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Abstract: This study presents the application of the 2-Point Block Arithmetic Mean (2-BLAM) method for solving
radiation transport models formulated as first kind Fredholm integral equations. These equations play a crucial role in
predicting radiative heat transfer and neutron or photon transport in slab geometries. The proposed approach used a
composite closed Newton-Cotes quadrature scheme to discretize the governing model and formulate a dense algebraic
system, which is then solved using the 2-BLAM method. Numerical experiments are carried out on model problems
inspired by radiative transfer theory to evaluate the method’s computational efficiency, convergence rate, and solution
accuracy. The results demonstrate that 2-BLAM outperforms existing iterative methods in terms of convergence speed
and computational cost, highlighting its potential for use in radiation physics applications.
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1. Introduction
Integral equations of the first kind are widely encountered in various radiation science domains, particularly in

modeling radiative heat transfer [1] and particle transport in nuclear systems. These equations arise in solving the
linearized Boltzmann transport equation, Radiative Transfer Equation (RTE), and neutron diffusion problems, where
the solution depends on the accumulated effect of radiation interactions throughout a domain [2–4]. Their applications
span multiple areas, including remote sensing, radiotherapy planning, reactor core analysis, and optical tomography,
where accurate modeling of radiation behavior is critical for design and diagnostics. Radiative transfer in optically
thick or scattering-dominated media is commonly expressed through such equations, especially when using methods
like discrete ordinates, Monte Carlo simulations, or spherical harmonics (PN) expansions. The mathematical modeling of
these radiation phenomena often leads to ill-posed problems, particularly when dealing with limited, noisy, or incomplete
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data. In such cases, small perturbations in input can cause large deviations in the solution, requiring stable and efficient
numerical schemes for practical computation.

Building on these challenges, many radiation transport problems can be modeled as first kind Fredholm integral
equation of the form:

∫ b

a
K(x, t)ϕ(t)dt = f (x), x ∈ [a, b] (1)

where ϕ(t) is the unknown radiation intensity or particle flux, K(x, t) denotes the kernel representing radiation-matter
interaction properties such as absorption, emission, and scattering, and f (x) represents observed boundary radiation data or
detector responses. In practical radiation transport applications such as radiative heat transfer in layered media, neutron
shielding analysis, and photon propagation in biological tissues the kernel often exhibits a semi-smooth or piecewise
continuous nature. This semi-smoothness arises due to abrupt transitions in material composition, optical depth, or
scattering coefficients, which cause the kernel to be continuous but not fully differentiable across the entire domain. A
common example is found in slab geometries, where the kernel typically represents a Green’s function that changes form
depending on the spatial relationship between the source and observation points [5, 6]. To formalize this, consider the
integral operator κ : S→ T , defined by

κ(ϕ(t)) =
∫ b

a
K(x, t)ϕ(t)dt (2)

where ϕ(t) belongs to a normed space S and the result lies in another normed space T .
Definition 1 [7] Let κ : S→ T be an operator from normed space S into a normed space T . The equation κϕ = f is

called well-posed if κ is onto, one to one and the inverse operator κ−1 : T → S is continuous. Otherwise, the equation is
called ill-posed.

Definition 2 [8] A kernel K(x, t) is called q-semi-smooth if

K(x, t) =


K1(x, t) if a≤ t ≤ x

K2(x, t) if x≤ t ≤ b

where K1, 2(x, t) ∈Cq([a, b]× [a, b]) for q > 1.
Numerical methods have been extensively developed and applied to solve equation (1), largely due to the limitations

of analytical techniques in handling real-world and complex geometries. Typically, when equation (1) is discretized using
numerical techniques such as quadrature [9–12] and projection [7, 13, 14] methods, a dense (or full) algebraic system
is obtained. However, solving such systems can be excessively costly as the order of the system increases. In large
computational systems, it is generally more efficient to employ iterative solvers rather than direct techniques. This is
because iterative methods are able to reach an acceptable approximation with comparatively fewer operations, and the
gradual procedure helps to limit the accumulation of round-off errors. Furthermore, direct solvers are highly sensitive to
ill-conditioning, which frequently occurs in radiation transport problems, and can suffer from significant numerical errors
due to floating-point rounding [15].

Among the iterative solvers, the Arithmetic Mean (AM) family of methods has garnered extensive attention due to
its balance of simplicity and adaptability across a wide range of linear and nonlinear problems [11, 16, 17]. Researchers
have introduced several enhancements to the basic AM method such as block-wise formulations and relaxation schemes
to accelerate convergence and improve numerical stability. These refinements make AM methods especially appealing
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for large-scale problems involving semi-smooth kernels and ill-posed characteristics. In this work, a variant of the AM
methods, namely the 2-Point Block Arithmetic Mean (2-BLAM) method, which is specifically designed to handle block-
structured dense systems efficiently is applied to solve equation (1) with semi-smooth kernel. The 2-BLAM approach
capitalizes on localized matrix updates within 2× 2 blocks, enhancing stability while maintaining convergence speed.
This makes it highly suitable for solving large algebraic systems generated from the discretization of first-kind integral
equations with semi-smooth kernels, common in radiation transport problems involving heterogeneous and layered media.
The robustness and scalability of the 2-BLAMmethod offer a practical numerical framework for high-resolution radiation
simulations.

The subsequent sections of this paper are arranged as follows. Section 2 provides a detailed explanation on
the derivation of the composite closed Newton-Cotes quadrature approximation, specifically employing the composite
Simpson’s

1
3
scheme. Section 3 introduces the formulation of the 2-BLAM method, outlining its implementation for

solving the resulting dense algebraic system. Section 4 presents numerical experiments that evaluate the performance of
the proposed method in comparison with existing iterative techniques. Finally, section 5 concludes the study with key
findings and potential directions for future research.

2. Composite closed Newton-Cotes quadrature approximation
A reliable numerical approximation of equation (1) is constructed using the composite closed Newton-Cotes

quadrature method. In particular, the composite Simpson’s
1
3
scheme is applied for its favorable balance between

computational efficiency and numerical accuracy. The integral domain [a, b] is uniformly partitioned into N subintervals,
defining the discrete grid points as xi = a+ ih and t j = a+ jh, with the uniform step size given by:

h =
b−a

N
. (3)

For notational simplicity, the following definitions are introduced:

Ki, j = K (xi, t j)

ϕ̂ j = ϕ̂ (t j)

fi = f (xi)


. (4)

According to Muthuvalu and Sulaiman [11], applying the composite Simpson’s
1
3
scheme to equation (1) leads to

the discretized form:

N

∑
j=0

w jKi, jϕ̂ j = fi, i = 0, 1, 2, · · · , N−2, N−1, N (5)

where ϕ̂ is the numerical approximation of the unknown function ϕ , and w j are the corresponding quadrature weights.
Moreover, this discretized form can be compactly represented in matrix form as:
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Aϕ̂ = f , A ∈ R(N+1)×(N+1), ϕ̂ , f ∈ RN+1 (6)

where A is the full coefficient matrix formed by weighted kernel values

A =


w0K0, 0 w1K0, 1 · · · wN−1K0, N−1 wNK0, N

w0K1, 0 w1K1, 1 · · · wN−1K1, N−1 wNK1, N
...

...
. . .

...
...

w0KN−1, 0 w1KN−1, 1 · · · wN−1KN−1, N−1 wNKN−1, N

w0KN, 0 w1KN, 1 · · · wN−1KN, N−1 wNKN, N


(N+1)×(N+1)

,

ϕ̂ =


ϕ̂0

ϕ̂1
...

ϕ̂N−1

ϕ̂N

 and f =


f0

f1
...

fN−1

fN

 .

The weights, w j for the composite Simpson’s
1
3
scheme adhere to the relation given below:

w j =



1
3

h, j = 0, N

4
3

h, j = 1, 3, 5, · · · , N−1

2
3

h, otherwise.

(7)

The kernel K(x, t) is continuous but only piecewise differentiable, with bounded jumps in its first derivatives across

the interface t = x. In this implementation, the composite Simpson’s
1
3
scheme is applied on a uniform grid without

enforcing panel alignment at the interface. Consequently, the discontinuity may fall inside quadrature panels, placing
the integrand in the class of semi-smooth, piecewise-C2 functions. Under these conditions, the discretization remains
consistent and stable.

3. Block Arithmetic Mean iterative method
This section describes the implementation of the 2-BLAM method for solving the dense system defined in equation

(6). The 2-BLAM method is an advanced iterative scheme that updates two independent solution vectors, ϕ̂ 1 and ϕ̂ 2,
during each iteration cycle. The coefficient matrix, A is partitioned such that its diagonal elements are grouped into non-
singular block 2×2 submatrices. Further discussions regarding the 2-BLAMmethod are limited to cases where N is even,
resulting in an incomplete block with one ungrouped element. Further development of the 2-BLAM method requires
partitioned matrix A into structured submatrices Hi, j and H∗i, j as follows:
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A =



H0, 0 H0, 2 H0, 4 · · · H0, N−4 H0, N−2 H0, N

H2, 0 H2, 2 H2, 4 · · · H2, N−4 H2, N−2 H2, N

H4, 0 H4, 2 H4, 4 · · · H4, N−4 H4, N−2 H4, N
...

...
...

. . .
...

...
...

HN−4, 0 HN−4, 2 HN−4, 4 · · · HN−4, N−4 HN−4, N−2 HN−4, N

HN−2, 0 HN−2, 2 HN−2, 4 · · · HN−2, N−4 HN−2, N−2 HN−2, N

HN, 0 HN, 2 HN, 4 · · · HN, N−4 HN, N−2 HN, N


(8)

and

A =



H∗0, 0 H∗0, 2 H∗0, 4 · · · H∗0, N−4 H∗0, N−2 H∗0, N
H∗2, 0 H∗2, 2 H∗2, 4 · · · H∗2, N−4 H∗2, N−2 H∗2, N
H∗4, 0 H∗4, 2 H∗4, 4 · · · H∗4, N−4 H∗4, N−2 H∗4, N
...

...
...

. . .
...

...
...

H∗N−4, 0 H∗N−4, 2 H∗N−4, 4 · · · H∗N−4, N−4 H∗N−4, N−2 H∗N−4, N
H∗N−2, 0 H∗N−2, 2 H∗N−2, 4 · · · H∗N−2, N−4 H∗N−2, N−2 H∗N−2, N
H∗N, 0 H∗N, 2 H∗N, 4 · · · H∗N, N−4 H∗N, N−2 H∗N, N


(9)

where notations of Hi, j and H∗i, j are defined as follows

Hi, j =

[
w jKi, j w j+1Ki, j+1

w jKi+1, j w j+1Ki+1, j+1

]
(10)

and

H∗i, j =

[
w j−1Ki−1, j−1 w jKi−1, j

w j−1Ki, j−1 w jKi, j

]
(11)

respectively. Based on matrices (8) and (9), it is noticeable that HN, N = wNKN, N and H∗0, 0 = w0K0, 0. Meanwhile,
HN, j ( j = 0, 2, 4, · · · , N− 4, N− 2) and H∗0, j ( j = 2, 4, · · ·N− 4, N− 2, N) are row vector of order 2. Whereas
Hi, N (i = 0, 2, 4, · · · , N−4, N−2) and H∗i, 0 (i = 2, 4, · · · , N−4, N−2, N) are a column vector of order 2.

Now, matrices in equations (8) and (9) provide the structural basis for the two-matrix splitting:

A = D1−L1−U1 (12)

and

A = D2−L2−U2. (13)
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Using equations (8) and (12), the splitting of D1, −L1 and −U1 can be expressed as follows:

D1 =



H0, 0

H2, 2

H4, 4 0
. . .

0 HN−4, N−4

HN−2, N−2

HN, N


, (14)

−L1 =



H2, 0

H4, 0 H4, 2 0
...

...
. . .

HN−4, 0 HN−4, 2 · · · HN−4, N−6

HN−2, 0 HN−2, 2 · · · HN−2, N−6 HN−2, N−4

HN, 0 HN, 2 · · · HN, N−6 HN, N−4 HN, N−2


(15)

and

−U1 =



H0, 2 H0, 4 H0, 6 · · · H0, N−2 H0, N

H2, 4 H2, 6 · · · H2, N−2 H2, N

H4, 6 · · · H4, N−2 H4, N
. . .

...
...

0 HN−4, N−2 HN−4, N

HN−2, N


(16)

respectively. Following the same splitting strategy as employed for the first matrix splitting, the components D2,−L2 and
−U2 are constructed as described in equations (9) and (13).

D2 =



H∗0, 0
H∗2, 2

H∗4, 4 0
. . .

0 H∗N−4, N−4
H∗N−2, N−2

H∗N, N


, (17)
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−L2 =



H∗2, 0
H∗4, 0 H∗4, 2 0
...

...
. . .

H∗N−4, 0 H∗N−4, 2 · · · H∗N−4, N−6
H∗N−2, 0 H∗N−2, 2 · · · H∗N−2, N−6 H∗N−2, N−4
H∗N, 0 H∗N, 2 · · · H∗N, N−6 H∗N, N−4 H∗N, N−2


(18)

and

−U2 =



H∗0, 2 H∗0, 4 H∗0, 6 · · · H∗0, N−2 H∗0, N
H∗2, 4 H∗2, 6 · · · H∗2, N−2 H∗2, N

H∗4, 6 · · · H∗4, N−2 H∗4, N
. . .

...
...

0 H∗N−4, N−2 H∗N−4, N
H∗N−2, N


(19)

respectively.
Thus, for non-singular (D1−ωL1) and (D2−ωU2) matrices, the general formulation for 2-BLAM iterative method

is defines as

(D1−ωL1) ϕ̂ 1 = [(1−ω)D1 +ωU1] ϕ̂ (k)+ω f

(D2−ωU2) ϕ̂ 2 = [(1−ω)D2 +ωL2] ϕ̂ (k)+ω f

ϕ̂ (k+1) =
ϕ̂ 1 + ϕ̂ 2

2


(20)

where ω denotes the acceleration parameter. By applying formula (20), computational procedure for 2-BLAM method
associated with composite Simpson’s

1
3
scheme to solve problem (1) is explained in Algorithm 1. Throughout the iteration

process, the Lower-Upper (LU) decomposition method employing the Crout technique will be utilized to compute the
values of ϕ̂ 1 and ϕ̂ 2 for each block (Hi, i and H∗i, i). By employing the Crout technique, the following formulations are
used to calculate ϕ̂ 1

i+1, ϕ̂ 1
i , ϕ̂ 2

i and ϕ̂ 2
i−1:

ϕ̂ 1
i+1 =

S1
i+1− (wiKi+1, i)

(
S1

i
wiKi, i

)
(wi+1Ki+1, i+1)− (wiKi+1, i)

(
wi+1Ki, i+1

wiKi, i

) (21)
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ϕ̂ 1
i =

S1
i

wiKi, i
−

wi+1Ki, i+1

wiKi, i
ϕ̂ 1

i+1 (22)

ϕ̂ 2
i =

S2
i − (wi−1Ki, i−1)

(
S2

i−1

wi−1Ki−1, i−1

)

(wiKi, i)− (wi−1Ki, i−1)

(
wiKi−1, i

wi−1Ki−1, i−1

) (23)

and

ϕ̂ 2
i−1 =

S2
i−1

wi−1Ki−1, i−1
−

wiKi−1, i

wi−1Ki−1, i−1
ϕ̂ 2

i (24)

respectively, where

s1
i = fi−

i−1

∑
j=0

w jKi, jϕ̂ 1
j −

N

∑
j=i+2

w jKi, jϕ̂
(k)
j ,

s1
i+1 = fi+1−

i−1

∑
j=0

w jKi+1, jϕ̂ 1
j −

N

∑
j=i+2

w jKi+1, jϕ̂
(k)
j ,

s2
i−1 = fi−1−

i−2

∑
j=0

w jKi−1, jϕ̂
(k)
j −

N

∑
j=i+1

w jKi−1, jϕ̂ 2
j ,

s2
i = fi−

i−2

∑
j=0

w jKi, jϕ̂
(k)
j −

N

∑
j=i+1

w jKi, jϕ̂ 2
j ,

S1
i = (1−ω)

[
wiKi, iϕ̂

(k)
i +wi+1Ki, i+1ϕ̂ (k)

i+1

]
+ω

(
s1

i
)
,

S1
i+1 = (1−ω)

[
wiKi+1, iϕ̂

(k)
i +wi+1Ki+1, i+1ϕ̂ (k)

i+1

]
+ω

(
s1

i+1
)
,

S2
i−1 = (1−ω)

[
wi−1Ki−1, i−1ϕ̂ (k)

i−1 +wiKi−1, iϕ̂
(k)
i

]
+ω

(
s2

i−1
)
,

and

S2
i = (1−ω)

[
wi−1Ki, i−1ϕ̂ (k)

i−1 +wiKi, iϕ̂
(k)
i

]
+ω

(
s2

i
)
.
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For the ungrouped point, the standard AM point-based iteration described in Muthuvalu and Sulaiman [11] is
employed. In the radiation transport problems considered, the kernel K(x, t) represents semi-smooth but non-singular
physical interactions (e.g., absorption or scattering coefficients) that remain finite and non-zero along the diagonal, i.e.,
Ki, i ̸= 0 for all i. Therefore, the denominator in equations (21)-(24) does not encounter a division-by-zero condition
under the assumed problem class. During implementation, ϕ̂ 1

i+1 and ϕ̂ 2
i are first computed using equations (21) and (23),

respectively. The obtained values are then substituted into equations (22) and (24) to evaluate ϕ̂ 1
i and ϕ̂ 2

i−1 within each
iteration cycle.

Algorithm 1 2-BLAM algorithm
(i) Set ϕ̂ (0) = ϕ̂ 1 = ϕ̂ 2 = 0, ε
(ii) Iteration cycle
Stage 1
Level 1
for i = 0, 2, 4, · · · , N−4, N−2

Compute

[
ϕ̂i

ϕ̂i+1

]1

← H−1
i, i

(1−ω)Hi, i

[
ϕ̂i

ϕ̂i+1

](k)
+ω

[
si

si+1

]1


for i = N

Compute ϕ̂ 1
N ← (1−ω)ϕ̂ (k)

N +
ω

wNKN, N

[
fN −

N−1

∑
j=0

w jKN, jϕ̂ 1
j

]
Level 2
for i = N, N−2, N−4, · · · , 4, 2

Compute

[
ϕ̂i−1

ϕ̂i

]2

←
(

H∗i, i

)−1

(1−ω)H∗i, i

[
ϕ̂i−1

ϕ̂i

](k)
+ω

[
si−1

si

]2


for i = 0

Compute ϕ̂ 2
0 ← (1−ω)ϕ̂ (k)

0 +
ω

w0K0, 0

[
f0−

N

∑
j=1

w jK0, jϕ̂ 2
j

]
Stage 2
for i = 0, 1, 2, · · · , N−2, N−1, N

Compute ϕ̂ (k+1)
i ← ϕ̂ 1

i + ϕ̂ 2
i

2
.

(iii) Convergence test. If the maximum norm,
∥∥∥ϕ̂ (k+1)

i − ϕ̂ (k)
i

∥∥∥ ≤ ε (with ε as the prescribed tolerance) is satisfied,
proceed to Step (iv); otherwise, return to Step (ii) and repeat the iteration.

(iv) Stop.
The 2-BLAM method utilizes a two-sided splitting approach and the iterative formulation of the 2-BLAM method

is defined as

ϕ̂ (k+1) = (1−ω)ϕ̂ (k)+
ω
2

[
(D1−L1)

−1 U1 +(D2−U2)
−1 L2

]
ϕ̂ (k)+

ω
2

[
(D1−L1)

−1 +(D2−U2)
−1
]

f (25)

where ω ∈ (0, 2). The corresponding iteration matrix is

T2−BLAM = (1−ω)I +
ω
2

[
(D1−L1)

−1 U1 +(D2−U2)
−1 L2

]
. (26)

The matrices (D1−L1) and (D2−U2) are invertible under the assumed problem class, as the discretization of the
semi-smooth kernel K(x, t) yields a strictly diagonally dominant matrix with positive quadrature weights (w j > 0) and
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bounded kernel values on [a, b]× [a, b]. Hence, each diagonal block of D1 and D2 remains non-singular, ensuring the
existence of (D1−L1)

−1 and (D2−U2)
−1.

Theorem 1 (Convergence condition of the 2-BLAM method)
Let A be a non-singular matrix with the block splittings described in equations (12)-(19). The 2-BLAM iterative

method converges for any initial guess ϕ̂ (0) to the solution of the system Aϕ̂ = f , provided that the spectral radius of the
iteration matrix satisfies

ρ (T2−BLAM)< 1.

Proof. The 2-BLAM iteration is of the form

ϕ̂ (k+1) = T2−BLAMϕ̂ (k)+g

where g =
ω
2

[
(D1−L1)

−1 +(D2−U2)
−1
]

f and this is a linear fixed-point iteration. Now, let ϕ̂ ∗ be any fixed point i.e.

ϕ̂ ∗ = T2−BLAMϕ̂ ∗+g

and the error

e(k) = ϕ̂ (k)− ϕ̂ ∗.

Subtracting the fixed-point identity from the iteration yields the homogeneous recursion

e(k+1) = T2−BLAMe(k).

By induction,

e(k) = T k
2−BLAMe(0)(k ≥ 0).

The convergence of the iteration is characterized exactly by the spectral radius of the iteration matrix, ρ (T2−BLAM).
In particular,

• If ρ (T2−BLAM) < 1, then every eigenvalue λ of T2−BLAM satisfies |λ | < 1. Hence T k
2−BLAM → 0 as k→ ∞, so

e(k) → 0 for every initial error e(0). Therefore ϕ̂ (k) → ϕ̂ ∗, furthermore I−T2−BLAM is invertible and the fixed point is
unique, given by ϕ̂ ∗ = (I−T2−BLAM)

−1 g.
• Conversely, if the iteration converges to a limit for every initial ϕ̂ (0), then for every e(0) wemust have T k

2−BLAMe(0)→
0 and this can occur only when ρ (T2−BLAM)< 1. If ρ (T2−BLAM)≥ 1, there exists an eigenvalue λ with |λ | ≥ 1, and one
may choose an initial error in the corresponding (generalised) eigenspace for which T k

2− BLAM e(0) does not converge to
zero, contradicting universal convergence.

Thus, the iteration converges for every initial guess if and only if ρ (T2−BLAM)< 1.
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Theorem 2 (Stability of the 2-BLAM method)
Suppose the spectral radius of the iteration matrix satisfies ρ (T2−BLAM)< 1, then the 2-BLAMmethod is stable with

respect to perturbations in the right-hand side f and the propagated error remains bounded.
Proof. Let the actual system be

Aϕ̂ = f

and the perturbed system be

Aϕ̃ = f +δ f ,

where δ f is a small perturbation in the right-hand side.
Let ϕ̂ (k) and ϕ̃ (k) denote the iterates generated by the 2-BLAM method for the unperturbed and perturbed systems,

respectively. The 2-BLAM iterative scheme applied to each system yields

ϕ̂ (k+1) = T2−BLAMϕ̂ (k)+g

and

ϕ̃ (k+1) = T2−BLAMϕ̃ (k)+ g̃

where

g =
ω
2

[
(D1−L1)

−1 +(D2−U2)
−1
]

f

and

g̃ =
ω
2

[
(D1−L1)

−1 +(D2−U2)
−1
]
( f +δ f ).

Define the error due to perturbation as e(k) = ϕ̃ (k)− ϕ̂ (k) and by subtracting the two update equations gives

e(k+1) = T2−BLAMe(k)+δg,

where

δg = g̃−g =
ω
2

[
(D1−L1)

−1 +(D2−U2)
−1
]

δ f .
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and closed form by induction is

e(k) = T k
2−BLAMe(0)+

k−1

∑
j=0

T j
2−BLAMδg.

If ρ (T2−BLAM)< 1 then T k
2−BLAM→ 0 and the geometric series converges in operator norm so the iterates have the

limit

lim
k→∞

e(k) = (I−T2−BLAM)
−1 δg.

Therefore, the asymptotic perturbation is bounded by the resolvent of T2− BLAM

limsup
k→∞

∥∥∥e(k)
∥∥∥≤ ∥∥∥(I−T2−BLAM)

−1
∥∥∥∥δg∥ ≤ ∥δg∥

1−ρ (T2−BLAM)
.

Hence, the propagated perturbation remains bounded, confirming that the 2-BLAM method is stable with respect to
small changes in the input data.

To assess the computational complexity of the proposed 2-BLAM method, the arithmetic operations required to
solve problem (1) were estimated based on the operations executed per iteration. In this analysis, it is assumed that
all coefficients and matrix elements in system (6) are precomputed and stored prior to iteration. The abbreviations
ADD/SUB andMUL/DIV denote Addition/Subtraction (ADD/SUB) andMultiplication/Division (MUL/DIV) operations,
respectively. According to Algorithm 1, the total number of arithmetic operations per iteration (excluding the convergence
test) for the 2-BLAM method can be expressed as

(
2N2 +10N +3

)
ADD/SUB +

(
2N2 +17N +7

)
MUL/DIV.

These expressions indicate that the arithmetic effort per iteration is dominated by O
(
N2
)
terms arising from dense

block-matrix multiplications and updates. Consequently, the asymptotic computational complexity of a single iteration is
O
(
N2
)
, while the total cost of the method scales as O

(
kN2

)
, where k is the number of iterations required for convergence.

4. Numerical simulations
This section presents the numerical results to evaluate the effectiveness of the 2-BLAM iterative method in solving

equation (1), which is relevant to radiation transport applications. These problems include features like semi-smooth
kernels, which are common in radiation-related integral formulations and often present challenges for conventional
iterative solvers. For comparative purposes, the performance of the 2-BLAMmethod is compared with the standard Gauss-
Seidel (GS), Block Gauss-Seidel (BGS) and AM methods. The convergence behavior is assessed based on the number of
iterations and total computational time required to reach a predefined error tolerance of ε = 10−10. All simulations are
performed on a system equipped with an Intel (R) Core (TM) 2 CPU @ 1.66 GHz, with the algorithms implemented in
the C programming language. The experiments are conducted for various values of N, and the relaxation parameter ω is
optimized by executing the 2-BLAM algorithm across a range of ω values. The optimal ω is selected as the value that
yields the minimum number of iterations (within a range of ± 0.01).
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Test Problem 1 The Fredholm integral equation of the first kind

∫ 1

0
K(x, t)ϕ(t)dt =

x3− x
6

(27)

with the kernel defined as

K(x, t) =


t(x−1), t < x

x(t−1), x≤ t
(28)

arises in the study of radiative transfer within a one-dimensional slab of participating media, such as gases or semi-
transparent solids, where radiation interacts with the medium through absorption, emission, and possibly scattering. In
this formulation, ϕ(t) represents the unknown source function or radiative intensity distribution at location t. The kernel
K(x, t) characterizes the interaction between radiation emitted at position t and its contribution to the radiative energy
at position x, considering the geometry and boundary effects. The piecewise-defined kernel reflects the asymmetry in
radiation transfer, depending on whether t < x (radiation reaching x from a location to the left) or t ≥ x (from the right).
The right-hand side can be interpreted as a known source term or a resultant net radiative flux, possibly derived from
energy balance or experimental data. The exact solution to this test problem 1 is known to be

ϕ(x) = x (29)

which may correspond to a linearly varying radiative intensity, consistent with simple radiative diffusion models under
specific boundary conditions. The numerical results for test problem 1 are presented in Table 1 and illustrated in Figures
1 and 2.

Table 1. Numerical results for test problem 1

Parameter Methods N

240 480 960 1, 920 3, 840 7,680

Number of iterations

GS 305 380 461 551 647 755
BGS 247 293 345 419 463 568
AM 136 140 143 144 162 222

2-BLAM 31 31 32 32 33 33

Computational time (in seconds)

GS 5.30 16.74 68.47 236.40 811.43 2,344.30
BGS 4.89 13.68 56.11 205.04 635.89 2,004.28
AM 4.24 12.50 50.10 186.33 544.14 1,615.30

2-BLAM 1.20 2.95 16.03 61.10 153.40 335.11

Figure 1 compares the radiative intensity profiles obtained using the 2-BLAM method for N = 240 and N = 7,680
grid resolutions against the exact solution. The results show that as the grid is refined, the numerical solution produced
by 2-BLAM approaches the exact profile, demonstrating improved accuracy and convergence with increasing N. The
close agreement at higher resolution confirms the consistency and stability of the 2-BLAM scheme for solving radiative
transfer problems.
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Figure 1. Radiative intensity profiles obtained using the 2-BLAM method for N = 240 and N = 7,680 (for test problem 1)

Figure 2. Log of maximum absolute error by using 2-BLAM method for test problem 1

Figure 2 presents the logarithmic variation of the maximum absolute error obtained using the 2-BLAMmethod across
different grid sizes N. The error remains nearly constant as N increases, indicating that the 2-BLAM method maintains
consistent numerical accuracy and stability with mesh refinement.

Test Problem 2 The Fredholm integral equation of the first kind

∫ 1

0
K(x, t)ϕ(t)dt = ex +(1− e)x−1 (30)

with the kernel

K(x, t) =


t(x−1), t ≤ x

x(t−1), x < t

(31)

can be modeled as a boundary-influenced radiative heat transfer problem in a non-isothermal slab, where the radiation
within the medium is driven by spatially varying internal sources and non-uniform boundary conditions. In this scenario,
ϕ(t) represents the local emissive power or temperature-dependent radiative source strength, which varies with position
due to localized heat generation or absorption. The kernel K(x, t) captures the spatial influence of radiative contributions
from other locations within the slab, modulated by position-dependent geometrical or optical properties. The asymmetry
of the kernel reflects the directional bias of radiation within the slab, with t ≤ x and t > x modeling radiative influence
from the left and right, respectively. The non-polynomial right-hand side, could correspond to a prescribed radiative
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flux distribution, possibly derived from external heating, boundary irradiation, or experimentally observed flux gradients.
Unlike simpler diffusion-based models, this formulation accommodates exponential growth in radiation intensity, as seen
in the exact solution

ϕ(x) = ex (32)

indicating strong positional dependence of the source term, a scenario relevant in media exposed to localized laser heating,
high-energy particle irradiation, or temperature-sensitive radiative processes. The numerical results for test problem 2 are
presented in Table 2 and illustrated in Figures 3 and 4.

Table 2. Numerical results for test problem 2

Parameter Methods N

240 480 960 1,920 3,840 7,680

Number of iterations

GS 318 397 479 572 668 786
BGS 251 315 370 438 511 592
AM 141 146 148 149 169 231

2-BLAM 34 34 35 35 35 35

Computational time (in seconds)

GS 6.42 18.13 70.15 266.75 877.30 2,470.18
BGS 5.82 15.11 61.09 224.27 714.23 2,056.63
AM 5.03 13.70 53.60 191.42 560.16 1,688.30

2-BLAM 1.31 3.40 17.50 64.26 165.88 370.03

Figure 3. Radiative intensity profiles obtained using the 2-BLAM method for N = 240 and N = 7,680 (for test problem 2)

Figure 3 illustrates the radiative intensity profiles computed using the 2-BLAM method for N = 240 and N = 7,680
compared with the exact solution. The results show that as the grid resolution increases, the numerical solution closely
follows the exact curve, demonstrating improved accuracy and convergence of the 2-BLAMmethod. The good agreement
across all data points confirms the stability and reliability of the proposed approach for radiative transfer analysis.

Figure 4 presents the logarithmic variation of the maximum absolute error with respect to the grid size N for the 2-
BLAM method. The results show a slight reduction in error magnitude as N increases, indicating consistent convergence
behavior. The nearly flat trend at larger N values suggests that the method achieves numerical stability and that the
discretization error becomes dominant for finer grids.
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Figure 4. Log of maximum absolute error by using 2-BLAM method for test problem 2

Furthermore, Table 3 presented the percentage reduction in both the number of iterations and computational time
achieved by the BGS, AM and 2-BLAM methods relative to the GS method. This comparative analysis highlights the
computational advantages of the proposed methods, particularly in terms of convergence efficiency and overall runtime,
demonstrating their effectiveness in solving Fredholm integral equations of the first kind arising from radiation-related
problems.

Table 3. Percentage reduction by the BGS, AM and 2-BLAM methods compared to the GS method

Methods Number of iterations (%) Computational time (%)

Test Problem 1 Test Problem 2 Test Problem 1 Test Problem 2

BGS 19.01-28.44 21.06-24.69 7.73-21.64 9.34-18.58
AM 55.40-74.97 55.66-74.71 20.00-32.95 21.65-36.15

2-BLAM 89.83-95.63 89.30-95.55 74.15-85.71 75.05-85.03

5. Conclusion
This work successfully demonstrated the application and effectiveness of the 2-BLAM iterative method for solving

radiation transport models represented by Fredholm integral equations of the first kind with semi-smooth kernels.
The numerical experiments conducted on test problems highlight the superior performance of the 2-BLAM method.
Specifically, 2-BLAM achieved significantly faster convergence rates and reduced computational time while maintaining
solution accuracy. The block-wise update structure and use of LU decomposition via the Crout technique enhance both
the numerical stability and efficiency of the method, making it well-suited for large-scale radiation transport simulations
in heterogeneous and layered media.

Future research will investigate adaptive block strategies, parallel implementations, and hybrid frameworks incorpor-
ating machine learning for automated parameter selection, further extending the applicability of 2-BLAM across
computational radiation physics and related fields. Additional work will examine discretization enhancements for semi-
smooth kernels, including discontinuity-aware quadrature schemes and interface-aligned panelisation, to better ascertain
their influence on operator conditioning and iterative solver performance. As the current study considers a noise-free
deterministic setting, explicit regularisation mechanisms such as Tikhonov and related stabilisation techniques are not yet
incorporated, and their integration represents a natural and important direction for future research, particularly for inverse
problems involving noisy data.

Contemporary Mathematics 1284 | Mohana Sundaram Muthuvalu, et al.



Acknowledgments
This research was funded by National Collaborative Research Fund (Universiti Teknologi PETRONAS-Universiti

Malaysia Pahang) (Cost Center: 015MC0-033) and Ministry of Higher Education under the Fundamental Research Grant
Scheme (FRGS/1/2014/SG04/UTP/03/1).

Conflict of interest
The authors declare that there is no conflict of interest regarding the publication of this paper.

References
[1] Modest MF. Radiative Heat Transfer. 3rd ed. New York: Academic Press; 2013.
[2] GaoM, Shi Y. Amodified implicitMonte Carlomethod for frequency-dependent three-temperature radiative transfer

equations. Nuclear Science and Engineering. 2025; 199(2): 325-337.
[3] Jiang YF. An implicit finite volume scheme to solve the time-dependent radiation transport equation based on

discrete ordinates. The Astrophysical Journal Supplement Series. 2021; 253: 49.
[4] Judd KP, Handler RA. Numerical solution of the radiation transport equation at an air-water interface for a stratified

medium. Frontiers in Mechanical Engineering. 2019; 5: 1.
[5] Dölz J, Palii O, Schlottbom M. On robustly convergent and efficient iterative methods for anisotropic radiative

transfer. Journal of Scientific Computing. 2022; 90: 94.
[6] Zhao JM, Liu LH. Solution of radiative heat transfer in graded index media by least square spectral element method.

International Journal of Heat and Mass Transfer. 2007; 50: 2634-2642.
[7] Maleknejad K, Mollapourasl R, Nouri K. Convergence of numerical solution of the Fredholm integral equation of

the first kind with degenerate kernel. Applied Mathematics and Computation. 2006; 181(2): 1000-1007.
[8] Kang S, Koltracht I, Rawitscher G. Nyström-Clenshaw-Curtis quadrature for integral equations with discontinuous

kernels. Mathematics of Computation. 2002; 72(242): 729-756.
[9] Laurie DP. Computation of Gauss-type quadrature formulas. Journal of Computational and Applied Mathematics.

2001; 127(1-2): 201-217.
[10] Muthuvalu MS, Noar NAZM, Setiawan H, Kurniawan I, Momani S. Numerical solution of first kind Fredholm

integral equations with semi-smooth kernel: A two-stage iterative approach. Results in Applied Mathematics. 2024;
24: 100520.

[11] Muthuvalu MS, Sulaiman J. Half-sweep arithmetic mean method with composite trapezoidal scheme for solving
linear Fredholm integral equations. Applied Mathematics and Computation. 2011; 217(12): 5442-5448.

[12] Muthuvalu MS, Sulaiman J. The arithmetic mean iterative methods for solving dense linear systems arise from first
kind linear Fredholm integral equations. Proceedings of the Romanian Academy, Series A. 2012; 13(3): 198-206.

[13] Patel S, Panigrahi BL, Nelakanti G. Legendre spectral projection methods for Fredholm integral equations of the
first kind. Journal of Inverse and Ill-Posed Problems. 2022; 30(5): 677-691.

[14] Patel S, Panigrahi BL. Jacobi spectral projectionmethods for Fredholm integral equations of the first kind. Numerical
Algorithms. 2024; 96: 33-57.

[15] Dias JMB, Leitão JMN. Group lapped iterative technique for fast solution of large linear systems. In: Proceedings
of the IEEE International Conference on Electronics, Circuits and Systems. New York: IEEE; 1998. p.531-534.

[16] Aruchunan E, Chew JVL, Muthuvalu MS, Sunarto A, Sulaiman J. A Newton-Modified Weighted Arithmetic Mean
solution of nonlinear porous medium type equations. Symmetry. 2021; 13(8): 1511.

[17] Galligani E. The arithmetic mean method for solving systems of nonlinear equations in finite differences. Applied
Mathematics and Computation. 2006; 181(1): 579-597.

Volume 7 Issue 1|2026| 1285 Contemporary Mathematics


	Introduction
	Composite closed Newton-Cotes quadrature approximation
	Block Arithmetic Mean iterative method
	Numerical simulations
	Conclusion

