroups. A subsemigroup of a semigroup S is called maximal if it

is proper (i.e., strictly contained in S) and not properly contained in any other proper subsemigroup of S. Similarly, a
maximal proper subgroup of a group G is a subgroup not contained in any other proper subgroup of G. It is a standard
result that, in the case of a finite group G, every subsemigroup must in fact be a subgroup.

In this section, we will characterize and enumerate all maximal subsemigroups that exist within right [left] groups
expressible as direct products between finite groups and right [left] zero semigroups. The section concludes by extending
our analysis to the specific semigroups QE∗(X) and SY (X), where X is a finite set.

Lemma 24 Let S be a finite right group which can be written as the direct product of a group G and a right zero
semigroup E. Let T be a subsemigroup of S and e ∈ E(S). If Te = Se and E(T ) = E(S), then T = S.

Proof. We note by Theorem 7 that T is a right group. Assume that Te = Se and E(T ) = E(S). Then for all f ∈ E(S),
we have T f = Te f = Se f = S f . Hence,

T =
⋃

f∈E(T )

T f =
⋃

f∈E(S)

T f =
⋃

f∈E(S)

S f = S.

To characterize a maximal subsemigroup of a finite right group, we need the following lemma, which appeared
in [16].

Lemma 25 [16, Lemma 4.3] Let S be a semigroup and let M be a subsemigroup of S such that |S\M|= 1. Then M
is a maximal subsemigroup of S.

By Lemma 25 and the dual statement of [16, Example 4.4], we have the following proposition.
Proposition 26 Let S be a right zero semigroup. Then M is a maximal subsemigroup of S if and only if M = S\{x}

for some x ∈ S.
By the above proposition, we conclude that every nontrivial right zero semigroup has a maximal subsemigroup. In

addition, note that if a finite right zero semigroup S has m elements, then the number of its maximal subsemigroups is also
m.

Now, we provide a characterization of maximal subsemigroups of any finite right group.
Theorem 27 Let S be a finite right group which can be written as the direct product of a group G and a nontrivial

right zero semigroup E(S), and let T be a subsemigroup of S. Then T is a maximal subsemigroup of S if and only if T can
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be written as a direct product H ×E(S) or G×F where H is a maximal subgroup of G and F is a maximal subsemigroup
of E(S).

Proof. Assume that T is a maximal subsemigroup of S. Then, by Theorem 7, T is a right group which can be written
as a direct product Te×E(T ) where e is an idempotent in T . We have Te is a subgroup of Se and E(T ) is a right zero
subsemigroup of E(S).

If Te is a proper subgroup of Se, then there is a maximal subgroup H of Se such that Te ⊆ H ⊊ Se. Clearly, H ×E(S)
is a subsemigroup of Se×E(S) and

Te×E(T )⊆ H ×E(S)⊊ Se×E(S).

Since Te×E(T ) is maximal, we obtain Te×E(T ) = H ×E(S) and so Te = H and E(T ) = E(S).
If E(T ) is a proper subsemigroup of E(S), then there is a maximal subsemigroup F of E(S) such that E(T ) ⊆ F ⊊

E(S). We have

Te×E(T )⊆ Se×F ⊊ Se×E(S).

Since Te×E(T ) is maximal, we obtain Te×E(T ) = Se×F , and so Te = Se and E(T ) = F .
Conversely, suppose that T can be written as a direct product Te×E(S) where Te (with e ∈ E(T )) is a maximal

subgroup of Se. To show that T is maximal, letU be a subsemigroup of S such that T ⊆U ⊆ S. Again, by Theorem 7, U
is a right group which can be written as the direct product Ue×E(U) where Ue is a subgroup of Se and E(U) is a right
zero subsemigroup of E(S). Clearly,

Te×E(S)⊆Ue×E(U)⊆ Se×E(S).

Hence E(U) = E(S). By maximality of Te, we obtain Te =Ue orUe = Se, which implies by Lemma 24 that T =U
or U = S. It is concluded that T is maximal.

Finally, assume that T can be written as a direct product Se × E(T ) where Te = Se and E(T ) is a maximal
subsemigroup of E(S). To show that T is maximal, let U be a subsemigroup of S such that T ⊆ U ⊆ S. By the same
argument as above, we can write

Se×E(T )⊆Ue×E(U)⊆ Se×E(S).

Hence Te = Se = Ue. By maximality of E(T ), we obtain E(T ) = E(U) or E(U) = E(S). Again by Lemma 24,
T =U or U = S, and so T is maximal.

As a direct consequence of Theorem 27 and Proposition 26, we obtain the following corollary.
Corollary 28 Let S be a finite right group which can be written as the direct product of a group G and a nontrivial

right zero semigroup E(S), and let T be a subsemigroup of S. Then T is a maximal subsemigroup of S if and only if T
can be written as the direct product H ×E(S) or G×F where H is a maximal subgroup of G and F = E(S)\{e} for some
e ∈ E(S).

Let S be a finite right group which can be written as the direct product of a group G and a nontrivial right zero
semigroup E(S), where the number of maximal subgroups of G is n and |E(S)| = m > 1. We also note by the above
corollary that the number of maximal subsemigroups of S is n+m. Furthermore, let X be a finite set and E an equivalence
relation on X that is not the identity relation. If X/E = {A1, A2, . . . , An} and |A1||A2| · · · |An| = m, then the number of
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maximal subsemigroups of QE∗(X) is sn +m where sn is the number of maximal subgroups of the symmetric group of
order n (see [17] Section 8.5 and [18] A290138 for details).

By applying duality principles to our preceding results, we can conclude that, when |Y | = n and |X | = m, the total
number of maximal subsemigroups in SY (X) equals sn +nm−n.

6. Embeddability
For right groups, Sangkhanan established in [5, Theorem 4.3] that any right group S can be embedded within

the subsemigroup QE∗(S) for some appropriately chosen equivalence relation E on S. In this section, we extend our
investigation to address the analogous embedding problem for left groups.

Recall that, for any semigroup S, the inner right translation associated with an element a∈ S is themapping ρa : S→ S
defined by x 7→ xa. It is straightforward to verify that, for any a, b ∈ S, we have ρaρb = ρab, which demonstrates that the
collection {ρa : a ∈ S} forms a subsemigroup of T (S) under function composition. We refer to the mapping a 7→ ρa as
the regular representation of the semigroup S.

We note that, according to the dual formulation presented in [6, Lemma 1.26], within any left group S, each
idempotent element is a right identity element of S.

We now have the necessary tools to establish the embedding theorem for arbitrary left groups.
Theorem 29 A left group S can be embedded in the semigroup SY (X) for some set Y and X .
Proof. Let E(S) be the set of all idempotents in S. As previously established, S can be represented as the disjoint

union of isomorphic groups, specifically the collection {eS : e ∈ E(S)}. If S is a group, then S can be embedded in Sym(S)
by Cayley’s theorem. We have Sym(S) = SY (X) where Y = X = S. Assume that S is not a group. Then the set E(S) has
at least two elements. Let e0 be a fixed idempotent in S. Define the sets

Y = E(S)∪ e0S∪{b} and X = Y ∪{a},

constructed by adjoining the elements b and a to E(S)∪ e0S and Y , respectively. Write E(S) \ {e0} = {ei : i ∈ I} and
e0S = {e0s : s ∈ S}. For each t ∈ S, we have t ∈ etS for some et ∈ E(S). Define ωt : X → X by

ωt =



(
a b ei e0s

et b ei e0sρt

)
i∈I, s∈S

if et 6= e0,

(
a b ei e0s

b b ei e0sρt

)
i∈I, s∈S

if et = e0.

It is straightforward to verify that Xωt ⊆ Y .
We claim that, for each t ∈ S, ωt |Y is a bijection. Let u, v ∈ Y be such that uωt = vωt . If u = b or v = b, it is easy

to verify that u = b = v. Now, we suppose that u 6= b and v 6= b. If u = ei and v = e0s for some i ∈ I and s ∈ S, then
ei = uωt = vωt = e0sρt = e0st, which implies that ei ∈ e0S. It contradicts the fact that eiS∩ e0S = /0. Without loss of
generality, we can consider the following two cases. If u = e0s and v = e0s′ for some s, s′ ∈ S, then

e0st = e0sρt = uωt = vωt = e0s′ρt = e0s′t.
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By right cancellation, we have u = e0s = e0s′ = v. For the case when u = ei and v = ei′ for some i, i′ ∈ I, it is obvious
that u = v. Hence ωt |Y is injective. To show that ωt |Y is surjective, let y ∈Y . If y = ei for some i ∈ I, then yωt = ei = y. If
y = e0s for some s ∈ S, then e0st−1ωt = e0st−1ρt = e0st−1t = e0se, where t−1 is the inverse of t in the group eS if t ∈ eS
for some e ∈ E(S). We obtain e0st−1ωt = e0s = y since e is a right identity element in S. Therefore, ωt |Y is a bijection. It
is concluded that ωt ∈ SY (X) for all t ∈ S.

Finally, we show that the mapping φ : S → SY (X) defined by t 7→ ωt is an embedding of S into SY (X). Let t, u ∈ S.
If et = e0, then tu = e0tu ∈ e0S, which implies that etu = e0. We obtain

(tu)φ = ωtu =

(
a b ei e0s
b b ei e0sρtu

)
i∈I, s∈S

=

(
a b ei e0s
b b ei e0sρtρu

)
i∈I, s∈S

.

Moreover,

(tφ)(uφ) =

(
a b ei e0s
b b ei e0sρt

)
i∈I, s∈S

(
a b ei e0s
b b ei e0sρu

)
i∈I, s∈S

if eu = e0,

and

(tφ)(uφ) =

(
a b ei e0s
b b ei e0sρt

)
i∈I, s∈S

(
a b ei e0s
eu b ei e0sρu

)
i∈I, s∈S

if eu 6= e0.

In both cases, we have

(tφ)(uφ) =

(
a b ei e0s
b b ei e0sρtρu

)
i∈I, s∈S

= ωtu = (tu)φ.

If et 6= e0, then tu ∈ etS, which implies that etu = et . We obtain

(tu)φ = ωtu =

(
a b ei e0s
et b ei e0sρtu

)
i∈I, s∈S

=

(
a b ei e0s
et b ei e0sρtρu

)
i∈I, s∈S

.

Moreover,

(tφ)(uφ) =

(
a b ei e0s
et b ei e0sρt

)
i∈I, s∈S

(
a b ei e0s
b b ei e0sρu

)
i∈I, s∈S

if eu = e0,

and
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(tφ)(uφ) =

(
a b ei e0s
et b ei e0sρt

)
i∈I, s∈S

(
a b ei e0s
eu b ei e0sρu

)
i∈I, s∈S

if eu 6= e0.

In both cases, we have

(tφ)(uφ) =

(
a b ei e0s
et b ei e0sρtρu

)
i∈I, s∈S

= ωtu = (tu)φ.

To show that φ is injective, let t, u ∈ S be such that tφ = uφ . Then ωt = ωu. We consider the following two cases.
Case 1: et = e0. Then aωu = aωt = b, which implies that eu = e0. We can write

(
a b ei e0s
b b ei e0sρt

)
i∈I, s∈S

= ωt = ωu =

(
a b ei e0s
b b ei e0sρu

)
i∈I, s∈S

.

We obtain

e0t = e0e0t = e0e0ρt = (e0e0)ωt = (e0e0)ωu = e0e0ρu = e0e0u = e0u.

Moreover, since t, u ∈ e0S and e0 is the identity of the group e0S, we have t = e0t = e0u = u.
Case 2: et 6= e0. Then aωu = aωt = et , which implies that eu = et . Let et = eu = e. We can write

(
a b ei e0s
e b ei e0sρt

)
i∈I, s∈S

= ωt = ωu =

(
a b ei e0s
e b ei e0sρu

)
i∈I, s∈S

.

Since e is the identity of the group eS and E(S) is a left zero semigroup, we have

t = et = e(e0e0)t = e(e0e0ρt) = e(e0e0)ωt = e(e0e0)ωu = e(e0e0ρu) = e(e0e0)u = eu = u.

By combining both cases, we conclude that t = u, and so φ is injective. It is concluded that φ is an embedding of S
into SY (X).

7. Conclusion
In this paper, we have conducted a comprehensive study of two important classes of transformation semigroups that

can be expressed as disjoint union of symmetric groups: the right group QE∗(X) and the left group SY (X). We established
complete characterizations of these semigroups, determined isomorphism conditions, calculated their ranks, characterized
maximal subsemigroups, and established embedding results. These results contribute significantly to our understanding
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of transformation semigroups that decompose as unions of symmetric groups, providing both theoretical insights and
practical tools for their analysis.

It is important to note that all our findings inherently depend on the assumption of finiteness. Considering S as a
right group (with analogous considerations applying to left groups), the computation of the rank of S becomes significantly
challenging when S is infinite. Additionally, when X is infinite, determining the rank of Sym(X/E) presents considerable
difficulties. Moreover, in the case of an infinite S, the validity of Theorem 27 cannot be guaranteed, and determining the
structure of maximal subsemigroups of S remains an open problem. These constraints delineate the scope of our current
methodology and point toward promising avenues for future investigation.
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