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Abstract: This article focuses on the performance of a single-active-unit repairable industrial system with three different
states of unit: active unit (N), partial failure unit (P), and complete failure unit (F). The system operates continuously,
24 hours a day, without interruption, except for two cases: a complete failure of the active unit or maintenance at partial
failure (P). The system always has one service available, which is kept for maintenance and repair. In the case of complete
failure, the faulty unit is replaced with a new one if the repair duration exceeds the maximum allowed time predefined.
However, the nighttime replacement operations have a lot of challenges that may include limited availability of spare part
suppliers or replacement must be performed at a higher cost since options are limited. In this paper, it is assumed that all
the times in the system are negative exponentially distributed. The supplementary variable technique and Markov process
theory have been employed to evaluate the reliability of the system. Further sensitivity and relative sensitivity analyses
are performed on some system parameters in order to study the effect of these parameters on the proposed system. These
results are presented with numerical examples that provide useful insights contributing to the enhancement of the systems
efficiency and operational reliability.

Keywords: single-unit system, reliability analysis, sensitivity analysis, maximum repair times, day and night hours,
supplementary variable technique
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1. Introduction
Reliability stands as a cornerstone of success in modern industrial systems, representing a system’s capacity to

perform required functions without failure or interruption for a specified duration. This reliability directly impacts
production efficiency, cost reduction, and operational sustainability. In critical sectors such as power generation or
pharmaceuticals, unexpected failures can trigger severe economic losses, production downtime, and even life-threatening
hazards.

Consequently, reliability has become a primary focus for engineers and facility managers. Advanced strategies-
including predictive and corrective maintenance-are implemented alongside mathematical modeling and data analysis
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techniques to enhance system performance. Investment in reliability improvements not only boosts operational efficiency
but also strengthens companies’ competitive reputation in the marketplace.

Thus, prior literature on industrial system modeling abounds with studies analyzing reliability and cost-benefit under
diverse conditions and assumptions. This necessitates reviewing key contributions and clarifying how our methodology
distinguishes itself from existing approaches. Numerous studies have been conducted in recent years investigating the
behavior of industrial systems under varying operating conditions during their warranty period.

In 2024, an industrial model was developed [1] to evaluate system performance based on three essential indicators:
availability, reliability, and Mean Time to System Failure (MTSF). Following this, a comprehensive sensitivity analysis
was conducted to investigate the impact of key parameters-such as preparation time, repair time, and warranty policy-on
the overall efficiency of the system. Numerical simulations were employed to illustrate the causal relationships among
these parameters, thereby providing deeper insights into their influence on system behavior. In 2021 study [2] conducted
a reliability and sensitivity analysis of a repairable system with warranty policies and administrative delays, showing
through simulations how these factors affect system efficiency and key performance metrics. Tseni et al. [3] developed
the first optimization model integrating inspection, maintenance, and warranty policies for micromachines under wear,
aiming to enhance reliability and reduce total quality-related costs. Moreover, several studies have focused on analyzing
the behavior of various industrial models under varying environmental or climatic conditions, highlighting the impact of
such factors on system performance and reliability.

A substantial body of research has explored how environmental fluctuations affect the performance and economic
aspects of industrial systems. Among the early works, Goel et al. [4] examined in 1985 a single-unit system with an
operator whose condition alternated due to changing weather. They later extended their analysis to a cost evaluation of
a two-unit cold standby system under different climatic scenarios [5]. Building on this, Gupta and Goel [6] analyzed the
profit function of a system with two non-identical units operating in diverse environmental conditions.

In subsequent years, especially in 2012 and 2015, several studies [7–9] applied stochastic modeling to investigate
repairable systems with heterogeneous components subject to climate variability. Barak et al. [10] introduced a stochastic
reliability model for a single-unit system, explicitly considering weather effects during inspections. Further, Barak and
Barak [11] assessed how abnormal weather impacts reliability metrics in inspectable and repairable systems. These
investigations have collectively contributed to a deeper understanding of the operational and economic challenges posed
by environmental variability. In 2023, Kamal et al. [12] investigated a two-unit warm standby system with dissimilar
components operating under normal and abnormal weather conditions, using regenerative point techniques to assess
reliability, repair workload, and cost-effectiveness. Complementing this, Zhang and Liu [13] underscored the significance
of predictivemaintenance and real-timemonitoring-powered bymachine learning-inminimizing unplanned downtime and
enhancing system availability. In a related context, Shan and Wang [14] examined a K-out-of-G mixed standby system
that incorporates both warm and cold standby components, along with an unreliable repair facility. Their analysis utilized
Markov process modeling and Laplace transform techniques to assess key performance indicators, including system
reliability, steady-state availability, and the impact of preventive maintenance and repair delays on cost-effectiveness.

Although numerous studies have addressed the reliability and performance of repairable systems under varying
operational and environmental conditions, most have focused on binary-state systems (fully operational or complete
failure) or standby systems with limited operational dynamics. Moreover, many practical challenges-such as maintenance
delays, spare part replacement constraints, and time-limited repair protocols-have often been overlooked in favor of more
idealized modeling assumptions.

The present study offers a distinctive contribution by modeling a single-active-unit industrial repairable system with
a detailed classification of three operational states: normal operation, partial failure, and complete failure, providing
a more accurate and realistic representation of system behavior. The model also incorporates operational constraints,
including limited nighttime replacement capabilities and a predefined maximum repair time, reflecting actual industrial
conditions. Utilizing the supplementary variable technique and Markov process theory, the analysis delivers precise
evaluations of key performance indicators, supported by both absolute and relative sensitivity analyses to understand
the impact of varying operational parameters on system performance. In doing so, this study bridges the gap between
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theoretical models and practical realities, enriching the literature with a robust framework for reliability analysis in real-
world industrial environments.

Before proceeding to the detailed exposition of the article, Table 1 provides a rigorous and systematic analysis of
the research gap through a comprehensive comparison between the present study and the prior works reviewed in the
introduction, which outlined the evolutionary development of industrial systems over the past years. This table clearly
highlights the novel aspects that distinguish the current study and underscores the scientific value it contributes to the
field of industrial system reliability. Building on this foundation, Section 2 presents the fundamental assumptions of the
system, defines its operational states, and clarifies the analytical notation adopted throughout the study. Section 2 reviews
the fundamental assumptions of the system, clarifies the definitions of the various states, and introduces the notation used
throughout the analysis. Building on this foundation, Section 3 develops a mathematical framework based on Markov
processes to derive key reliability metrics such as the reliability function, mean time to failure, and steady-state availability.
Section 4 offers an in-depth examination of the impact of changes in system parameters on performance through both
absolute and relative sensitivity analyses. To demonstrate the practical application of the model, Section 5 presents
numerical examples that highlight important behavioral patterns. The study concludes in Section 6 by summarizing the
main findings and discussing their broader implications.

Table 1. Research gap identification and contribution of the present study

Author (s)/Year Focus of study Identified gap/Limitation Contribution of the present work

Hussien and
El-Sherbeny [1]

Stochastic analysis of an industrial
system with preparation-time

repair under warranty.
Did not consider multi-state unit

operation.
Models a single active-unit system with

three states (N, P, F).

El-Sherbeny and
Hussien [2]

Reliability and sensitivity of a
repairable system with warranty

and administrative delays.
Binary-state assumption; no repair
time or replacement constraints.

Introduces maximum repair time policy and
day/night replacement conditions.

Tseni et al. [3] Optimization of warranty and
inspection for micromachines.

Limited to micromachines; not
scalable to industrial systems.

Extends framework to industrial single-unit
systems with practical repair/replacement

policies.

Goel et al. [4] Weather effect on man-machine
systems.

Did not integrate repair time or
partial failure states.

Considers both partial and complete failures
under real operational settings.

Goel et al. [5] Cost analysis of two-unit cold
standby under weather variation

Focused on standby systems, not
single active-unit.

Provides a single-unit continuous operation
model.

Gupta and Goel
[6]

Profit analysis of cold standby
systems under weather.

Concentrated on economic cost;
ignored time-limited repair.

Combines reliability with cost implications
of delayed nighttime replacement.

Malik and
Deswal [7–9]

Reliability of heterogeneous units
under weather.

Environmental focus; no
operational constraints (repair
deadlines, spare part limits).

Incorporates spare-part availability and
cost-sensitive replacement (day vs night).

Barak et al. [10] Reliability with inspection under
weather variability.

Ignored repair time limits and
spare-part supply constraints.

Adds predefined maximum repair time and
supplier-based constraints.

Barak and Barak
[11]

Impact of abnormal weather on
inspectable systems.

Focus only on environmental
uncertainty.

Extends to operational challenges:
nighttime repairs and economic penalties.

Kamal et al. [12] Profitability of two-unit warm
standby system.

Multi-unit context; no single
active-unit modeling.

Models realistic single active-unit with
continuous operation.

Wang et al. [13] Predictive maintenance for
industrial robots using AI.

Data-driven approach; no
analytical reliability measures.

Provides analytical evaluation using
supplementary variable technique.

Shan and Wang
[14]

K-out-of-G mixed standby with
unreliable repair.

Standby-focused; does not reflect
continuous industrial unit.

Bridges theory and practice by modeling
continuous, constrained, single-unit

operation.

Present study
Reliability and sensitivity of single
active-unit system with three states

(N, P, F).

Bridges the gap by incorporating: (i)
multi-state operation, (ii) maximum repair
time, (iii) day/night replacement constraints,
(iv) both sensitivity & relative sensitivity

analysis for real-world insights.
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2. Description of the system
The proposed system consists of a single active unit operating continuously 24 hours a day without interruption. It

only stops under two conditions: when a complete failure of the unit occurs or when maintenance is needed for a unit that
has undergone a decline in operational efficiency (partial failure). A single server is assigned to perform maintenance and
repair tasks. If the repairman is unable to complete the repair of the completely failed unit within the predefined maximum
repair time, the failed unit must be replaced with a new active unit. These procedures are carried out during both daytime
or nighttime hours without distinction. In the light of this explanation, the proposed system can be described under the
following assumptions:

1. The system operates with a single active unit at any given time.
2. The “first system state” refers to the unit’s operation during morning working hours, ensuring continuous activity

throughout this period.
3. The unit, whether functioning during the day or night, can experience two possible failure states: partial failure

or complete failure.
4. In the event of a partial failure that reduces operational efficiency, immediate preventive maintenance must be

conducted without delay, regardless of whether it occurs during daytime or nighttime operation.
5. If the active unit undergoes a complete failure, causing a total system shutdown, immediate repair procedures

must be initiated to restore functionality.
6. If the repair technician exceeds the allocated maximum repair time, the faulty unit must be replaced immediately

to ensure system efficiency and continuous operation.
7. Unit replacement occurs during one of two time periods: morning or evening work hours. The morning period

is preferred due to better supplier availability and greater price flexibility. In contrast, the evening period presents two
choices: either postponing replacement until morning to benefit frommore favorablemarket conditions or proceedingwith
immediate replacement to minimize downtime, albeit at a higher cost due to limited supplier availability and increased
procurement expenses.

8. All time intervals in the system follow a negative exponential distribution.
9. After each repair or maintenance, the unit becomes like a new one.
State Specification:
To examine how the system behaves at any specific virtual time t, the states of the system can be outlined as follows:
S0/S1: The unit is active during/morning working hours/night working hours.
S2/S3: The partial failure unit is stopped from operation and is undergoing preventive maintenance during/morning

working hours/night working hours.
S4/S5: The failed unit under repair during/morning working hours/night working hours.
S6/S7: The failed unit replaced during/morning working hours/night working hours.
S8: The failed unit witting replaced during night working hours.
Notations:
α1/α2: A constant rate of change from the morning work period to the evening work period/from the evening work

period to the morning work period.
θ : The repair rate of the failed unit during the morning work period.
θ1: The maintenance rate of the partially failed unit during the morning work period.
θ2: The maintenance rate of the partially failed unit during the evening work period.
θ3: The replacement rate of the failed unit during the evening work period.
θ4: The repair rate of the failed unit during the evening work period.
θ5: The replacement rate of the completely failed unit during the morning work period.
η/η1: The partially failed rate during the morning work period/the evening work period.
β/β1: The maximum repair rate after complete failure during the evening work period/the morning work period.
λ1/λ2: The failure rate from the normal state to failure during the morning work period/the evening work period.
κ: The waiting replacement rate of the failed unit during the evening work period.
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π0(t)/π1(t): The probability that at time t the system is in good state during the morning work period/the evening
work period.

π2(t)/π3(t): The probability that the system at time t is in a state of partial failure and is undergoing preventive
maintenance during the morning work period/the evening work period.

π4(t)/π5(t): The probability that at time t the system is in a failed state and getting the repairman available in the
morning work period/the evening work period.

π6(t)/π8(t): The probability that at time t the system is in a replacement of the failed unit in the morning work
period/the evening work period.

π7(t): The probability that at time t the system is in a waiting replacement of the failed unit in the evening work
period.

Using these symbols, the possible states of the system being analyzed are as follows:
OM/ON : The unit is in normal operation mode and operative during/morning working hours/night working hours.
PFpm, M/PFpm, N : The unit is in partial failure mode and undergoing preventive maintenance during/morning

working hours/night working hours.
Fur, M/Fur, N : The unit is in failure mode and undergoing repairs during/morning working hours/night working hours.
Fwrp, N : The unit is in failure mode and awaiting replacement during night working hours.
Furp, M/PFurp, N : The unit is in failure mode and undergoing replaced during/morning working hours/night working

hours.
Possible states of the system are as follows:
Up states: S0 = (OM), S1 = (ON).
Down state: S2 = (PFpm, M), S3 = (PFpm, N), S4 = (Fur, M), S5 = (Fur, N), S6 = (Furp, M), S8 = (Fwrp, N), S7 =

(Furp, N).
Possible states and transitions are shown in Figure 1.

Figure 1. State transition diagram
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3. Analysis of the system
3.1 Reliability

The system reliability R(s) represents the probability that the system will function properly over the time interval
(0, t). To evaluate system performance measures, the Markov process is utilized to model the operational states, namely
S0, and S1. The reliability function is derived based on the proposed equations.

{
d
dt

+α1 +λ1 +η
}

π0(t) = α2π1(t), (1)

{
d
dt

+α2 +λ2 +η1

}
π1(t) = α1π0(t). (2)

The initial conditions are as follows:

πi(0) =


1 i ̸= 0

0 i = 0.
(3)

We apply the Laplace transform to Equations (1)-(3), incorporating the initial condition, and obtain the following
result:

{s+α1 +λ1 +η}π0(s) = 1+α2π1(s), (4)

{s+α2 +λ2 +η1}π1(s) = α1π0(s), (5)

From Equations (4) and (5), we obtain

π0(s) =
{s+α2 +λ2 +η1}

{s+α1 +λ1 +η}{s+α2 +λ2 +η1}−α1α2
, (6)

π1(s) =
α1

{s+α1 +λ1 +η}{s+α2 +λ2 +η1}−α1α2
. (7)

From Equations (6) and (7), we derive the Laplace transform formula for the system’s reliability as follows:

R(s) = π0(s)+π1(s), (8)

wherefore,

R(s) =
{s+α2 +λ2 +η1}+α1

{s+α1 +λ1 +η}{s+α2 +λ2 +η1}−α1α2
. (9)
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If we use the inverse Laplace transform for Equation (9), we obtain the reliability function as follows:

R(t) =

(
(η −α1 −α2 −η1 +λ1 −λ2)

(
e(H1− 1

2 H)t − e(H1+
1
2 H)t

)
+H

(
e(H1− 1

2 H)t + e(H1+
1
2 H)t

))
2H

, (10)

where,

H =

√
(η +η1 +α1 +α2 +λ1 +λ2)

2 −4(α2 (η +λ1)+(η1 +λ2)(η +α1 +λ1))

H1 =

(
−η
2

− η1

2
− α1

2
− α2

2
− λ1

2
− λ2

2

)
.

3.2 MTSF

The MTSF represents the expected duration a system operates before it fails. This metric is one of the fundamental
measures in reliability analysis. The MTSF can be determined using Equation (10) as shown below.

MTSF=
∫ ∞

0
R(t)dt. (11)

Based on equation (11), the MTSF can be expressed in the following form.

MTSF=
(α1 +α2 +η1 +λ2)

α2 (η +λ1)+(η +α1 +λ1)(η1 +λ2)
. (12)

3.3 System availability

Availability refers to the probability that a system or component is operational and functioning correctly when needed,
considering both operational time (uptime) and downtime due to failures or maintenance. we can represent the system’s
states using differential equations as follows:

{
d
dt

+α1 +λ1 +η
}

π0(t) = α2π1(t)+θ1π2(t)+θπ4(t)+θ5π6(t) (13)

{
d
dt

+α2 +λ2 +η1

}
π1(t) = α1π0(t)+θ2π3(t)+θ4π5(t)+θ3π8(t) (14)

{
d
dt

+θ1

}
π2(t) = ηπ0(t) (15)

{
d
dt

+θ2

}
π3(t) = η1π1(t) (16)
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{
d
dt

+θ +β1

}
π4(t) = λ1π0(t) (17)

{
d
dt

+θ4 +β
}

π5(t) = λ2π1(t) (18)

{
d
dt

+θ5

}
π6(t) = β1π4(t)+α2π7(t) (19)

{
d
dt

+κ +α2

}
π7(t) = βπ5(t) (20)

{
d
dt

+θ3

}
π8(t) = κπ7(t). (21)

The initial conditions are

πi(0) =


1 i ̸= 0

0 i = 0.
(22)

By applying the Laplace transformation to all the preceding equations, we derive the following expressions:

{s+α1 +λ1 +η}π0(s) = 1+α2π1(s)+θ1π2(s)+θπ4(s)+θ5π6(s), (23)

{s+α2 +λ2 +η1}π1(s) = α1π0(s)+θ2π3(s)+θ4π5(s)+θ3π8(s), (24)

{s+θ1}π2(s) = ηπ0(s) (25)

{s+θ2}π3(s) = η1π1(s) (26)

{s+θ +β1}π4(s) = λ1π0(s) (27)

{s+θ4 +β}π5(s) = λ2π1(s) (28)

{s+θ5}π6(s) = β1π4(s)+α2π7(s) (29)

{s+κ +α2}π7(s) = βπ5(s) (30)
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{s+θ3}π8(s) = κπ7(s). (31)

We also note the following:

8

∑
i=0

πi(s) =
1
s
. (32)

From Equations (23)-(32) we obtain

π0(s) =
B(s)

1− (B1(s)+B2(s)+B3(s)+B4(s)+B5(s))
, (33)

π1(s) =
C(s)B(s)

1− (B1(s)+B2(s)+B3(s)+B4(s)+B5(s))
, (34)

π2(s) =
(

η
s+θ1

)
π0(s), (35)

π3(s) =
(

η1

s+θ2

)
π1(s), (36)

π4(s) =
(

λ1

s+θ +β1

)
π0(s), (37)

π5(s) =
(

λ2

s+θ4 +β

)
π1(s), (38)

π6(s) =
(

β1λ1π0(s)
(s+θ +β1)(s+θ5)

+
α2λ2βπ1(s)

(s+θ5)(s+θ4 +β )(s+κ +α2)

)
, (39)

π7(s) =
λ2βπ1(s)

(s+θ4 +β )(s+κ +α2)
, (40)

π8(s) =
λ2βκπ1(s)

(s+θ4 +β )(s+κ +α2)(s+θ3)
, (41)

where,

B(s) =
1

(s+α1 +λ1 +η)
, B1(s) =

α2C(s)
(s+α1 +λ1 +η)

, B2(s) =
θ1η

(s+α1 +λ1 +η)(s+θ1)
,
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B3(s) =
θλ1

(s+α1 +λ1 +η)(s+θ +β1)
, B4(s) =

θ5β1λ1

(s+θ5)(s+θ +β1)(s+α1 +λ1 +η)
,

B5(s) =
(θ5λ2α2β )C(s)

(s+θ5)(s+θ4 +β )(s+κ +α2)(s+α1 +λ1 +η)
, C(s) =

A(s)
1− (A1(s)+A2(s)+A3(s))

,

A(s) =
α1

(s+α2 +λ2 +η1)
, A1(s) =

θ2η1

(s+α2 +λ2 +η1)(s+θ2)
,

A2(s) =
θ4λ2

(s+α2 +λ2 +η1)(s+θ4 +β )
, A3(s) =

θ3λ2κβ
(s+α2 +λ2 +η1)(s+θ4 +β )(s+κ +α2)(s+θ3)

.

Based on Equations (21)-(29), we derive the Laplace transform expression for the availability Av(s) as follows:

Av(s) = π0(s)+π1(s). (42)

Consequently, the steady-state availability Av(∞) of the system is given by:

Av(∞) = lim
s→0

{sAv(s)} (43)

Av(∞) =
H
H1

, (44)

where,

H = θ1θ2θ3θ5 (θ +β1)((κ +α2)(α1 +α2)(β +θ4)+βα2λ2) ,

H1 = α2θ2θ3 (θ5 (θ +β1)(η +θ1)+θ1λ1 (β1 +θ5))((κ +α2)(β +θ4)+βλ2)+θ1α1 (β1 +θ)

(θ5θ3 (κ +α2)(η1 +θ2)(β +θ4)+θ2λ2 (βα2θ3 +θ5 (βκ +θ3 (β +κ +α2)))) .

4. Sensitivity and relative sensitivity analysis
In this section, we explore the concept of sensitivity analysis and relative sensitivity, highlighting their crucial role in

evaluating system impact. Accordingly, it is essential first to define sensitivity analysis for the proposed system, followed
by clarifying its importance in understanding system behavior and enhancing its performance.

Sensitivity analysis is a technique used to evaluate the impact of changes in system parameters on its reliability. In
other words, this analysis identifies how sensitive system performance is to variations in its inputs, such as failure rates,
repair times, or other factors affecting reliability system.

Impotence of sensitivity analysis in reliability:
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1. Identifying key influencing factors: Helps recognize which parameters have the most significant impact on
reliability, allowing for targeted improvements.

2. Enhancing design andmaintenance: Understanding these effects enables better engineering designs ormaintenance
strategies to extend system lifespan.

3. Risk management: Reduces unexpected failures by predicting the impact of specific changes.

4.1 Sensitivity and relative sensitivity analysis for reliability function

By differentiating Equation (10) with respect to parameter τ , we first obtain the sensitivity analysis, as shown in the
following equation.

φτ =
∂R(t)

∂τ
, (45)

where, τ = η , η1, α1, α2, λ1, λ2.
Next, by performing sensitivity analysis calculations in Equation (45), we can also determine the relative sensitivity,

as illustrated below.

ψτ =
φτ .τ
R(t)

. (46)

4.2 Sensitivity and relative sensitivity analysis for MTSF

We can also determine the sensitivity analysis of MTSF based on the parameters that affect it.
By differentiating Equation (12) with respect to parameter τ , we obtain

στ =
∂MT SF

∂τ
=

∫ ∞

0

∂R(t)
∂τ

dt. (47)

The relative sensitivity of the Mean Time to System Failure can be represented as follows:

ωτ =
στ .τ
MTSF

. (48)

5. Computational findings
This section presents a precise analytical framework for the numerical evaluation of three key system reliability

metrics: the reliability function R(t), the mean time to first failure MTSF, and steady-state availability Av(∞). The
evaluation is based on a systematic analysis of system parameter variations within defined operational limits, while
keeping another parameters constant. Through well-structured computational experiments, the impact of each parameter
is assessed in terms of reliability degradation patterns, fault tolerance, and long-term operational readiness. Subsequently,
sensitivity and relative sensitivity analyses are performed to evaluate the impact of parameter variations on system
reliability R(t) and the Mean Time to System Failure MTSF, contributing to enhanced system performance under dynamic
operational constraints and ensuring an optimal balance between cost-efficiency and functional longevity.
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5.1 Computational analysis of R(t), MTSF, and Av(∞∞∞)

This section provides a detailed numerical analysis examining the impact of variations in system parameters on key
performance indicators, including the reliability function R(t), MTSF, and steady-state availability Av(∞). The analysis
aims to deliver a comprehensive assessment of how parameter fluctuations affect the overall behavior and effectiveness
of the system across diverse operational scenarios

The analysis begins with a comprehensive evaluation of the system reliability function R(t), followed by a systematic
study of the impact of variations in system parameters on key performance indicators. In the reference scenario, the
parameters were held constant at λ2 = 0.3, η = 0.6, η1 = 0.4, α1 = 0.4, and α2 = 0.3, while the parameter λ1 was varied
across the values 0.1, 0.4, 0.6, and 0.9. The temporal variable t was examined over the range from 1 to 10 units with a
step size of one unit, enabling a detailed investigation of the dynamic behavior of the system under diverse operational
conditions. This systematic approach ensures clarity of results and facilitates reproducibility in future numerical studies.

Table 2 presents the numerical values of the reliability function R(t) over the time horizon 0 ≤ t ≤ 10, with the model
parameters fixed at λ2 = 0.3, η = 0.6, η1 = 0.4, α1 = 0.4 and α2 = 0.3 while the failure-rate parameter λ1 is varied at
three levels (λ1 = 0.1, 0.4, 0.6). All cases start with R(0) = 1.0000, which is consistent with the mathematical definition
of the reliability function. At time t = 1, the reliability values are R(t) = 0.496585 for λ1 = 0.1, R(t) = 0.387471 for
λ1 = 0.4, and R(t) = 0.329869 for λ1 = 0.6. The transition from λ1 = 0.1 to λ1 = 0.6 thus corresponds to a relative
reduction of approximately 33.6% in reliability. At t = 5, the values decrease further to R(t) = 0.0301974 for λ1 = 0.1,
R(t) = 0.0138206 for λ1 = 0.4, and R(t) = 0.0119421 for λ1 = 0.6, indicating that the system at λ1 = 0.1 maintains more
than twice the reliability of the system at λ1 = 0.6. By t = 10, the reliability values approach zero across all cases, yet
they remain distinct: 0.000911882 for λ1 = 0.1, 0.000251625 for λ1 = 0.4, and 0.000134612 for λ1 = 0.6. These findings
confirm that the failure-rate parameter λ1 is the dominant driver of reliability degradation, and that reducing its value
represents an effective means of extending system lifetime and sustaining long-term performance.

Table 2. Variation of reliability values R(t) for different values of “t” at η = 0.6; η1 = 0.4; α1 = 0.4; α2 = 0.3; λ2 = 0.3

t R(t) (λ1 = 0.1) R(t) (λ1 = 0.4) R(t) (λ1 = 0.6)

0 1.0000 1.0000 1.0000
1 0.496585 0.387471 0.329869
2 0.246597 0.161613 0.124738
3 0.122456 0.0700959 0.0507542
4 0.0608101 0.030987 0.0213555
5 0.0301974 0.0138206 0.00911415
6 0.0149956 0.00618924 0.00391245
7 0.00744658 0.00277682 0.00168346
8 0.00369786 0.00124686 0.000725044
9 0.0018363 0.000560079 0.000312386
10 0.000911882 0.000251625 0.000134612

Table 3 presents the variation of the reliability function R(t) for different values of the parameter λ2 = (0.2, 0.4, 0.6),
across a time horizon t = 0 to t = 10. The analysis is conducted under the fixed conditions η = 0.6, η1 = 0.4, α1 =

0.4, α2 = 0.3, and λ1 = 0.4. At t = 0, the system reliability starts at its maximum value, R(0) = 1.000, for all considered
values of λ2 , as expected from the definition of reliability functions. As time increases, R(t) decreases monotonically,
reflecting the natural degradation in system performance with elapsed time. For instance, at t = 1, the reliability values
are R(1) = 0.394925 for λ2 = 0.2, R(1) = 0.380501 for λ2 = 0.4, and R(1) = 0.367879 for λ2 = 0.6. This trend clearly
shows that higher values of λ2 accelerate the decay rate of reliability, leading to lower survival probabilities. The same
behavior persists across the time interval. For example, at t = 5, the reliability reduces to R(5) = 0.0183242 (λ2 = 0.2),
R(5) = 0.010643 (λ2 = 0.4), and R(5) = 0.00673795 (λ2 = 0.6). By the end of the observation period (t = 10), the values
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become extremely small: R(10) = 0.000490485, R(10) = 0.00013504, and R(10) = 0.0000453999, respectively. Overall,
the results emphasize that reliability R(t) decreases more rapidly as λ2 increases, highlighting the significant influence of
this parameter on system degradation dynamics. This sensitivity suggests that λ2 plays a critical role in shaping long-term
system performance, and its proper estimation is vital for predictive reliability modeling.

Table 3. Variation of reliability values R(t) for different values of “t” at η = 0.6; η1 = 0.4; α1 = 0.4; α2 = 0.3; λ1 = 0.4

t R(t) (λ2 = 0.2) R(t) (λ2 = 0.4) R(t) (λ2 = 0.6)

0 1.0000 1.0000 1.0000
1 0.394925 0.380501 0.367879
2 0.173007 0.151666 0.135335
3 0.0801166 0.0619385 0.0497871
4 0.0380907 0.0256008 0.0183156
5 0.0183242 0.010643 0.00673795
6 0.00886041 0.00443678 0.00247875
7 0.00429374 0.00185199 0.000911882
8 0.00208269 0.000773529 0.000335463
9 0.00101062 0.000323176 0.00012341
10 0.000490485 0.00013504 0.0000453999

Table 4. Variation of reliability values R(t) for different values of “t” at η1 = 0.4; α1 = 0.4; α2 = 0.3; λ1 = 0.4; λ2 = 0.3

t R(t) (η = 0.1) R(t) (η = 0.5) R(t) (η = 0.8)

0 1.0000 1.0000 1.0000
1 0.58828 0.420519 0.329869
2 0.333611 0.185245 0.124738
3 0.186021 0.0836083 0.0507542
4 0.10289 0.0381919 0.0213555
5 0.0566847 0.0175473 0.00911415
6 0.0311686 0.00808434 0.00391245
7 0.0171218 0.00372945 0.00168346
8 0.00940108 0.00172152 0.000725044
9 0.00516062 0.000794886 0.000312386
10 0.00283254 0.000367076 0.000134612

The analysis of Tables 4 and 5 provides a comprehensive understanding of the combined effect of parameters η and
η1 on the system’s reliability function R(t). Both tables confirm the general property that reliability starts at R(0) = 1.000
for all parameter settings and decreases monotonically over time. Distinct patterns emerge when the results are compared.
In Table 4, with η1 = 0.4, reliability decays more rapidly as η increases. For instance, at t = 5, the reliability values are
R(5) = 0.0566847 (η = 0.1), R(5) = 0.0175473 (η = 0.5), and R(5) = 0.00911415 (η = 0.8). In Table 5, where η = 0.6,
the corresponding values are lower in magnitude but the early-stage decay is slower: R(5) = 0.0341047, 0.010643, and
0.00554037, respectively. This indicates that increasing η slightly improves short-term survival, while the long-term
downward trend remains. At later times (t = 10), both tables show very low reliability values, such asR(10) = 0.00283254
(η1 = 0.4; η = 0.1) and R(10) = 0.00208712 (η1 = 0.1; η = 0.6), highlighting that long-term system survival is limited
regardless of the chosen parameter values. Overall, two key insights are drawn from the analysis:

Effect of η : Higher η consistently accelerates the decay of reliability, reducing survival probability across all time
intervals.
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Effect of η1: Increasing η1 slows down early-stage reliability decline, enhancing short-term robustness without
altering the long-term trend.

Table 5. Variation of reliability values R(t) for different values of “t” at η = 0.6; α1 = 0.4; α2 = 0.3; λ1 = 0.4; λ2 = 0.3

t R(t) (η1 = 0.1) R(t) (η1 = 0.5) R(t) (η1 = 0.8)

0 1.0000 1.0000 1.0000
1 0.411445 0.380501 0.362165
2 0.20113 0.151666 0.128632
3 0.107798 0.0619385 0.0452619
4 0.0601493 0.0256008 0.0158536
5 0.0341047 0.010643 0.00554037
6 0.0194565 0.00443678 0.00193401
7 0.0111255 0.00185199 0.000674738
8 0.00636723 0.000773529 0.000235336
9 0.00364521 0.000323176 0.0000820695
10 0.00208712 0.00013504 0.0000286183

Figure 2 illustrates the relationship between theMTSF, the failure rate (λ1), and the transition rate from themorning to
the evening work period (α1). The analysis reveals a strong inverse correlation, demonstrating a predictable, sharp decline
in MTSF as the failure rate (λ1) increases. However, the more significant finding is the critical role of the transition rate
(α1). For any fixed value of λ1, a higher α1 value results in a marked improvement in system reliability, evidenced by
a higher MTSF curve. This behavior can be interpreted through the premise that a faster transition out of the morning
work period reduces the system’s exposure time to a high-stress operational state, thereby granting it greater resilience
and extending its overall operational lifespan. Consequently, system reliability is not merely a function of its intrinsic
component failure rates but is fundamentally influenced by its temporal patterns and operational dynamics. This insight
provides a crucial strategic framework for system designers, suggesting that optimizing operational management policies
and scheduling transitions between operational modes can be an effective method for enhancing system durability and
maximizing long-term performance.

Figure 2. MTSF versus failure rate λ1 and rate of change from the morning work period to the evening work period α1

Figure 3 illustrates the effect of the failure rate (λ2) and the transition rate from the evening to the morning work
period (α2) on the MTSF. The results show a clear inverse relationship between λ2 and MTSF, confirming that higher
failure rates shorten system lifetime. At the same time, increasing α2 improves reliability by raising MTSF values for
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any fixed λ2. This improvement stems from reducing exposure to high-stress conditions through faster transitions, which
enhances system resilience and prolongs operational lifespan.

Figure 3. MTSF versus failure rate λ2 and rate of change from the evening work period to the morning work period α2

Figure 4 demonstrates the critical relationship between steady-state availability and both failure rate (λ1) and
maximum repair rate (β1). While increasing λ1 reduces availability due to more frequent failures, higher β1 values
significantly compensate for this effect through enhanced repair efficiency duringmorning operations. This highlights that
optimizing repair capabilities during critical work periods is essential for maintaining system availability despite rising
failure rates.

Figure 4. The steady-state availability versus failure rate λ1 and rate of the maximum repair rate after complete failure during the morning work period
β1

Figure 5 reveals the essential interplay between failure rate (λ2) and maximum repair rate (β ) in determining system
availability. The analysis confirms that while elevated failure rates inevitably diminish availability, this degradation can
be effectively counterbalanced by strengthening repair capabilities during morning operations. Specifically, higher β
values demonstrate a compensatory effect, substantially mitigating the negative impacts of increased failure rates. These
findings underscore the strategic importance of optimizing morning repair capacity as a crucial mechanism for sustaining
system availability amidst growing reliability challenges.
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Figure 5. The steady-state availability versus failure rate λ1 and rate of the maximum repair rate after complete failure during the evening work period
β

Figure 6. The steady-state availability versus failure rate λ1 and rate of the maintenance rate of the partially failed unit during the morning work period
θ1

Figure 7. The steady-state availability versus failure rate λ2 and rate of the maintenance rate of partially failed unit during the evening work period θ2

Figures 6 and 7 collectively demonstrate the combined impact of maintenance rates (θ1 for morning, θ2 for evening)
and their corresponding failure rates (λ1, λ2) on system steady-state availability. The comparative analysis reveals that
increasing maintenance rates during both periods significantly enhances system availability by effectively counteracting
the negative effects of rising failure rates. The results show with greater precision that the effectiveness of morning
maintenance (θ1) in combating its corresponding failure rate (λ1) substantially surpasses that of evening maintenance (θ2)
in addressing its specific failure rate (λ2), particularly under high-stress operational conditions. These findings confirm the
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strategic importance of implementing balanced maintenance strategies, with higher priority given to optimizing morning
maintenance capabilities (θ1) to handle failure rates (λ1), while maintaining robust evening maintenance capacities (θ2) to
control failure rates (λ2). This integrated approach ensures maximum operational availability and 24/7 system reliability.

Figure 8 presents a comprehensive sensitivity analysis of the system reliability function R(t) over the time interval
t ∈ [0, 10] , examining how variations in different system parameters affect reliability. The analysis reveals distinct

sensitivity patterns among the parameters: The partial derivatives
∂R(t)
∂λ1

,
∂R(t)
∂α1

,
∂R(t)
∂η1

,
∂R(t)
∂λ2

, and
∂R(t)

∂η
demonstrate

negative values, indicating that increasing these parameters leads to a reduction in system reliability. This is particularly
pronounced for the failure rate λ1 = η , which shows the most significant negative sensitivity. Conversely, the partial

derivative
∂R(t)
∂α2

exhibits a positive value, suggesting that increasing this transition rate α2 contributes to enhancing
system reliability. These findings provide crucial quantitative insights for reliability optimization, clearly identifying
which parameters require careful control and which can be leveraged for system improvement.

Figure 8. Sensitivity analysis with different parameters

5.2 Numerical findings of sensitivity and relative sensitivity analyses

Tables 6 and 7 provide an integrated and advanced analysis of the sensitivity of reliability for industrial system.
Table 6 focuses on measuring sensitivity of the system reliability φ , which estimates the instantaneous rate of change in
reliability with respect to a slight variation in critical operational parameters, such as failure rates (λi; ηi) and transition
rates (αi). The results show that sensitivity values at the start of operation t = 0 are nearly negligible, which is expected
at the beginning of any industrial system’s life cycle. As operational time progresses, the negative value for parameters
(φα1 , φη1 , φη , φλ1 , φλ2) indicate that their increase lead to a degradation of system reliability, whereas the positive sign
for φα2 suggests a potentially positive role, possibly representing the efficiency of repair process or the activation of a
backup system. It is noted that the peak negative absolute impact is achieved at t = 2 for the two parameters η and λ1

with a value of (-0.575535), identifying the most influential operational parameters in the medium-term performance of
system. While Table 6 define the dimension of the immediate impact, Table 7 transitions to a more in-depth analysis
via “Relative Sensitivity” ψ , a dimensionless quantity that measures the percentage change in reliability resulting from
a 1% relative change in a parameter. The paramount engineering value of this table lies in its revelation of a long-term
dynamic; contrary to the absolute sensitivity which declines, we observe that relative sensitivity increases steadily with
advancing operational age for all parameters. This clarifies that as the industrial system ages and its fundamental reliability
begins to erode, its performance becomes relatively more sensitive to any variances in design and operational parameters.
Crucially, the failure rate λ1 emerges as the most critical parameter overall, with its value ψλ1 reaching (-1.99619) at
t = 10. This means, in practice, that a 1% increase in λ1 would cause an approximately 2% decrease in system reliability
at this stage. In conclusion, these analyses provide strategic insights for ensuring quality, robustness, and durability. While
Table 6 identifies immediate operational pressure points, Table 7 reveals long-term cumulative threats, confirming that λ1
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is the decisive parameter that must be the central focus of preventive maintenance strategies, quality control, and design
reliability optimization to ensure the optimal operational lifespan of industrial systems.

Table 6. Sensitivity of the system reliability at η = 0.2; η1 = 0.3; α1 = 0.3; α2 = 0.35; λ1 = 0.3; λ2 = 0.4

t φα1 φα2 φη1 φη φλ1 φλ2

0 2.220510−16 2.220510−16 5.551110−17 -5.551110−17 −5.551110−17 5.551110−17

1 -0.0217564 0.00210746 -0.0694841 -0.52987 -0.52987 -0.0694841

2 -0.0391911 0.00726344 -0.1321 -0.575535 -0.575535 -0.1321

3 -0.0409799 0.0107883 -0.144516 -0.477388 -0.477388 -0.144516

4 -0.0348138 0.0114853 -0.127412 -0.356573 -0.356573 -0.127412

5 -0.0266271 0.0102697 -0.100421 -0.252005 -0.252005 -0.100421

6 -0.0191561 0.00827013 -0.0740086 -0.17211 -0.17211 -0.0740086

7 -0.0132515 0.00622087 -0.0521961 -0.114823 -0.114823 -0.0521961

8 -0.00892338 0.00446455 -0.0356993 -0.0752993 -0.0752993 -0.0356993

9 -0.00589269 0.00309758 -0.0238732 -0.0487326 -0.0487326 -0.0238732

10 -0.00383413 0.00209575 -0.0156939 -0.0312091 -0.0312091 -0.0156939

Table 7. Relative Sensitivity of the system reliability at η = 0.2; η1 = 0.3; α1 = 0.3; α2 = 0.35; λ1 = 0.3; λ2 = 0.4

t ψα1 ψα2 ψη1 ψη ψλ1 ψλ2

0 6.6614×10−17 7.7716×10−17 1.6653×10−17 -1.1102×10−17 -1.6653×10−17 1.6653×10−17

1 -0.0108899 0.00123068 -0.0347795 -0.176814 -0.265221 -0.0347795

2 -0.0332299 0.00718507 -0.112007 -0.325329 -0.487993 -0.112007

3 -0.0593049 0.0182146 -0.20914 -0.460574 -0.69086 -0.20914

4 -0.0863179 0.033223 -0.315907 -0.589395 -0.884093 -0.315907

5 -0.113331 0.0509953 -0.427413 -0.715058 -1.07259 -0.427413

6 -0.140099 0.0705647 -0.541266 -0.839156 -1.25873 -0.541266

7 -0.166617 0.091254 -0.656285 -0.962476 -1.44371 -0.656285

8 -0.192941 0.112621 -0.771886 -1.08541 -1.62811 -0.771886

9 -0.219132 0.134389 -0.887776 -1.20815 -1.81222 -0.887776

10 -0.245238 0.156389 -1.00381 -1.33079 -1.99619 -1.00381

The sensitivity and relative sensitivity analysis of the MTSF with respect to various system parameters is presented
in Tables 8-10. These results provide significant insights into how changes in the model parameters influence system
reliability, thereby highlighting critical factors that should be carefully controlled to ensure optimal system performance.

Table 8 illustrates the effect of varying α1 and α2 while keeping the other parameters constant. The sensitivity values
associated withα1 are negative, ranging from -0.804149 atα1 = 0.1 to -0.205721 atα1 = 0.9, while the relative sensitivity
ωα1varies between -0.0421374 and -0.11696. This indicates that higher values of α1 reduce the MTSF, with a relatively
stable effect at larger parameter values. In contrast, the sensitivity values of α2 are positive, decreasing from 0.189036 at
α2 = 0.1 to 0.0757512 at α2 = 0.9, while the relative sensitivity increases from 0.0108696 to 0.037156. Thus, α2 exerts
a positive influence on MTSF, which becomes more significant at higher values. Overall, α1 negatively affects system
reliability, whereas α2 contributes positively to enhancing it.
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Table 8. Sensitivity and relative sensitivity analysis of MTSF for different values of α1, α2

η = 0.2; η1 = 0.3; α2 = 0.35; λ1 = 0.3; λ2 = 0.5 η = 0.2; η1 = 0.3; α1 = 0.3; λ1 = 0.3; λ2 = 0.5

α1 δα1 ωα1 α2 δα2 ωα2

0.1 -0.804149 -0.0421374 0.1 0.189036 0.0108696
0.2 -0.638623 -0.0695389 0.2 0.164354 0.018711
0.3 -0.519402 -0.087582 0.3 0.144208 0.0244123
0.4 -0.430698 -0.0994774 0.4 0.127551 0.0285714
0.5 -0.362919 -0.107226 0.5 0.113622 0.0316011
0.6 -0.309966 -0.112119 0.6 0.101856 0.0337922
0.7 -0.26781 -0.115014 0.7 0.0918274 0.0353535
0.8 -0.233704 -0.116493 0.8 0.0832101 0.0364372
0.9 -0.205721 -0.11696 0.9 0.0757512 0.037156

Table 9 reports the sensitivity analysis results for η1 and η . The sensitivity values for η1 are negative, decreasing
from -0.804149 at η1 = 0.1 to -0.205721 at η1 = 0.9, with relative sensitivity values between -0.0421374 and -0.11696.
This confirms that increasing η1 leads to a reduction in MTSF, though with a relatively stable effect at higher values.
For η , however, the sensitivity values are much larger in magnitude, ranging from -3.40306 at η = 0.1 to -0.635383 at
η = 0.9, while the relative sensitivity increases in magnitude from -0.164286 to -0.638889. These results demonstrate
that η has a much stronger negative impact on MTSF compared to η1, indicating that system reliability is highly sensitive
to variations in η .

Table 9. Sensitivity and relative sensitivity analysis of MTSF for different values of η1, η

η = 0.2; α1 = 0.3; α2 = 0.35; λ1 = 0.3; λ2 = 0.5 η1 = 0.3; α1 = 0.3; α2 = 0.35; λ1 = 0.3; λ2 = 0.5

η1 δη1 ωη1 η δη ωη

0.1 -0.804149 -0.0421374 0.1 -3.40306 -0.164286

0.2 -0.638623 -0.0695389 0.2 -2.51044 -0.282209

0.3 -0.519402 -0.087582 0.3 -1.92797 -0.370968

0.4 -0.430698 -0.0994774 0.4 -1.52698 -0.440191

0.5 -0.362919 -0.107226 0.5 -1.23922 -0.49569

0.6 -0.309966 -0.112119 0.6 -1.02576 -0.541176

0.7 -0.26781 -0.115014 0.7 -0.863051 -0.579137

0.8 -0.233704 -0.116493 0.8 -0.736195 -0.611296

0.9 -0.205721 -0.11696 0.9 -0.635383 -0.638889

Table 10 presents the sensitivity analysis results for λ1 and λ2. The sensitivity values for λ1 are negative and relatively
large, decreasing from -4.87253 at λ1 = 0.1 to -0.736195 at λ1 = 0.9, while the relative sensitivity changes from -0.196581
to -0.687708. This indicates that increasing λ1 leads to a significant reduction inMTSF, with the relative impact becoming
stronger at higher values. Similarly, the sensitivity values of λ2 are also negative but smaller in magnitude compared to
λ1, ranging from -1.40802 at λ2 = 0.1 to -0.26781 at λ2 = 0.9, while the relative sensitivity increases from -0.0663781
to -0.147875. This suggests that both λ1 and λ2 negatively affect MTSF, but the impact of λ1 is significantly stronger,
making it the most critical parameter to control in order to enhance system reliability.
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Table 10. Sensitivity and relative sensitivity analysis of MTSF for different values of λ1, λ2

η = 0.2; α1 = 0.3; α2 = 0.35; η1 = 0.3; λ2 = 0.5 η1 = 0.3; α1 = 0.3; α2 = 0.35; λ1 = 0.3; η = 0.2

λ1 δλ1 ωλ1 λ2 δλ2 ωλ2

0.1 -4.87253 -0.196581 0.1 -1.40802 -0.0663781

0.2 -3.40306 -0.328571 0.2 -1.04348 -0.104348

0.3 -2.51044 -0.423313 0.3 -0.804149 -0.126412

0.4 -1.92797 -0.494624 0.4 -0.638623 -0.139078

0.5 -1.52698 -0.550239 0.5 -0.519402 -0.14597

0.6 -1.23922 -0.594828 0.6 -0.430698 -0.149216

0.7 -1.02576 -0.631373 0.7 -0.362919 -0.150117

0.8 -0.863051 -0.661871 0.8 -0.309966 -0.149492

0.9 -0.736195 -0.687708 0.9 -0.26781 -0.147875

In summary, the sensitivity analysis highlights the contrasting roles of the parameters under consideration. While α2

positively contributes to system performance, parameters such as α1, η1, η , λ1, and λ2 negatively influence the MTSF,
with η and λ1 emerging as the most dominant factors. These findings emphasize the importance of carefully regulating
these parameters to improve system dependability.

6. Summary
This study provides a comprehensive reliability analysis of a single-active-unit industrial repairable system, explicitly

considering three operational states: normal operation, partial failure, and complete failure. The proposed model
incorporates practical operational constraints, including limited nighttime replacement capabilities and a predefined
maximum repair time, reflecting real industrial conditions. Using the supplementary variable technique combined with
Markov process theory, key performance indicators-such as the reliability function, MTSF, and steady-state availability-
are systematically evaluated. Sensitivity and relative sensitivity analyses further highlighted the influence of critical
parameters on system performance, offering practical insights for maintenance planning and operational decision-making.

7. Conclusions
This study has explored the reliability and sensitivity analyses of a single-unit engineering system operating in both

morning and evening shifts, under the constraint of a maximum allowable repair time and preventive maintenance for
partial failures of the active unit. By employing a state transition diagram, Laplace transforms of the state probabilities
were successfully derived. Based on these, key reliability measures of the system were obtained. Furthermore, both
sensitivity and relative sensitivity analyses were conducted for two critical system performance indices. The results
provide valuable insights into the impact of system parameters on reliability, which can guide design optimization and
maintenance planning in practical engineering applications. Finally, a set of numerical results was obtained, leading to
the following key conclusions:

1) Tables 2-5 demonstrate that the reliability function R(t) of the system decreases gradually with the increase in
failure rates (λ1, λ2, η , η1) and over time (t), assuming other parameters remain constant. The results also indicate the
absence of abrupt changes in the behavior of the reliability function, suggesting that the system maintains a high level of
reliability over an extended period.

2) Figures 2 and 3, illustrate the behavior of the MTSF for the proposed industrial system. The results indicate that
MTSF increases as the parameters α1 and α2 increase within the interval λ1 ∈ [0, 10] and λ2 ∈ [0, 10], respectively,
suggesting an enhancement in the system’s reliability under these conditions.
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3) The curves presented in Figures 4 and 6 indicate that the steady-state availability Av(∞) increases significantly
with the rise in both the preventive maintenance rate θ1 and maximum repair time rate β1 of the failed unit during the
morning shift. This improvement is observed under the condition of varying the total failure rate of the active unit within
the time interval λ1 ∈ [0, 1].

4) Figures 5 and 7, illustrate that the steady-state availability Av(∞) improves as the preventive maintenance rate θ2

for the partially failing unit increases and as the maximum repair time rate β during the evening shift decreases. This
trend is observed under the condition that the total failure rate of the unit varies within the interval λ2 ∈ [0, 1].

As shown in Figure 8, the parameters λ1 = η , λ2 = η1 and α1 demonstrate significant sensitivity with respect to
the reliability function R(t). Furthermore, the sensitivity and relative sensitivity of the MTSF with respect to the system
parameters are ranked as follows:

1) λ1 > η > λ2 > η1 = α1 > α2.
2) λ1 > η > λ2 > η1 = α1 > α2.
Based on the previously established relationships, it is evident that the parameters λ1, η , λ2, η1 and α1 are the most

influential factors affecting both performance metrics. Consequently, careful monitoring of their values is essential.
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Appendix
At any time t, if the system is in state Si, then the probability of the system to be that state is defined as the probability

that the system is in state Si at time t and remains there in interval (t, t +∆t), or/ and if it is in some other state at time t,
provided that transition exists between the states and ∆t → 0.

Accordingly, (13)-(21) are interpreted as follows.
The probability of the system to be in state S0 in the interval (t, t +∆t) is given by

π0(t +∆t) = (1− (α1 +λ1 +η)∆t)π0(t)+α2∆tπ1(t)+θ1∆tπ2(t)+θ∆tπ4(t)+θ5∆tπ6(t)

⇒ lim
∆t→0

π0(t +∆t)−π0(t)
∆t

+(α1 +λ1 +η)π0(t) = α2π1(t)+θ1π2(t)+θπ4(t)+θ5π6(t)

⇒
{

d
dt

+α1 +λ1 +η
}

π0(t) = α2π1(t)+θ1π2(t)+θπ4(t)+θ5π6(t)

For state S1

π1(t +∆t) = (1− (α2 +λ2 +η1)∆t)π1(t)+α1∆tπ0(t)+θ2∆tπ3(t)+θ4∆tπ5(t)+θ3∆tπ8(t)

⇒ lim
∆t→0

π1(t +∆t)−π1(t)
∆t

+(α2 +λ2 +η1)π1(t) = α1π0(t)+θ2π3(t)+θ4π5(t)+θ3π8(t)

⇒
{

d
dt

+α2 +λ2 +η1

}
π1(t) = α1π0(t)+θ2π3(t)+θ4π5(t)+θ3π8(t)

For state S2

π2(t +∆t) = (1−θ1∆t)π2(t)+η∆tπ0(t)

⇒ lim
∆t→0

π2(t +∆t)−π2(t)
∆t

+θ1π2(t) = ηπ0(t)

⇒
{

d
dt

+θ1

}
π2(t) = ηπ0(t)

For state S3

π3(t +∆t) = (1−θ2∆t)π3(t)+η1∆tπ1(t)

⇒ lim
∆t→0

π3(t +∆t)−π3(t)
∆t

+θ2π3(t) = η1π1(t)
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⇒
{

d
dt

+θ2

}
π3(t) = η1π1(t)

For state S4

π4(t +∆t) = (1− (θ +β1)∆t)π4(t)+λ1∆tπ0(t)

⇒ lim
∆t→0

π4(t +∆t)−π4(t)
∆t

+(θ +β1)π4(t) = λ1π0(t)

⇒
{

d
dt

+θ +β1

}
π4(t) = λ1π0(t)

For state S5

π5(t +∆t) = (1− (θ4 +β )∆t)π5(t)+λ2∆tπ1(t)

⇒ lim
∆t→0

π5(t +∆t)−π5(t)
∆t

+(θ4 +β )π5(t) = λ2π1(t)

⇒
{

d
dt

+θ +β1

}
π4(t) = λ1π0(t)

For state S6

π6(t +∆t) = (1−θ5∆t)π6(t)+β1∆tπ4(t)+α2∆tπ7(t)

⇒ lim
∆t→0

π6(t +∆t)−π6(t)
∆t

+θ5π6(t) = β1π4(t)+α2π7(t)

⇒
{

d
dt

+θ5

}
π6(t) = β1π4(t)+α2π7(t)

For state S7

π7(t +∆t) = (1− (κ +α2)∆t)π7(t)+β∆tπ5(t)

⇒ lim
∆t→0

π7(t +∆t)−π7(t)
∆t

+(κ +α2)π7(t) = βπ5(t)
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⇒
{

d
dt

+κ +α2

}
π7(t) = βπ5(t)

For state S8

π8(t +∆t) = (1−θ3∆t)π8(t)+κ∆tπ7(t)

⇒ lim
∆t→0

π8(t +∆t)−π8(t)
∆t

+θ3π8(t) = κπ7(t)

⇒
{

d
dt

+θ3

}
π8(t) = κπ7(t)
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