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Abstract: This article focuses on the performance of a single-active-unit repairable industrial system with three different
states of unit: active unit (N), partial failure unit (P), and complete failure unit (). The system operates continuously,
24 hours a day, without interruption, except for two cases: a complete failure of the active unit or maintenance at partial
failure (P). The system always has one service available, which is kept for maintenance and repair. In the case of complete
failure, the faulty unit is replaced with a new one if the repair duration exceeds the maximum allowed time predefined.
However, the nighttime replacement operations have a lot of challenges that may include limited availability of spare part
suppliers or replacement must be performed at a higher cost since options are limited. In this paper, it is assumed that all
the times in the system are negative exponentially distributed. The supplementary variable technique and Markov process
theory have been employed to evaluate the reliability of the system. Further sensitivity and relative sensitivity analyses
are performed on some system parameters in order to study the effect of these parameters on the proposed system. These
results are presented with numerical examples that provide useful insights contributing to the enhancement of the systems
efficiency and operational reliability.

Keywords: single-unit system, reliability analysis, sensitivity analysis, maximum repair times, day and night hours,
supplementary variable technique
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1. Introduction

Reliability stands as a cornerstone of success in modern industrial systems, representing a system’s capacity to
perform required functions without failure or interruption for a specified duration. This reliability directly impacts
production efficiency, cost reduction, and operational sustainability. In critical sectors such as power generation or
pharmaceuticals, unexpected failures can trigger severe economic losses, production downtime, and even life-threatening
hazards.

Consequently, reliability has become a primary focus for engineers and facility managers. Advanced strategies-
including predictive and corrective maintenance-are implemented alongside mathematical modeling and data analysis
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techniques to enhance system performance. Investment in reliability improvements not only boosts operational efficiency
but also strengthens companies’ competitive reputation in the marketplace.

Thus, prior literature on industrial system modeling abounds with studies analyzing reliability and cost-benefit under
diverse conditions and assumptions. This necessitates reviewing key contributions and clarifying how our methodology
distinguishes itself from existing approaches. Numerous studies have been conducted in recent years investigating the
behavior of industrial systems under varying operating conditions during their warranty period.

In 2024, an industrial model was developed [1] to evaluate system performance based on three essential indicators:
availability, reliability, and Mean Time to System Failure (MTSF). Following this, a comprehensive sensitivity analysis
was conducted to investigate the impact of key parameters-such as preparation time, repair time, and warranty policy-on
the overall efficiency of the system. Numerical simulations were employed to illustrate the causal relationships among
these parameters, thereby providing deeper insights into their influence on system behavior. In 2021 study [2] conducted
a reliability and sensitivity analysis of a repairable system with warranty policies and administrative delays, showing
through simulations how these factors affect system efficiency and key performance metrics. Tseni et al. [3] developed
the first optimization model integrating inspection, maintenance, and warranty policies for micromachines under wear,
aiming to enhance reliability and reduce total quality-related costs. Moreover, several studies have focused on analyzing
the behavior of various industrial models under varying environmental or climatic conditions, highlighting the impact of
such factors on system performance and reliability.

A substantial body of research has explored how environmental fluctuations affect the performance and economic
aspects of industrial systems. Among the early works, Goel et al. [4] examined in 1985 a single-unit system with an
operator whose condition alternated due to changing weather. They later extended their analysis to a cost evaluation of
a two-unit cold standby system under different climatic scenarios [5]. Building on this, Gupta and Goel [6] analyzed the
profit function of a system with two non-identical units operating in diverse environmental conditions.

In subsequent years, especially in 2012 and 2015, several studies [7-9] applied stochastic modeling to investigate
repairable systems with heterogeneous components subject to climate variability. Barak et al. [10] introduced a stochastic
reliability model for a single-unit system, explicitly considering weather effects during inspections. Further, Barak and
Barak [11] assessed how abnormal weather impacts reliability metrics in inspectable and repairable systems. These
investigations have collectively contributed to a deeper understanding of the operational and economic challenges posed
by environmental variability. In 2023, Kamal et al. [12] investigated a two-unit warm standby system with dissimilar
components operating under normal and abnormal weather conditions, using regenerative point techniques to assess
reliability, repair workload, and cost-effectiveness. Complementing this, Zhang and Liu [ 13] underscored the significance
of predictive maintenance and real-time monitoring-powered by machine learning-in minimizing unplanned downtime and
enhancing system availability. In a related context, Shan and Wang [14] examined a K-out-of-G mixed standby system
that incorporates both warm and cold standby components, along with an unreliable repair facility. Their analysis utilized
Markov process modeling and Laplace transform techniques to assess key performance indicators, including system
reliability, steady-state availability, and the impact of preventive maintenance and repair delays on cost-effectiveness.

Although numerous studies have addressed the reliability and performance of repairable systems under varying
operational and environmental conditions, most have focused on binary-state systems (fully operational or complete
failure) or standby systems with limited operational dynamics. Moreover, many practical challenges-such as maintenance
delays, spare part replacement constraints, and time-limited repair protocols-have often been overlooked in favor of more
idealized modeling assumptions.

The present study offers a distinctive contribution by modeling a single-active-unit industrial repairable system with
a detailed classification of three operational states: normal operation, partial failure, and complete failure, providing
a more accurate and realistic representation of system behavior. The model also incorporates operational constraints,
including limited nighttime replacement capabilities and a predefined maximum repair time, reflecting actual industrial
conditions. Ultilizing the supplementary variable technique and Markov process theory, the analysis delivers precise
evaluations of key performance indicators, supported by both absolute and relative sensitivity analyses to understand
the impact of varying operational parameters on system performance. In doing so, this study bridges the gap between
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theoretical models and practical realities, enriching the literature with a robust framework for reliability analysis in real-
world industrial environments.

Before proceeding to the detailed exposition of the article, Table 1 provides a rigorous and systematic analysis of
the research gap through a comprehensive comparison between the present study and the prior works reviewed in the
introduction, which outlined the evolutionary development of industrial systems over the past years. This table clearly
highlights the novel aspects that distinguish the current study and underscores the scientific value it contributes to the
field of industrial system reliability. Building on this foundation, Section 2 presents the fundamental assumptions of the
system, defines its operational states, and clarifies the analytical notation adopted throughout the study. Section 2 reviews
the fundamental assumptions of the system, clarifies the definitions of the various states, and introduces the notation used
throughout the analysis. Building on this foundation, Section 3 develops a mathematical framework based on Markov
processes to derive key reliability metrics such as the reliability function, mean time to failure, and steady-state availability.
Section 4 offers an in-depth examination of the impact of changes in system parameters on performance through both
absolute and relative sensitivity analyses. To demonstrate the practical application of the model, Section 5 presents
numerical examples that highlight important behavioral patterns. The study concludes in Section 6 by summarizing the
main findings and discussing their broader implications.

Table 1. Research gap identification and contribution of the present study

Author (s)/Year

Focus of study

Identified gap/Limitation

Contribution of the present work

Hussien and
El-Sherbeny [1]

El-Sherbeny and
Hussien [2]

Tseni et al. [3]

Goel et al. [4]

Goel et al. [5]

Gupta and Goel
(6]

Malik and
Deswal [7-9]

Barak et al. [10]

Barak and Barak
[11]

Kamal et al. [12]
Wang et al. [13]
Shan and Wang

[14]

Present study

Stochastic analysis of an industrial
system with preparation-time
repair under warranty.

Reliability and sensitivity of a
repairable system with warranty
and administrative delays.

Optimization of warranty and
inspection for micromachines.

Weather effect on man-machine
systems.

Cost analysis of two-unit cold
standby under weather variation

Profit analysis of cold standby
systems under weather.

Reliability of heterogeneous units
under weather.

Reliability with inspection under
weather variability.

Impact of abnormal weather on
inspectable systems.

Profitability of two-unit warm
standby system.

Predictive maintenance for
industrial robots using Al.

K-out-of-G mixed standby with
unreliable repair.

Reliability and sensitivity of single
active-unit system with three states
(N, P, F).

Did not consider multi-state unit
operation.

Binary-state assumption; no repair
time or replacement constraints.

Limited to micromachines; not
scalable to industrial systems.

Did not integrate repair time or
partial failure states.

Focused on standby systems, not
single active-unit.

Concentrated on economic cost;
ignored time-limited repair.

Environmental focus; no
operational constraints (repair
deadlines, spare part limits).

Ignored repair time limits and
spare-part supply constraints.

Focus only on environmental
uncertainty.

Multi-unit context; no single
active-unit modeling.

Data-driven approach; no
analytical reliability measures.

Standby-focused; does not reflect
continuous industrial unit.

Models a single active-unit system with
three states (N, P, F).

Introduces maximum repair time policy and
day/night replacement conditions.

Extends framework to industrial single-unit
systems with practical repair/replacement
policies.

Considers both partial and complete failures
under real operational settings.

Provides a single-unit continuous operation
model.

Combines reliability with cost implications
of delayed nighttime replacement.

Incorporates spare-part availability and
cost-sensitive replacement (day vs night).

Adds predefined maximum repair time and
supplier-based constraints.

Extends to operational challenges:
nighttime repairs and economic penalties.

Models realistic single active-unit with
continuous operation.

Provides analytical evaluation using
supplementary variable technique.

Bridges theory and practice by modeling
continuous, constrained, single-unit
operation.

Bridges the gap by incorporating: (i)
multi-state operation, (ii) maximum repair
time, (iii) day/night replacement constraints,
(iv) both sensitivity & relative sensitivity
analysis for real-world insights.
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2. Description of the system

The proposed system consists of a single active unit operating continuously 24 hours a day without interruption. It
only stops under two conditions: when a complete failure of the unit occurs or when maintenance is needed for a unit that
has undergone a decline in operational efficiency (partial failure). A single server is assigned to perform maintenance and
repair tasks. If the repairman is unable to complete the repair of the completely failed unit within the predefined maximum
repair time, the failed unit must be replaced with a new active unit. These procedures are carried out during both daytime
or nighttime hours without distinction. In the light of this explanation, the proposed system can be described under the
following assumptions:

1. The system operates with a single active unit at any given time.

2. The “first system state” refers to the unit’s operation during morning working hours, ensuring continuous activity
throughout this period.

3. The unit, whether functioning during the day or night, can experience two possible failure states: partial failure
or complete failure.

4. In the event of a partial failure that reduces operational efficiency, immediate preventive maintenance must be
conducted without delay, regardless of whether it occurs during daytime or nighttime operation.

5. If the active unit undergoes a complete failure, causing a total system shutdown, immediate repair procedures
must be initiated to restore functionality.

6. If the repair technician exceeds the allocated maximum repair time, the faulty unit must be replaced immediately
to ensure system efficiency and continuous operation.

7. Unit replacement occurs during one of two time periods: morning or evening work hours. The morning period
is preferred due to better supplier availability and greater price flexibility. In contrast, the evening period presents two
choices: either postponing replacement until morning to benefit from more favorable market conditions or proceeding with
immediate replacement to minimize downtime, albeit at a higher cost due to limited supplier availability and increased
procurement expenses.

8. All time intervals in the system follow a negative exponential distribution.

9. After each repair or maintenance, the unit becomes like a new one.

State Specification:

To examine how the system behaves at any specific virtual time ¢, the states of the system can be outlined as follows:

So/S1: The unit is active during/morning working hours/night working hours.

S, /S3: The partial failure unit is stopped from operation and is undergoing preventive maintenance during/morning
working hours/night working hours.

S4/Ss: The failed unit under repair during/morning working hours/night working hours.

S6/S7: The failed unit replaced during/morning working hours/night working hours.

Sg: The failed unit witting replaced during night working hours.

Notations:

o4 /0p: A constant rate of change from the morning work period to the evening work period/from the evening work
period to the morning work period.

6: The repair rate of the failed unit during the morning work period.

6,: The maintenance rate of the partially failed unit during the morning work period.

6,: The maintenance rate of the partially failed unit during the evening work period.

05: The replacement rate of the failed unit during the evening work period.

04: The repair rate of the failed unit during the evening work period.

65: The replacement rate of the completely failed unit during the morning work period.

n/Mi: The partially failed rate during the morning work period/the evening work period.

B/B1: The maximum repair rate after complete failure during the evening work period/the morning work period.

A1/A2: The failure rate from the normal state to failure during the morning work period/the evening work period.

k: The waiting replacement rate of the failed unit during the evening work period.
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mo(¢) /71 (t): The probability that at time 7 the system is in good state during the morning work period/the evening
work period.

m(t)/m3(r): The probability that the system at time 7 is in a state of partial failure and is undergoing preventive
maintenance during the morning work period/the evening work period.

74(t)/7s(t): The probability that at time ¢ the system is in a failed state and getting the repairman available in the
morning work period/the evening work period.

75(t)/mg(r): The probability that at time ¢ the system is in a replacement of the failed unit in the morning work
period/the evening work period.

m7(¢): The probability that at time 7 the system is in a waiting replacement of the failed unit in the evening work
period.

Using these symbols, the possible states of the system being analyzed are as follows:

O /On: The unit is in normal operation mode and operative during/morning working hours/night working hours.

PFym, m/PFppm, N The unit is in partial failure mode and undergoing preventive maintenance during/morning
working hours/night working hours.

Fur, m/Fur, v¢ The unit is in failure mode and undergoing repairs during/morning working hours/night working hours.

Fyrp, n: The unit is in failure mode and awaiting replacement during night working hours.

Furp, M/ PFurp, n: The unit is in failure mode and undergoing replaced during/morning working hours/night working
hours.

Possible states of the system are as follows:

Up states: So = (Opyr), S1 = (On).

Down state: Sp = (PFpm7 M), S3 = (PFpm, N); Sy = (FW, M), S5 = (Fur, N), S¢ = (Fm‘lh M), Sg = (erp, N), S7 =
(F urp, N )

Possible states and transitions are shown in Figure 1.

@ Operative state
B Failed state

Figure 1. State transition diagram
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3. Analysis of the system
3.1 Reliability
The system reliability R(s) represents the probability that the system will function properly over the time interval

(0, 7). To evaluate system performance measures, the Markov process is utilized to model the operational states, namely
So, and S;. The reliability function is derived based on the proposed equations.

{jt+a1+ll+n}no(t)a2m(t), )
d
{dt+az+7tz+m}m(t)_omro(t). )

The initial conditions are as follows:

m(0) = €)

We apply the Laplace transform to Equations (1)-(3), incorporating the initial condition, and obtain the following
result:

{s+ou+A+n}m(s) =1+ 0nm(s), “4)

{sta+L+m}m(s) = oum(s), (%)

From Equations (4) and (5), we obtain

7o(s) = ot 0p At} (©)
{sta+M+n}{s+tom+b+m}—oa’
ay
m(s) = . 7
A PP P} PRy Py wprors @
From Equations (6) and (7), we derive the Laplace transform formula for the system’s reliability as follows:
R(s) =m(s) + m (s), (®)
wherefore,

R(s) sto+b+mlt+a ©

- {s+oc1+M+n}{s+a2+ﬂtz+m}—a1a2'
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If we use the inverse Laplace transform for Equation (9), we obtain the reliability function as follows:

((77 —o—0—N+A—A) (e(Hl_%H)’ —e(Hl"‘%H)’) +H <e(H1—%H)t _i_e(Hl-s-%H)t))

R(t) = S ) (10)
where,
H:\/(n+n1+a1+a2+xl+12)2—4(a2(n+11)+(m+lz)(n+a1+h))
m_(n_m_m_az_?tl_lz)
2 2 2 2 2 2
3.2 MTSF

The MTSF represents the expected duration a system operates before it fails. This metric is one of the fundamental
measures in reliability analysis. The MTSF can be determined using Equation (10) as shown below.

MTSF = /OOOR(t)dt. (11)

Based on equation (11), the MTSF can be expressed in the following form.

(a1 +0p+m+242)

MTSF = )
oM+A)+(M+oar+4) (M +A)

(12)

3.3 System availability

Availability refers to the probability that a system or component is operational and functioning correctly when needed,
considering both operational time (uptime) and downtime due to failures or maintenance. we can represent the system’s
states using differential equations as follows:

{jt+a1+7u+’7}”o(t)0527?1(t)+917T2(f)+9”4(f)+95”6(t) (13)
{jt t o+t } 1 (t) = o 7o(t) + 62 713(1) + 64705 () + 6375 (¢) (14)
4 g = 1
{dt+ 1}7T2(f)—71750(f) (15
) = 16
{d:+ z}ns(t)—mm(t) (16)
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+e+m}n4<r> — Mmo(t) (17)

+64+B} 75(0) = Ao (1) (18)

+x+ az} (1) = Bs(t) (20)

{
{
R S w
{
{

+93}7'Eg(l)=1(7‘t’7(l). 21

The initial conditions are
m;(0) = (22)

By applying the Laplace transformation to all the preceding equations, we derive the following expressions:

{sto+Al+n}m(s) =1+ m(s)+ 01 m(s) + Om(s) + 0576 (s), (23)
{s+o+A+n}m(s) = o1m(s)+ 0rm3(s) + Os7s(s) + 033 (s), (24)
{s+ 61} m(s) = nmo(s) (25)
{s+6:}m(s) = mm(s) (26)
{s+6+B1}m(s) = Aimo(s) @7
{s+64+ B} 7s(s) = Aami(s) (28)
{s+ 65} 76 (s) = Bi7s(s) + 077 (s) (29)
{s+Kx+ o} m(s) = Brs(s) (30)
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{s+ 63} ms(s) = xm(s). €1))

We also note the following:

,-;J”i(s) = % (32)
From Equations (23)-(32) we obtain
) = TG B 5o T T 9
) T R < A TR TR o
m00) = (g ) M0 (35)

M > i (s), (36)

e ) (), (38)

(
(
= (2 Yt @
(
(

BiAio(s) N B (s) )

(s+0+PB1)(s+65) (s+65)(s+6s+P)(s+x+ ) (39)

. )Lzﬁﬂ:l (S)
m(s) = (s+65s+B)(s+Kk+a) (“40)
ﬂg(s) _ ﬁ,zﬁk'ﬂ'l (S) (41)

(s+64+B)(s+x+)(s+63)
where,

1 OCzC(S)

oin
. = <7V
(s+o+A+1n)’ 1(s) (s+oy+A+1n)

B(s) = (s+o1+A+1n)(s+6)

) BZ(S) =
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Ba(s) = G2 Ba(s) = 6sB1 A1

’ (s+a1+A+n)(s+6+p1)’ (s+65)(s+0+P1)(s+or+A+n)’
B (S): (95),2062B>C<S) C(S): A(S)
: (s+65)(s+0s+B) (s+K+m)(s+a+A+n)’ 1— (A1 (s) +A2(s) +A3(s))’

B oy o) 2yl
() = (S—I—Otz—&-?tz-l-m)’Al( ) (s+a+A+n1)(s+6)
A (S): 9412 A (s): 93;\,21([3
g (stoo+Atm)(s+6s+B) (s+o+A+n)(s+04+B)(s+x+0)(s+63)

Based on Equations (21)-(29), we derive the Laplace transform expression for the availability Av(s) as follows:

Av(s) = mo(s) + i (s). (42)

Consequently, the steady-state availability Av(ee) of the system is given by:

Av(e0) = 1jn(1) {sAv(s)} (43)
H
Av(e0) = " (44)

where,

H=06,0365(0+P1)((k+0p)(c; + ) (B+64)+Parlr),
Hy = 026,05 (65 (04 B1) (N +61) + 60141 (B1 +65)) (K+02) (B+64) +BA2) + 6101 (B1 +0)

(0505 (K+02) (N1 +62) (B+64) + 6222 (B63+ 65 (B + 605 (B + K+ x2))))-

4. Sensitivity and relative sensitivity analysis

In this section, we explore the concept of sensitivity analysis and relative sensitivity, highlighting their crucial role in
evaluating system impact. Accordingly, it is essential first to define sensitivity analysis for the proposed system, followed
by clarifying its importance in understanding system behavior and enhancing its performance.

Sensitivity analysis is a technique used to evaluate the impact of changes in system parameters on its reliability. In
other words, this analysis identifies how sensitive system performance is to variations in its inputs, such as failure rates,
repair times, or other factors affecting reliability system.

Impotence of sensitivity analysis in reliability:
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1. Identifying key influencing factors: Helps recognize which parameters have the most significant impact on
reliability, allowing for targeted improvements.

2. Enhancing design and maintenance: Understanding these effects enables better engineering designs or maintenance
strategies to extend system lifespan.

3. Risk management: Reduces unexpected failures by predicting the impact of specific changes.

4.1 Sensitivity and relative sensitivity analysis for reliability function

By differentiating Equation (10) with respect to parameter 7, we first obtain the sensitivity analysis, as shown in the
following equation.

_ IR
(P‘c - aT ’

(45)

where, T = n, m, o, oy, )ul, lz.
Next, by performing sensitivity analysis calculations in Equation (45), we can also determine the relative sensitivity,
as illustrated below.

(46)

4.2 Sensitivity and relative sensitivity analysis for MTSF

We can also determine the sensitivity analysis of MTSF based on the parameters that affect it.
By differentiating Equation (12) with respect to parameter 7, we obtain

_ OMTSF [~ JR(1)
o; = 781’ = A Iz dt. (47)

The relative sensitivity of the Mean Time to System Failure can be represented as follows:

o — 0:.T
" MTSF’

(4%)

5. Computational findings

This section presents a precise analytical framework for the numerical evaluation of three key system reliability
metrics: the reliability function R(r), the mean time to first failure MTSF, and steady-state availability Av(e). The
evaluation is based on a systematic analysis of system parameter variations within defined operational limits, while
keeping another parameters constant. Through well-structured computational experiments, the impact of each parameter
is assessed in terms of reliability degradation patterns, fault tolerance, and long-term operational readiness. Subsequently,
sensitivity and relative sensitivity analyses are performed to evaluate the impact of parameter variations on system
reliability R(r) and the Mean Time to System Failure MTSF, contributing to enhanced system performance under dynamic
operational constraints and ensuring an optimal balance between cost-efficiency and functional longevity.
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5.1 Computational analysis of R(t), MTSF, and Av()

This section provides a detailed numerical analysis examining the impact of variations in system parameters on key
performance indicators, including the reliability function R(7), MTSF, and steady-state availability Av(e). The analysis
aims to deliver a comprehensive assessment of how parameter fluctuations affect the overall behavior and effectiveness
of the system across diverse operational scenarios

The analysis begins with a comprehensive evaluation of the system reliability function R(¢), followed by a systematic
study of the impact of variations in system parameters on key performance indicators. In the reference scenario, the
parameters were held constantat A, = 0.3, n = 0.6, 11, = 0.4, oy = 0.4, and o, = 0.3, while the parameter A, was varied
across the values 0.1, 0.4, 0.6, and 0.9. The temporal variable r was examined over the range from 1 to 10 units with a
step size of one unit, enabling a detailed investigation of the dynamic behavior of the system under diverse operational
conditions. This systematic approach ensures clarity of results and facilitates reproducibility in future numerical studies.

Table 2 presents the numerical values of the reliability function R(r) over the time horizon 0 < ¢ < 10, with the model
parameters fixed at A, = 0.3, n =0.6, 1; = 0.4, oy = 0.4 and @, = 0.3 while the failure-rate parameter A4, is varied at
three levels (4; = 0.1, 0.4, 0.6). All cases start with R(0) = 1.0000, which is consistent with the mathematical definition
of the reliability function. At time 7 = 1, the reliability values are R(r) = 0.496585 for A; = 0.1, R(¢) = 0.387471 for
A1 = 0.4, and R(r) = 0.329869 for A; = 0.6. The transition from A; = 0.1 to A; = 0.6 thus corresponds to a relative
reduction of approximately 33.6% in reliability. At =5, the values decrease further to R(¢) = 0.0301974 for A; = 0.1,
R(t) =0.0138206 for A; = 0.4, and R(r) = 0.0119421 for A; = 0.6, indicating that the system at A; = 0.1 maintains more
than twice the reliability of the system at A; = 0.6. By ¢ = 10, the reliability values approach zero across all cases, yet
they remain distinct: 0.000911882 for A; = 0.1, 0.000251625 for A; = 0.4, and 0.000134612 for A; = 0.6. These findings
confirm that the failure-rate parameter A; is the dominant driver of reliability degradation, and that reducing its value
represents an effective means of extending system lifetime and sustaining long-term performance.

Table 2. Variation of reliability values R(¢) for different values of “¢” at n =0.6; 1 =0.4; oy =0.4; oy =0.3; A, =0.3

t RO)M=01) R@) =04 R A =0.6)

0 1.0000 1.0000 1.0000

1 0.496585 0.387471 0.329869

2 0.246597 0.161613 0.124738
3 0.122456 0.0700959 0.0507542
4 0.0608101 0.030987 0.0213555
5 0.0301974 0.0138206 0.00911415
6 0.0149956 0.00618924 0.00391245
7 0.00744658 0.00277682 0.00168346
8 0.00369786 0.00124686 0.000725044
9 0.0018363 0.000560079 0.000312386

10 0.000911882 0.000251625 0.000134612

Table 3 presents the variation of the reliability function R(¢) for different values of the parameter A, = (0.2, 0.4, 0.6),
across a time horizon t = 0 to t = 10. The analysis is conducted under the fixed conditions 1 = 0.6, n; = 0.4, oy =
0.4, 0p =0.3,and 4; = 0.4. At¢ = 0, the system reliability starts at its maximum value, R(0) = 1.000, for all considered
values of A, , as expected from the definition of reliability functions. As time increases, R(f) decreases monotonically,
reflecting the natural degradation in system performance with elapsed time. For instance, at ¢ = 1, the reliability values
are R(1) = 0.394925 for A, = 0.2, R(1) = 0.380501 for A, = 0.4, and R(1) = 0.367879 for A, = 0.6. This trend clearly
shows that higher values of 4, accelerate the decay rate of reliability, leading to lower survival probabilities. The same
behavior persists across the time interval. For example, at ¢ = 5, the reliability reduces to R(5) = 0.0183242 (1, = 0.2),
R(5) =0.010643 (A2 = 0.4), and R(5) = 0.00673795 (A, = 0.6). By the end of the observation period (t = 10), the values
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become extremely small: R(10) = 0.000490485, R(10) = 0.00013504, and R(10) = 0.0000453999, respectively. Overall,
the results emphasize that reliability R(¢) decreases more rapidly as A, increases, highlighting the significant influence of
this parameter on system degradation dynamics. This sensitivity suggests that A, plays a critical role in shaping long-term
system performance, and its proper estimation is vital for predictive reliability modeling.

Table 3. Variation of reliability values R(¢) for different values of “#” at n =0.6; n; =0.4; oy =0.4; p =0.3; A, =0.4

t R(t) (A =02) R(t)(A=04) R(t)(* =0.6)

0 1.0000 1.0000 1.0000

1 0.394925 0.380501 0.367879

2 0.173007 0.151666 0.135335
3 0.0801166 0.0619385 0.0497871
4 0.0380907 0.0256008 0.0183156
5 0.0183242 0.010643 0.00673795
6 0.00886041 0.00443678 0.00247875
7 0.00429374 0.00185199 0.000911882
8 0.00208269 0.000773529 0.000335463
9 0.00101062 0.000323176 0.00012341

10 0.000490485 0.00013504 0.0000453999

Table 4. Variation of reliability values R(¢) for different values of “” at n; =0.4; oy =0.4; 0p =0.3; ; =0.4; 1, =0.3

t R)(M=01) R()N=05) R(@)(1N=08)

0 1.0000 1.0000 1.0000

1 0.58828 0.420519 0.329869

2 0.333611 0.185245 0.124738

3 0.186021 0.0836083 0.0507542

4 0.10289 0.0381919 0.0213555

5 0.0566847 0.0175473 0.00911415
6 0.0311686 0.00808434 0.00391245
7 0.0171218 0.00372945 0.00168346
8 0.00940108 0.00172152 0.000725044
9 0.00516062 0.000794886 0.000312386

10 0.00283254 0.000367076 0.000134612

The analysis of Tables 4 and 5 provides a comprehensive understanding of the combined effect of parameters 11 and
71 on the system’s reliability function R(z). Both tables confirm the general property that reliability starts at R(0) = 1.000
for all parameter settings and decreases monotonically over time. Distinct patterns emerge when the results are compared.
In Table 4, with n; = 0.4, reliability decays more rapidly as 7 increases. For instance, at r = 5, the reliability values are
R(5) =0.0566847 (n =0.1), R(5) = 0.0175473 (n = 0.5), and R(5) = 0.00911415 (n = 0.8). In Table 5, where 1 = 0.6,
the corresponding values are lower in magnitude but the early-stage decay is slower: R(5) = 0.0341047, 0.010643, and
0.00554037, respectively. This indicates that increasing 1 slightly improves short-term survival, while the long-term
downward trend remains. At later times (r = 10), both tables show very low reliability values, such as R(10) = 0.00283254
(m =0.4; n1=0.1)and R(10) = 0.00208712 (1; = 0.1; 1 = 0.6), highlighting that long-term system survival is limited
regardless of the chosen parameter values. Overall, two key insights are drawn from the analysis:

Effect of n7: Higher i consistently accelerates the decay of reliability, reducing survival probability across all time
intervals.
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Effect of n;: Increasing 1n; slows down early-stage reliability decline, enhancing short-term robustness without
altering the long-term trend.

Table 5. Variation of reliability values R(t) for different values of “¢” at 1 =0.6; @y =0.4; atp =0.3; A1 =0.4; 1, =0.3

¢ RG)Mi=0.1) R()m=05 R()m=08)

0 1.0000 1.0000 1.0000

1 0.411445 0.380501 0.362165

2 0.20113 0.151666 0.128632

3 0.107798 0.0619385 0.0452619
4 0.0601493 0.0256008 0.0158536

5 0.0341047 0.010643 0.00554037
6 0.0194565 0.00443678 0.00193401
7 0.0111255 0.00185199 0.000674738
8 0.00636723 0.000773529 0.000235336
9 0.00364521 0.000323176 0.0000820695
10 0.00208712 0.00013504 0.0000286183

Figure 2 illustrates the relationship between the MTSF, the failure rate (), and the transition rate from the morning to
the evening work period (¢ ). The analysis reveals a strong inverse correlation, demonstrating a predictable, sharp decline
in MTSF as the failure rate (1) increases. However, the more significant finding is the critical role of the transition rate
(o). For any fixed value of A;, a higher a; value results in a marked improvement in system reliability, evidenced by
a higher MTSF curve. This behavior can be interpreted through the premise that a faster transition out of the morning
work period reduces the system’s exposure time to a high-stress operational state, thereby granting it greater resilience
and extending its overall operational lifespan. Consequently, system reliability is not merely a function of its intrinsic
component failure rates but is fundamentally influenced by its temporal patterns and operational dynamics. This insight
provides a crucial strategic framework for system designers, suggesting that optimizing operational management policies
and scheduling transitions between operational modes can be an effective method for enhancing system durability and
maximizing long-term performance.

08

MTSF

04

4 [0, 10]

Figure 2. MTSF versus failure rate A; and rate of change from the morning work period to the evening work period o

Figure 3 illustrates the effect of the failure rate (1;) and the transition rate from the evening to the morning work
period (o) on the MTSF. The results show a clear inverse relationship between A; and MTSF, confirming that higher
failure rates shorten system lifetime. At the same time, increasing ¢ improves reliability by raising MTSF values for
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any fixed A,. This improvement stems from reducing exposure to high-stress conditions through faster transitions, which
enhances system resilience and prolongs operational lifespan.

MTSF
b3

4, [0, 10]

Figure 3. MTSF versus failure rate A, and rate of change from the evening work period to the morning work period

Figure 4 demonstrates the critical relationship between steady-state availability and both failure rate (A;) and
maximum repair rate (). While increasing A; reduces availability due to more frequent failures, higher f; values
significantly compensate for this effect through enhanced repair efficiency during morning operations. This highlights that
optimizing repair capabilities during critical work periods is essential for maintaining system availability despite rising
failure rates.

2 040
=
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5 0.35
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Figure 4. The steady-state availability versus failure rate A; and rate of the maximum repair rate after complete failure during the morning work period
1

Figure 5 reveals the essential interplay between failure rate (A,) and maximum repair rate (§) in determining system
availability. The analysis confirms that while elevated failure rates inevitably diminish availability, this degradation can
be effectively counterbalanced by strengthening repair capabilities during morning operations. Specifically, higher 8
values demonstrate a compensatory effect, substantially mitigating the negative impacts of increased failure rates. These
findings underscore the strategic importance of optimizing morning repair capacity as a crucial mechanism for sustaining
system availability amidst growing reliability challenges.
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Figure 5. The steady-state availability versus failure rate A; and rate of the maximum repair rate after complete failure during the evening work period
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Figure 6. The steady-state availability versus failure rate A; and rate of the maintenance rate of the partially failed unit during the morning work period
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Figure 7. The steady-state availability versus failure rate A, and rate of the maintenance rate of partially failed unit during the evening work period 6,

Figures 6 and 7 collectively demonstrate the combined impact of maintenance rates (6; for morning, 6, for evening)
and their corresponding failure rates (41, A7) on system steady-state availability. The comparative analysis reveals that
increasing maintenance rates during both periods significantly enhances system availability by effectively counteracting
the negative effects of rising failure rates. The results show with greater precision that the effectiveness of morning
maintenance (6;) in combating its corresponding failure rate (1;) substantially surpasses that of evening maintenance (65)
in addressing its specific failure rate (A;), particularly under high-stress operational conditions. These findings confirm the
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strategic importance of implementing balanced maintenance strategies, with higher priority given to optimizing morning
maintenance capabilities (6} ) to handle failure rates (1), while maintaining robust evening maintenance capacities (6,) to
control failure rates (A;). This integrated approach ensures maximum operational availability and 24/7 system reliability.

Figure 8 presents a comprehensive sensitivity analysis of the system reliability function R(r) over the time interval
t € [0, 10] , examining how variations in different system parameters affect reliability. The analysis reveals distinct
JdR(tr) JR(t) JR(t) IR(r) dR(r)
oA day’ om ok oy
negative values, indicating that increasing these parameters leads to a reduction in system reliability. This is particularly
pronounced for the failure rate A; = 1, which shows the most significant negative sensitivity. Conversely, the partial
R(1)
8052

system reliability. These findings provide crucial quantitative insights for reliability optimization, clearly identifying

sensitivity patterns among the parameters: The partial derivatives demonstrate

derivative exhibits a positive value, suggesting that increasing this transition rate o contributes to enhancing

which parameters require careful control and which can be leveraged for system improvement.
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Figure 8. Sensitivity analysis with different parameters

5.2 Numerical findings of sensitivity and relative sensitivity analyses

Tables 6 and 7 provide an integrated and advanced analysis of the sensitivity of reliability for industrial system.
Table 6 focuses on measuring sensitivity of the system reliability ¢, which estimates the instantaneous rate of change in
reliability with respect to a slight variation in critical operational parameters, such as failure rates (4;; 7n;) and transition
rates (o). The results show that sensitivity values at the start of operation ¢ = 0 are nearly negligible, which is expected
at the beginning of any industrial system’s life cycle. As operational time progresses, the negative value for parameters
(Pays ®nys Py 1,5 P2,) indicate that their increase lead to a degradation of system reliability, whereas the positive sign
for @g, suggests a potentially positive role, possibly representing the efficiency of repair process or the activation of a
backup system. It is noted that the peak negative absolute impact is achieved at t = 2 for the two parameters 1) and A4,
with a value of (-0.575535), identifying the most influential operational parameters in the medium-term performance of
system. While Table 6 define the dimension of the immediate impact, Table 7 transitions to a more in-depth analysis
via “Relative Sensitivity” v, a dimensionless quantity that measures the percentage change in reliability resulting from
a 1% relative change in a parameter. The paramount engineering value of this table lies in its revelation of a long-term
dynamic; contrary to the absolute sensitivity which declines, we observe that relative sensitivity increases steadily with
advancing operational age for all parameters. This clarifies that as the industrial system ages and its fundamental reliability
begins to erode, its performance becomes relatively more sensitive to any variances in design and operational parameters.
Crucially, the failure rate A; emerges as the most critical parameter overall, with its value v, reaching (-1.99619) at
t = 10. This means, in practice, that a 1% increase in A; would cause an approximately 2% decrease in system reliability
at this stage. In conclusion, these analyses provide strategic insights for ensuring quality, robustness, and durability. While
Table 6 identifies immediate operational pressure points, Table 7 reveals long-term cumulative threats, confirming that A,
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is the decisive parameter that must be the central focus of preventive maintenance strategies, quality control, and design
reliability optimization to ensure the optimal operational lifespan of industrial systems.

Table 6. Sensitivity of the system reliability at n = 0.2; 1; =0.3; a; =0.3; ap =0.35; 4, =0.3; 1, =04

t Py Do, On, ] ?y, (7%

0 2220510716 2220510°'¢ 555111077  -55511107"7  —5.551110"17 5551110717
1 -0.0217564  0.00210746  -0.0694841 -0.52987 -0.52987 -0.0694841
2 -0.0391911  0.00726344 -0.1321 -0.575535 -0.575535 -0.1321

3 -0.0409799 0.0107883 -0.144516 -0.477388 -0.477388 -0.144516
4 -0.0348138 0.0114853 -0.127412 -0.356573 -0.356573 -0.127412
5 -0.0266271 0.0102697 -0.100421 -0.252005 -0.252005 -0.100421
6  -0.0191561  0.00827013  -0.0740086 -0.17211 -0.17211 -0.0740086
7 -0.0132515  0.00622087  -0.0521961 -0.114823 -0.114823 -0.0521961
8 -0.00892338  0.00446455  -0.0356993 -0.0752993 -0.0752993 -0.0356993
9  -0.00589269  0.00309758  -0.0238732 -0.0487326 -0.0487326 -0.0238732
10 -0.00383413  0.00209575  -0.0156939 -0.0312091 -0.0312091 -0.0156939

Table 7. Relative Sensitivity of the system reliability at n = 0.2; 1, =0.3; a; =0.3; ap =0.35; 4, =0.3; 1, =04

t Yoy Yo, Y, WYn Y Y,

0  6.6614x10717 77716 x 10717 1.6653 x 10717 -1.1102x 10717 -1.6653 x 10717 1.6653 x 10~17
1 -0.0108899 0.00123068 -0.0347795 -0.176814 -0.265221 -0.0347795
2 -0.0332299 0.00718507 -0.112007 -0.325329 -0.487993 -0.112007
3 -0.0593049 0.0182146 -0.20914 -0.460574 -0.69086 -0.20914
4 -0.0863179 0.033223 -0.315907 -0.589395 -0.884093 -0.315907
5 -0.113331 0.0509953 -0.427413 -0.715058 -1.07259 -0.427413
6 -0.140099 0.0705647 -0.541266 -0.839156 -1.25873 -0.541266
7 -0.166617 0.091254 -0.656285 -0.962476 -1.44371 -0.656285
8 -0.192941 0.112621 -0.771886 -1.08541 -1.62811 -0.771886
9 -0.219132 0.134389 -0.887776 -1.20815 -1.81222 -0.887776
10 -0.245238 0.156389 -1.00381 -1.33079 -1.99619 -1.00381

The sensitivity and relative sensitivity analysis of the MTSF with respect to various system parameters is presented
in Tables 8-10. These results provide significant insights into how changes in the model parameters influence system
reliability, thereby highlighting critical factors that should be carefully controlled to ensure optimal system performance.

Table 8 illustrates the effect of varying o) and o while keeping the other parameters constant. The sensitivity values
associated with o) are negative, ranging from -0.804149 at @¢; = 0.1 t0 -0.205721 at oy = 0.9, while the relative sensitivity
g, varies between -0.0421374 and -0.11696. This indicates that higher values of &; reduce the MTSF, with a relatively
stable effect at larger parameter values. In contrast, the sensitivity values of o are positive, decreasing from 0.189036 at
o =0.11t00.0757512 at op = 0.9, while the relative sensitivity increases from 0.0108696 to 0.037156. Thus, o, exerts
a positive influence on MTSF, which becomes more significant at higher values. Overall, ¢t negatively affects system
reliability, whereas o, contributes positively to enhancing it.
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Table 8. Sensitivity and relative sensitivity analysis of MTSF for different values of ¢, a

n=02; 1 =0.3; =035 1 =0.3; 1, =0.5 n=02,1=03 0 =031 =03 14,=05
o 8(11 (8 (0%) 6112 (0
0.1 -0.804149 -0.0421374 0.1 0.189036 0.0108696
0.2 -0.638623 -0.0695389 0.2 0.164354 0.018711
0.3 -0.519402 -0.087582 0.3 0.144208 0.0244123
0.4 -0.430698 -0.0994774 0.4 0.127551 0.0285714
0.5 -0.362919 -0.107226 0.5 0.113622 0.0316011
0.6 -0.309966 -0.112119 0.6 0.101856 0.0337922
0.7 -0.26781 -0.115014 0.7 0.0918274 0.0353535
0.8 -0.233704 -0.116493 0.8 0.0832101 0.0364372
0.9 -0.205721 -0.11696 0.9 0.0757512 0.037156

Table 9 reports the sensitivity analysis results for 1; and 1. The sensitivity values for 1; are negative, decreasing
from -0.804149 at ; = 0.1 to -0.205721 at n; = 0.9, with relative sensitivity values between -0.0421374 and -0.11696.
This confirms that increasing 71, leads to a reduction in MTSF, though with a relatively stable effect at higher values.
For n, however, the sensitivity values are much larger in magnitude, ranging from -3.40306 at n = 0.1 to -0.635383 at
n = 0.9, while the relative sensitivity increases in magnitude from -0.164286 to -0.638889. These results demonstrate
that ) has a much stronger negative impact on MTSF compared to 7y, indicating that system reliability is highly sensitive
to variations in 1.

Table 9. Sensitivity and relative sensitivity analysis of MTSF for different values of 01, n

n=02; a,=03; ;=035 1 =0.3; 1, =05 m=0.3; 00 =0.3; p =0.35; 4, =0.3; 1, =0.5

m o Wn, n S Wn

0.1 -0.804149 -0.0421374 0.1 -3.40306 -0.164286
0.2 -0.638623 -0.0695389 0.2 -2.51044 -0.282209
0.3 -0.519402 -0.087582 0.3 -1.92797 -0.370968
0.4 -0.430698 -0.0994774 0.4 -1.52698 -0.440191
0.5 -0.362919 -0.107226 0.5 -1.23922 -0.49569
0.6 -0.309966 -0.112119 0.6 -1.02576 -0.541176
0.7 -0.26781 -0.115014 0.7 -0.863051 -0.579137
0.8 -0.233704 -0.116493 0.8 -0.736195 -0.611296
0.9 -0.205721 -0.11696 0.9 -0.635383 -0.638889

Table 10 presents the sensitivity analysis results for A; and A,. The sensitivity values for A are negative and relatively
large, decreasing from -4.87253 at A; = 0.1 t0-0.736195 at A, = 0.9, while the relative sensitivity changes from -0.196581
to -0.687708. This indicates that increasing A; leads to a significant reduction in MTSF, with the relative impact becoming
stronger at higher values. Similarly, the sensitivity values of A, are also negative but smaller in magnitude compared to
A1, ranging from -1.40802 at A, = 0.1 to -0.26781 at A, = 0.9, while the relative sensitivity increases from -0.0663781
to -0.147875. This suggests that both A; and A, negatively affect MTSF, but the impact of A, is significantly stronger,
making it the most critical parameter to control in order to enhance system reliability.
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Table 10. Sensitivity and relative sensitivity analysis of MTSF for different values of ;, A,

n=02 o =03; 0 =035 m = 0.3; A = 0.5 M =03 oy = 0.3; & = 0.35; Ay =0.3; 1 = 0.2

M o, 0y, Ay 01, )y,

0.1 -4.87253 -0.196581 0.1 -1.40802 -0.0663781
0.2 -3.40306 -0.328571 0.2 -1.04348 -0.104348
0.3 -2.51044 -0.423313 0.3 -0.804149 -0.126412
0.4 -1.92797 -0.494624 0.4 -0.638623 -0.139078
0.5 -1.52698 -0.550239 0.5 -0.519402 -0.14597
0.6 -1.23922 -0.594828 0.6 -0.430698 -0.149216
0.7 -1.02576 -0.631373 0.7 -0.362919 -0.150117
0.8 -0.863051 -0.661871 0.8 -0.309966 -0.149492
0.9 -0.736195 -0.687708 0.9 -0.26781 -0.147875

In summary, the sensitivity analysis highlights the contrasting roles of the parameters under consideration. While o
positively contributes to system performance, parameters such as «;, 11, 17, A1, and A, negatively influence the MTSF,
with 1 and A; emerging as the most dominant factors. These findings emphasize the importance of carefully regulating
these parameters to improve system dependability.

6. Summary

This study provides a comprehensive reliability analysis of a single-active-unit industrial repairable system, explicitly
considering three operational states: normal operation, partial failure, and complete failure. The proposed model
incorporates practical operational constraints, including limited nighttime replacement capabilities and a predefined
maximum repair time, reflecting real industrial conditions. Using the supplementary variable technique combined with
Markov process theory, key performance indicators-such as the reliability function, MTSF, and steady-state availability-
are systematically evaluated. Sensitivity and relative sensitivity analyses further highlighted the influence of critical
parameters on system performance, offering practical insights for maintenance planning and operational decision-making.

7. Conclusions

This study has explored the reliability and sensitivity analyses of a single-unit engineering system operating in both
morning and evening shifts, under the constraint of a maximum allowable repair time and preventive maintenance for
partial failures of the active unit. By employing a state transition diagram, Laplace transforms of the state probabilities
were successfully derived. Based on these, key reliability measures of the system were obtained. Furthermore, both
sensitivity and relative sensitivity analyses were conducted for two critical system performance indices. The results
provide valuable insights into the impact of system parameters on reliability, which can guide design optimization and
maintenance planning in practical engineering applications. Finally, a set of numerical results was obtained, leading to
the following key conclusions:

1) Tables 2-5 demonstrate that the reliability function R() of the system decreases gradually with the increase in
failure rates (A1, A2, 17, M1) and over time (¢), assuming other parameters remain constant. The results also indicate the
absence of abrupt changes in the behavior of the reliability function, suggesting that the system maintains a high level of
reliability over an extended period.

2) Figures 2 and 3, illustrate the behavior of the MTSF for the proposed industrial system. The results indicate that
MTSF increases as the parameters o and o increase within the interval A; € [0, 10] and A, € [0, 10], respectively,
suggesting an enhancement in the system’s reliability under these conditions.
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3) The curves presented in Figures 4 and 6 indicate that the steady-state availability Av(eo) increases significantly
with the rise in both the preventive maintenance rate 8; and maximum repair time rate f3; of the failed unit during the
morning shift. This improvement is observed under the condition of varying the total failure rate of the active unit within
the time interval 4, € [0, 1].

4) Figures 5 and 7, illustrate that the steady-state availability Av(eo) improves as the preventive maintenance rate 6,
for the partially failing unit increases and as the maximum repair time rate § during the evening shift decreases. This
trend is observed under the condition that the total failure rate of the unit varies within the interval A, € [0, 1].

As shown in Figure 8, the parameters A; = 11, A, = 11; and «; demonstrate significant sensitivity with respect to
the reliability function R(¢). Furthermore, the sensitivity and relative sensitivity of the MTSF with respect to the system
parameters are ranked as follows:

1)11 >n>)Lz>n1:a1 > 0.

2)11 >T]>)vz>1’]1=061 > 0.

Based on the previously established relationships, it is evident that the parameters A1, 1, A2, 11 and ¢ are the most
influential factors affecting both performance metrics. Consequently, careful monitoring of their values is essential.
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Appendix

At any time ¢, if the system is in state S;, then the probability of the system to be that state is defined as the probability
that the system is in state S; at time # and remains there in interval (¢, # + At), or/ and if it is in some other state at time ¢,
provided that transition exists between the states and Ar — 0.

Accordingly, (13)-(21) are interpreted as follows.

The probability of the system to be in state Sy in the interval (¢, 7 + At) is given by

To(t+At) = (1— (o + A +1M)At) () + aAemy (1) + 01 Aty (1) + OAr iy (1) + OsAr i (1)

= lim 7o (¢ + Ar) — mp(¢)

+ (o +A+n)mo(t) = apm () + 0172 (t) + 074 (t) + 0576 (1)
At—0 At

d
= {dt o+ A +n} m(t) = oomi(t) + 017 (1) + 074 (1) + 0576 (1)

For state S

mE+Ar)=(1—(p+A+m)A) 7 (t) + o Atm(2) + O, At w3 (¢) + OsAr s (t) + O3Ar g (¢)

At) —
= fim T (t+Ar) —m (1)

+ (o + A +m) m(t) = oumo(t) + 62m3(t) + Oa7s (1) 4 O3 73(2)
At—0 At

d
= { +Otz+)»2+n1}7f1(t) = oy mp(t) + 0ams(r) + Osms(t) + O3 7 (t)

dt
For state S,
m(t+Ar) = (1 — 61A1) Wy (1) + Aty (£)
. M(t+A) — (1)
1 9 =
=>A[1Ln0 At +01m(t) = nmo(t)
= 4 +6, ym(t) = (1)
i 1o M(f) =MNTo
For state S3

7[3(I+At) =(1- 92At) 7I3(l)+n1At7E1(t)

~ lim m(t+ Ar) — m3(t)
At—0 At

+ 927T3(t) =Mmm (t)
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:>{jt—|—92}7[3(l‘) =mm(t)

For state Sy
74t +Ar) = (1 — (04 Br) Ar) ma(t) + M Atmo (1)
= gim POBIZRO 4 64 By () = ()
N {jt+e+ﬁ1}n4(z) — mo(0)
For state S5
75(+ Ar) = (1 — (6 + B) A1) (1) + AaAty (1)
= tim BB B0 | (0,1 2se) = dom (1)
{0 B () = M)
For state S
T (r + At) = (1 — 05A1) 76 (1) + Pr At 4 (t) + 0 At (1)
= Jim, ot +AZ ~76(1) | e me(r) = B (1) + oo (1)
= {jt + 95} 76(t) = Bima(t) + aomy (1)
For state S~

m(t+Ar) = (1 — (kK + 0p) At) 7 (1) + BAt s (1)

At) —
~ lim 7 (t+ At) — (1)

A0 At + (k4 0) 7 (1) = Brs(z)
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:>{jt + K+ 062} mp(t) = Brs(t)

For state Sg

mg(t 4+ Ar) = (1 — 63Ar) w3 (t) + KAt 77 (1)

mg(t + Ar) — mg(t)

= lim

0 t) = t
Ar—0 + 37:8() K7‘E7()

= {3; +63} ﬂg(t) = K7'C7(l)
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