Contemporary Mathematics

https://ojs.wiserpub.com/index.php/CM/ UNIVERSAL WISER
PUBLISHER

Research Article

SPECTRE: Computational Methods in Natural Language Processing
for Automated Hardware Trojan Insertion Using Large Language
Models

Moneer Alshaikh!, Rashid Amin**"", Sajid Mehmood?, Faisal S. Alsubaei’

"Department of Cybersecurity, College of Computer Science and Engineering, University of Jeddah, Jeddah, 23218, Saudi Arabia
2Department of Computer Science, University of Engineering and Technology, Taxila, 47050, Pakistan
E-mail: rashid.amin@uettaxila.edu.pk

Received: 10 August 2025; Revised: 22 September 2025; Accepted: 28 September 2025

Abstract: Experts Stealthy Processor Exploitation and Concealment Through Reconfigurable Elements (SPECTRE) is
the new framework proposed in this paper to use the computational methods of Natural Language Processing (NLP)
to automate the addition of Hardware Trojans (HTs) to the complex hardware design. SPECTRE takes advantage of
Large Language Models (LLMs) like Generative Pre-trained Transformer (GPT)-4, Gemini-1.5-pro and LLaMA-3-70B
to synthesize HTs with little to no human input by using sophisticated prompting methods like role-based prompting,
reflexive validation prompting, and contextual Trojan prompting to analyze Hardware Description Language (HDL)
codebases and expose vulnerabilities. Such a methodology alleviates the limitations of the more traditional machine
learning-based automation that tends to require large data and extensive training times by including NLP-based code
generation and an inference engine that can dynamically scale to non-homogeneous hardware platforms, including
Application-Specific Integrated Circuits (ASICs) and Field-Programmable Gate Arrays (FPGAs). When tested on
benchmark hardware systems like Static Random-Access Memory (SRAM), Advanced Encryption Standard (AES-128),
and Universal Asynchronous Receiver-Transmitter (UART), SPECTRE shows greater performance with GPT-4 having
an 88.88% success rate in generating viable and stealthy HTs that cannot be detected by current state-of-the-art Machine
Learning (ML)-based tools like hw2vec. The mathematical and computational basis of the framework, premised on few-
shot learning, adversarial prompting, and iterative validation algorithms, shows the dual-use potential of NLP models in
the domain of hardware security, which poses the potential to exploit vulnerabilities within a short time but also demands
adequate strategies to curb vulnerability exploitation by artificial intelligence generation.

Keywords: natural language processing, large language model, prompt engineering, computational method, code
generation, hardware security, stealthy insertion

MSC: 68T50, 68M25, 94A60

1. Introduction

Hardware Trojans (HTs) represent unauthorized malevolent changes in hardware designs that modify operational
capabilities degrades system efficiency and expose confidential information in devastating attacks. The electronics and

Copyright ©2026 Rashid Amin, et al.

DOI: https://doi.org/10.37256/cm.7120268211

This is an open-access article distributed under a CC BY license
(Creative Commons Attribution 4.0 International License)
https://creativecommons.org/licenses/by/4.0/

Volume 7 Issue 1]2026| 821 Contemporary Mathematics

https://ojs.wiserpub.com/index.php/CM/
https://ojs.wiserpub.com/index.php/CM/
https://www.wiserpub.com/
https://orcid.org/0000-0002-3143-689X
https://doi.org/10.37256/cm.7120268211
https://creativecommons.org/licenses/by/4.0/

semiconductor industry face rising concerns about Trojans because their supply chains have globalized while designers
repeat patterns and 3P-IP cores has become pervasive [1, 2]. Growing hardware complexity coupled with networked
systems has caused an escalation of hardware Trojan insertion points throughout the product development process, making
HTs a fundamental security threat for hardware systems [3]. The process of embedding Hardware Trojans demands
extensive hardware architecture expertise and technical proficiency when working with complex Hardware Description
Language (HDL) codebases since it has long been handled manually and laboriously. The human-designed HTs suffer
from inherent limitations because designers introduce biases during the design phase, which results in detectable HTs that
security tools can reveal [4]. The growth of hardware designs in complexity and size renders manual insertion of HT
impractical, making this process to need sophisticated techniques at automation.

Researchers have created partially automated and fully automated hardware Trojan insertion systems that use
Machine Learning (ML) and algorithmic methods to enhance operation. Such tools help decrease manual work while
reducing biased decisions and enhance the speed of inserting hardware Trojan bugs [5]. Trust-Hub repository contains
manually inserted HT benchmarks that serve as widely used benchmarks for research purposes [6]. The human
involvement in manual insertion enables human biases to enter the system, which restricts the range of scenarios for
detection tools to detect effectively. The success of automation tools to insert HTiefs varies between Tool for Automated
Insertion of Trojans (TAINT) [7], Trojan Insertion Tool (TRIT) [8], MIMIC [9], ATTRITION [10], TrojanPlayground
[11], Design-Time Trojan insertion at Register-Transfer Level (DTjRTL) [12], TrojanForge [13], and FEINT [14] and the
overall capability of this group is still the focus of research. The advancements in hardware security tools face challenges
because training takes a long time and the tools lack open-source access while also providing restricted usage for broader
research due to limited hardware design adaptability.

The TAINT tool provides automated support for inserting HT into Field-Programmable Gate Array (FPGA) designs,
although users must supply significant guidance to the system and present the possibility of human biases. [7]. While TRIT
[8] operates as an automatic Trojan insertion solution for gate-level netlists, it demands user involvement to set up and
configure the system. The MIMIC [9] system teaches itself about Trojan patterns through machine learning yet struggles
because it needs massive training information together with expensive computational power, which reduces its application
scope across diverse scenarios. ATTRITION [10] reaches its main objectives through rare net Trojan insertion yet lacks
open-source availability, which hinders its widespread deployment. The HT insertion feature of TrojanPlayground [11]
relies on RL, with the need for extensive training until autonomous HT insertion becomes possible. The DTjRTL [12]
system carries out automated hardware Trojan insertion during the Register-Transfer Level (RTL) stages, though it requires
fixed configuration parameters. The TrojanForge [13] platform uses adversarial learning together with RL and GANs to
produce imperceptible HTs while facing high quantitative demands. FEINT [14] provides automated HT insertion for
FPGA designs, yet its capability to work in diverse FPGA situations remains restricted.

Current tools in the HT generation face three substantial challenges because they need lengthy learning periods work
only on specific hardware environments, and are not freely available to researchers. The limitations these obstacles create
make the tools less effective and more difficult to use for extensive research and development purposes [15]. Our solution
Stealthy Processor Exploitation and Concealment Through Reconfigurable Elements (SPECTRE), brings together Large
Language Models to automate hardware Trojan inclusion into complex designs. The hardware security field has received
substantial progress through the introduction of SPECTRE. SPECTRE operates on all software platforms, independent
of design structure and therefore attacks both Application-Specific Integrated Circuit (ASIC) and FPGA systems across
multiple hardware architectures. The platform SPECTRE uses Large Language Models (LLMs) for real time use of HDL
source code to identify weak points permitting the automatic insertion of HTs with minimal human intervention. The
device is an effective resource to the collaborators and opponent forces, which demonstrates the critical requirement for
sophisticated protection systems in hardware security.

Claims from Shakya et al. [16] inspire our threat model Figure 1, which means to protect the security aspects of the
widespread and outsourced System-on-Chip (SoC) development pipeline through which SoC development is distributed
across different companies. The paper examines a situation where an RTL designer operating as part of an external IP
(3PIP) vendor gives a transformed IP core to an SoC integrator who handles offshore development of SoC integration.
The threat model core depends on the SoC integrator being the adversary since tight project deadlines force them to

Co iporary Math tics 822 | Rashid Amin, et al.

work with limited time to understand the IP core’s internal structure [17]. The SPECTRE framework supports potential
attackers by using LLMs to overcome standard knowledge limitations within the HDL code analysis process, thus enabling
fast identification of vulnerabilities and deployment of Hardware Trojans before Computer-Aided Design (CAD) tool
operations start for fabrication at the foundry. The framework enables developers to build secretive HTs that survive both
testing periods before and after fabrication to activate themselves after deployment. Modifications made by attackers stop
on the RTL level, because the SoC integrator and foundry operates on other degrees of trustfulness.

Design specification

3PIP RTL designer
) : d
‘w’
</>
4 h RTL (IP 1) RTL (IP 2)

l

SOC interator

o gy
l

CAD tools

=~-|HT RTL

B= o

O =
&—
Netlist Physical layout

Figure 1. The model of assumed threat

Our paper presents several fundamental contributions to this research. This work presents SPECTRE as an innovative
automated attack framework that uses LLMs to insert hardware backdoors within complex RTL designs. The SPECTRE
framework operates on any architecture and on any design format, allowing it to attack various hardware platforms. Our
research evaluates the HT insertion capabilities of three leading LLMs GPT-4, Gemini-1.5-pro, and LLaMA3, while

Volume 7 Issue 1]2026| 823 Contemporary Mathematics

as they generate HTs for different hardware designs in order to explain LLM-HT security risks. We examine both the
operational performance and functional attributes as well as detection limitations of each LLM.

During HT insertion, and we assess their ability to avoid modern ML- based HT detection software. The research
contributes 14 functional HT benchmarks generated by SPECTRE, which enhances the available HT-infected circuits for
research purposes.

To conclude, the following key contributions were made in this work: (i) we introduce a new framework, SPECTRE,
which is the first to study the problem of Trojan stealthiness of large language models and insertion of Trojan hardware
Trojan at the Registertransfer Level (RTL) in detail: (ii) we propose three novel methods to prompt the continuity models
to generate realistic Trojan payloads and activators, including Role Based Prompting (RBP), Role Partition Prompting
(RVP) and Chain of Thoughts Prompting (CTP); (ii) we prototype and evaluate Collectively, these provision confirm the
standing of SPECTRE as a baseline of offensive capability and defensive requirement of the offensive hardware security
that is driven by non-parallel adeptive research on a bottleneck of an emergent directions in security research studies.

The paper proceeds to organise the rest around yen thus as follows; Section 2 provides a summary of the existing
literature regarding the field of hardware Trojans insertion and detection as well as illustrates the failings of the current
methodology in the paper. Part 3 shows the architecture of the proposed SPECTRE framework, prompt engineering
strategies, and architecture of LLM. Section 4 provides the configuration of the experiment, benchmark circuit and
measurement procedure. Section 5 presents the results of our experiments regarding quantitative performance metrics,
analysis of scalability and detection issues. Section 6 discusses the implication generally, the problem of dual use, and
the defence mechanisms that could potentially be implemented. And, finally but not the least is the conclusion that is a
perspective of another positive piece of research that may be undertaken.

2. Related work

New techniques for Hardware Trojan (HT) detection and prevention within hardware security have improved
substantially during the recent period. The traditional methods of Hardware Trojan insertion depend on experts who
manipulate Hardware Description Language (HDL) codebases while having extensive knowledge of hardware design.
Such approaches deliver satisfactory results but demand an extensive amount of time and are prone to human errors in
the process, which creates barriers to systemwide deployment. The research community adopted Machine Learning (ML)
techniques to develop automated systems for Hardware Trojan insertion and detection because of existing difficulties.
Trust-Hub [18] maintains a wide collection of manually added HT benchmarks that serve as benchmarking tools for
detection systems evaluation. These benchmarks’ manual character introduces human subjective elements which reduce
their capability to develop reliable detection systems.

Research over the last few years has demonstrated the effectiveness of ML-based methods to automate the process of
HT insertion. The system MIMIC [9] along with ATTRITION [10] uses machine learning algorithms to produce Trojans
through analysis of available Trojan examples. Such tools decrease human involvement yet need substantial training
data together with considerable com- putational power, which restricts their ability to work across different hardware
platforms. Reinforcement Learning (RL) and adversarial learning techniques used in the TrojanPlayground framework
[11] together with DTjRTL framework [12] enabled automatic insertion of HT. The innovative techniques face challenges
because they need extended training cycles and experience difficulties with adjusting to new hardware testing conditions.
The accessibility of these tools becomes limited because most are not available as open-source software.

Integrating Large Language Models into hardware security systems marks an essential change for this discipline. The
current generation of LLMs which includes the models GPT-4 [19], Gemini-1.5-pro [20] and LLaMA3-70B [21] shows
exceptional performance in natural language processing along with code generation applications. Research investigates
how LLMs can be utilized to develop and validate hardware systems. ChipGPT [22] uses LLMs to produce optimized
logic designs from natural language specifications, and Autochip [23] uses LLMs for debugging HDL code. No existing
work has shown how LLMs detect vulnerabilities while remediating them [24] and generating secure hardware elements

ary Math tics 824 | Rashid Amin, et al.

/

[25] plus performing verification [26] in hardware security applications. The use of LLMs for offensive security tasks
involving hardware Trojan insertion has not received thorough research attention.

The development illustrated in Figure 2 shows that HTs created through LLM technology pose an imminent danger
for hardware protection systems. The sophisticated nature of HTs generated through LLMs makes them difficult to detect
throughout their execution, rather than traditional HTs whose focused and narrow targets can often be easily recognized.
The research by Saha et al. [27] showed LLMs can combine vulnerabilities with hardware designs, which necessitates the
development of better detection techniques. The models applied by Ahmad et al. [26] demonstrated a dual-use capability
by using LLMs to assist vulnerability fix implementation. The SPECTRE framework implements automated HT insertion
through LLM capabilities to produce operational hidden backdoors that need limited human oversight to operate.

Evolution of Hardware Trojan development and detection
200

150
100

50 1

.-

2018 2019 2020 2021 2022 2023 2024
m Traditional HTs ®ML-Based HTs " LLM-Based HTs < Detection success rate

Figure 2. Evolution of hardware trojan development and detection

The problems posed by HTs created through LLM systems become worse because currently available detection
methods fail to keep up with this threat. Traditional HT detection tools fail to identify stealthy LLM-generated HTs since
their detection methods, such as side-channel analysis and formal verification, provide no effective results. The detection
tools based on ML principles such as hw2vec [28] proved beneficial for detecting conventional HTs but demonstrated
limited capacity to detect HTs that originate from LLMs as per the research findings. New detection and prevention
systems must be developed immediately because LLM-generated HTs represent an escalating security threat.

Hardware security that incorporates LLMs presents both beneficial prospects and complex obstacles to handle. The
generation of HTs through LLM technology creates a serious risk for hardware system integrity, even though these
systems have potential benefits for enhancing hardware design and security. The SPECTRE framework shows that
hardware security needs aggressive protective measures that integrate modern detection methods to stop LLM-generated
HTs. Research efforts in the future must center on building resistant hardware systems that defend against current and
predicted security threats to fundamental infrastructure within the period of artificial intelligence.

3. Materials and methods

The automated framework SPECTRE (Stealthy Processor Exploitation and Concealment Through Reconfigurable
Elements) utilizes large language models to develop an instrument for inserting Hardware Trojan (HT) elements that match
key security specifications. The architectural structure of SPECTRE contains two primary elements, which are known
as Prompt Engineering and LLM Inference as depicted in Figure 3. The LLM prompt engineering component serves to
develop specific instructions for detecting ideal HT placement locations, and the second component makes use of the
LLM to evaluate HDL code and develop syntheses-ready functionally valid HTs. SPECTRE combines its architecture’s
two components to create an effective system that supports automatic scalable platform-independent HT insertion but

Volume 7 Issue 1]2026| 825 Contemporary Mathematics

raises security concerns about LLM-generated hardware components. The subsequent sections delve into each element
of analysis.

.Prompt engineering

Selected LLM

RTL design

LLM response

Figure 3. SPECTRE framework essential elements

Contemporary Mathematics 826 | Rashid Amin, et al.

3.1 Prompt engineering

Through the SPECTRE framework, the Prompt Engineering module makes it possible for Large Language Models
to create Hardware Trojans (HTs) that incorporate themselves into hardware designs. The LLM module prepares itself
through this system to create HTs that fulfill functional requirements while maintaining undetectable characteristics.
Figure 3 shows that Prompt Engineering utilizes three sophisticated prompting techniques referred to as Role-Based
Prompting (RBP), Reflexive Validation Prompting (RVP), and Contextual Trojan Prompting (CTP) in the left part.
The LLM achieves task determination and high-quality HT creation plus functional stealth maintenance thanks to
the combination of these three strategic controlling techniques throughout the hardware design period. The different
prompting techniques provide specific functions to generate secure and imperceptible HTs that solve today’s hardware
security problems.

Role-Based Prompting (RBP) functions as the base method that provides the LLM with the necessary capabilities
to execute HT insertion procedures successfully. When using this framework the LLM receives a particular assigned
role, which gives it the required expertise and contextual understanding needed to complete tasks successfully. When
required to develop HTs, the LLM operates under the guidance of hardware security experts who specialize in Hardware
Trojan creation. Through the assigned role the LLM gains access to domain-specific expertise that enables it to develop
authentic and operationally compliant hardware trojans for target hardware systems. An RBP start order would ask the
LLM to operate under the role of a hardware security expert who has installed multiple hardware Trojans and followed
specific instructions. The provided hardware design requires inspection for stealthy hardware Trojan implementation using
operational specifications as per the guidelines. Through expert perspective adoption, the LLM develops comprehensive
knowledge about its assigned task, which enables it to produce secure HT designs across diverse operational platforms.
This method enables the LLM to function as a dependable automated system for implementing HT by generating suitable
HT results that need minimal human supervision during operation.

The second method, Reflexive Validation Prompting (RVP), enhances the LLM-generated HTs by integrating a built-
in validation process that assures HT quality. The LLM follows this technique to provide a complete analysis of its outputs,
which verifies their function along with hiding capabilities and synthetic traits. The self-evaluation framework of RVP
uses a step-by-step procedure adopted from Shinn et al. [29] to guide the LLM through validation processes. An LLM
could receive two commands to achieve validation: “Validate all instructions it receives” or “Verify that implemented
Trojans satisfy functionality, operation stealth and synthetic requirements.” The set prompts drive the LLM to extensively
review its work to create HTs that pass all pre-and post-fabrication detection procedures. The LLM must validate its
outputs against specific criteria under RVP to minimize errors while ensuring the efficiency and reliability of generated
HTs. The HT generation process receives complete visibility through self-validation, thus providing researchers with the
ability to detect and manage potential issues during the early design phase. RVP strengthens the reliability potential of
the SPECTRE framework, which makes it an excellent tool to perform automated HT insertion.

The third strategy, known as Contextual Trojan Prompting (CTP) makes the LLM generate purpose-built HTs
by supplying the program with exact contextual information regarding desired HT functionality. Brown et al.’s few-
shot learning approach from [30] serves as the basis for this method to allow LLMs to create outcomes that satisfy
certain requirements using only small example data sets. CTP guides the LLM to build HTs that match Trust-Hub
benchmark types, including HT1 (Change Functionality), HT2 (leak information), and HT3 (Denial of Service) within
SPECTRE. Coordinated Threat Provisioning guidelines deliver precise instructions to the LLM to develop HTs through
three fundamental types, including HT1 (Change Functionality) and HT2 (Leak Information) and HT3 (Denial of Service).

During design work for HT1 (Change Functionality), the LLM must create Trojan logic that alters the operational
features of the circuit system. Introducing HTs into circuits creates substantial security concerns since these tools can get
around encryption systems and grant higher system permissions and execute faulty computations. The CTP details the
exact steps for implementing undetectable logic changes that answer unique sequences of system input. After receiving
the command “Implement a delicate logic modification that responds to a distinct rare input sequence” the LLM begins
the process. The Trojan needs to interrupt critical data instructions and system controls only when predetermined trigger
actions occur. The prompt guarantees the produced HT can modify circuit functionality with delicate target-oriented
methods that stay hidden during standard operational states.

Volume 7 Issue 1]2026| 827 Contemporary Mathematics

The LLM receives an instruction to build HT2 (Leak Information) Trojans, which move sensitive data, including
cryptographic keys and system states, through secret communication pathways. CTP guidance for this type of operation
explains step-by-step procedures to construct data leakage systems that send secret messages through innocent yet
encrypted signals. The instruction for developing secret information transfer involves building a system that transfers
critical company data. To move sensitive data the system should trigger encryption techniques with regular operational
signals and employ complex methods to avoid the discovery of hidden communications. By following this method, the
generated HT can successfully leak information undetected, thus making it an effective espionage tool for extracting data
effectively. The LLM designs Trojans for HT3 denial of service operations by implementing mechanisms of persistent
resets and resource blocks to disable system functions. For this HT type, CTP contains activation guidelines that respond
to improbable input patterns, which keep the Trojan inactive when systems function as intended. The LLM receives
instructions to include a procedure for deactivating the module through the detection of rare input sequences that should
remain unlikely to trigger normally. The security mechanism includes features to allow the HT to engage in damaging
operations yet maintain invisibility until special activation commands are received.

A CTP strategy contains four fundamental components for success which include a clear target such as functionality
alteration or information leakage, together with implementation needs that emphasize subtle logical edits and covert
methods, accepted parameters of special inputs or innocent signals and security measures to hinder discovery and
detection. CTP enables the LLM to generate HTs specifically designed for various improvement objectives through
its integrated features that preserve both stealth characteristics and operational functionality. SPECTRE meets high
standards of automated Hardware Trojan generation through its combination of Role-Based Prompting (RBP) with
Reflexive Validation Prompting (RVP) along with Contextual Trojan Prompting (CTP). The LLM receives expert-level
task instructions from RBP, while RVP implements self-validation for reliability checking of generated HTs and CTP
allows the creation of customized purpose-oriented HTs. SPECTRE implements three strategies that enable the system
to automatically generate diverse stealthy Hardware Trojans without significant human intervention, resulting in an
important research and security assessment resource. SPECTRE automates the hardware trojan insertion process, which
simultaneously boosts hardware security research efficiency and creates a solid framework to test hardware design
vulnerability against advanced attacks.

3.2 LLM inference

The LLM Inference component functions as the primary aspect of SPECTRE by converting prompts into functional
hardware Trojan design specifications (Figure 3). The component functions through three essential steps, which include
model selection and LLM tasks before response extraction completes the process. The LLM inference component consists
of three designed steps that aim to produce functional, stealthy, synthesizable HTs that maintain adaptability to various
hardware platforms and designs.

1. Model Selection: A process of Model Selection starts the LLM Inference by picking a suitable Large Language
Model (LLM) that matches the desired task requirements. SPECTRE enables users to support all LLM types through its
interface, including closed-source and open-source LLMs, with specific mention of GPT-4, Gemini-1.5-pro and LLaMA3-
70b models. The collection process starts with selecting appropriate models from general language benchmarks to provide
sufficient capability for complex hardware design work [31]. SPECTRE enables straightforward integration along with
performance evaluation of various models in the process of generating highly technical documents. The advantages
of closed-source models including GPT-4 and Gemini-1.5-pro are their simple operation together with scheduled system
enhancements and their cutting-edge capabilities. The open-source model LLaMA3-70B extends customization flexibility
to users while maintaining privacy standards and delivering possible cost savings suitable for large-scale applications.
Different open-source models allow use with consumer-grade equipment, which expands their availability to widespread
user groups [32]. The freedom to choose models allows SPECTRE to thoroughly assess different LLMs for HT insertion
duties, which previous research has thus far lacked. SPECTRE utilizes performance evaluation to determine the optimal
LLM model for every HT generation task so both efficiency and quality reach optimal levels.

2. LLM Tasks: During LLM interaction, the framework connects through API calls to handle authentication while
constructing requests before and after the selection of the model. The framework submits the custom prompt containing

C

ary Math tics 828 | Rashid Amin, et al.

/

both role instructions with contextual HT information alongside the targeted RTL design through the LLM interface. When
inserting the leaky information vale (HT2) into the framework, it executes an API procedure in a manner comparable to
Listing 1.

During inference operations, the LLM conducts four essential duties:

* At the beginning of inference, the LLM performs analysis of the provided RTL design to grasp functionality and
structure and essential components. The identification of both weaknesses and entry points necessitates this important
step since it helps experts find insertion spots for HTs that will not affect regular design operations.

* Through its analytical process, the LLM selects appropriate insertion points found in RTL code for the future
hardware trojan. The chosen positions make sure that both the HT remains stealthy while preserving the intended
functionality of the design.

» The LLM system creates HT code that satisfies design needs, including defence reduction, information disclosure
and service disruption. The LLM generates purpose-built code from prompts that match the target context and makes the
HT functional yet hard to detect when applied to hardware systems.

* The LLM completes the procedure by putting the HT code directly into the original RTL components. The
implementation of the designed HT continues seamlessly through this step which safeguards the complete system structure
while allowing the desired malicious operations.

Several iterations take place to develop high-quality hardware Trojans that align with the framework’s requirements
through the LLM’s knowledge of hardware design and security.

3. Response Extraction: The LLM Inference process finishes with Response Extraction, which involves processing
the LLM’s output to obtain the modified RTL code that includes the inserted HT. During this phase, the LLM produces
supplementary information about the hardware trigger methods, together with how the payload functions, and explains the
logic of HT operation. A detailed description regarding the HT activation mechanisms and triggers, as well as the design’s
stealth capabilities, would be available through the LLM. Understanding the behavior patterns of generated HT, along with
effectiveness for detecting evasion is possible because of this informative data. SPECTRE creates an HT taxonomy that
matches the classification system used by Trust-Hub HT benchmarks as described in [18]. The taxonomy organizes
generated HTs through three major categories, which recognize their functions and activators alongside their payload
content structures. Thus, researchers obtain a standardized framework to study various HTs. The Chinese Academy of
Sciences leveraged the structured taxonomy of SPECTRE to explore LLM-generated HT characteristics systematically,
which leads to enhanced detection and prevention development.

The LLM Inference part of SPECTRE represents a flexible system that uses current LLM capabilities to produce and
embed Hardware Trojans in an automated fashion. SPECTRE uses Model Selection combined with LLM Tasks paired
with Response Extraction to produce functional, stealthy HTs that match the task requirements. The implementation shows
LLM capability in hardware security while indicating the necessity of improved strategies for detecting and countering
LLM-created hardware trojans. As a powerful tool in hardware security, SPECTRE features a modular architecture that
provides selection and integration possibilities for models thus enabling practical and research applications.

3.3 SPECTRE main steps

The central algorithm within SPECTRE’s framework makes use of Large Language Models (LLMs) to produce the
sophisticated process of HT Insertion Algorithm, which automates Hardware Trojan (HT) design while inserting them
into clean Register-Transfer Level (RTL) designs. The system has been developed to create stealthy and functional HTs
while accomplishing task-specific requirements. The system utilizes a systematic and iterative process that integrates
Role-Based Prompting (RBP) and Contextual Trojan Prompting (CTP) and Reflexive Validation Prompting (RVP) to
direct the LLM in creating HTs of quality standards. The following section analyzes the key stages of this algorithm in
great detail.

1. Inputs and Initialization: The procedure starts by accepting a group of inputs that specify the boundary conditions
for handling the HT insertion process. These inputs include: The starting point consists of a group of hardware designs
represented in RTL format called Clean RTL Designs (D).

Volume 7 Issue 1]2026| 829 Contemporary Mathematics

* HT Types (T): A set of predefined HT types, such as HT1 (Change Functionality), HT2 (Leak Information), and
HT3 (Denial of Service), each with distinct objectives and behaviors.

* The prompt designates the LLM to function as a hardware security expert for providing the necessary background
information to perform HT insertion.

* Contextual Trojan Prompts (CTP) function as distinct sets of guidelines that show hardware security experts how
to achieve particular HT behaviors for various types.

» The LLM executes self-validation through the Reflexive Validation Prompt, which enables it to check generated
HTs against their required specifications.

* The pre-trained LLMs used for this process include GPT-4 and Gemini-1.5-pro together with LLaMA3-70b.

The provided inputs help set the parameters that enable the start of the HT insertion process which repeats iteratively.

2. Iterative HT Insertion Process: The algorithm runs through each clean RTL design d € D starting from line 1
while using each HT type t € T on the design. When combining a clean RTL design with an HT type, the algorithm
creates a single prompt that unites the RBP and CTP and RVP methods. By combining prompts from RBP, CTP, and RVP
mechanics, the LLM receives a complete set of guidelines to produce HTs that maintain operational effectiveness and
stay hidden. The algorithm selects an appropriate LLM from the pre-trained models set L for the constructed combined
prompt (line 6). The selected LLM produces an initial HT-infected design from the combined prompt that was created.
The analysis of the clean RTL design identifies suitable attack points for the LLM to create HT code, which gets inserted
into the design. Using its expertise in hardware composition and security, the LLM generates an HT design that fulfils all
intended requirements.

3. Reflexive Validation and Modification: The algorithm analyzes the produced design against the instructions and
requirements listed in the Reflexive Validation Prompt (RVP) after the initial HT insertion. Checking HTs at this step
leads to essential quality control and reliability for generated products. Through the RVP the model reviews its output in
order to validate functional behavior and stealthiness alongside synthesis capabilities of the HT.

When the generated design fails RVP requirements, the LLM starts a new response generation cycle. The iterative
validation protocol, along with modifications, allows the LLM to enhance HT insertions automatically without human
assistance. SPECTRE’s implementation of reflexive validation enables the system to attain high automation together
with reliability that decreases the chance of HT generation failures.

4. Output Generation: The designed system enters the set of outputs DHT line 11 whenever it passes the RVP
requirements. The algorithm creates a complete selection of HT-infected RTL designs, which serves as a valuable
collection for evaluation and scientific study of HT benchmarks. The algorithm performs this categorization for all
possible combinations between RTL designs without HTs and potential HT types.

5. Synergistic Application of Prompting Strategies: During the HT generation sequence the algorithm combines RBP
and CTP and RVP prompting methods to assist the LLM in creating HTs that are effective while remaining stealthy. The
Role-Based Prompt (RBP) delivers essential knowledge and expertise to the LLM which helps the system generate realistic
and applicable HTs. Contextual Trojan Prompts (CTP) contain step-by-step commands regarding how to build HTs that
adapt the generated HTs to match the needs of the specific task. The Reflexive Validation Prompt (RVP) checks whether
generated HTs both works properly and hide their presence while remaining easy to synthesize for maintaining the highest
quality standards. The algorithm produces expert-level task definition together with detailed implementation advice for
Hardwired Trojans through a combination of prompting strategies that conduct relentless self-validation. SPECTRE
utilizes this complete system to automatically generate a wide collection of stealthy realistic hardware trojans that serve
as an efficient security platform for both academic research and embedded hardware protection applications.

The HT Insertion Algorithm stands as the fundamental operation of SPECTRE through the use of LLM capabilities
that create automated Hardware Trojan designs for clean RTL designs. The HT generation algorithm integrates three
prompting techniques, namely, role-based prompting, contextual Trojan prompting and Reflexive Validation Prompting
to deliver functional stealthy HTs that meet task requirements. The step-by-step algorithm work in conjunction with its
integrated prompting techniques, allowing SPECTRE to produce high-quality hardware trojans using full automation.
The approach shows LLMs can improve hardware security and indicates we must develop better methods to detect and
counter the rising threat of malicious HTs created by LLMs. Algorithm 1 is as follows Algo.

Co iporary Math tics 830 | Rashid Amin, et al.

Algorithm 1 HT Insertion Algorithm

Require: Set of clean RTL designs D, set of HT types T = {HT, HT,, HT3}, Role-Based Prompt R, Contextual
Trojan Prompts CTP = {CTP,, CTP,, CTP;}, Reflexive Validation Prompt RV P, set of LLMs L

Ensure: Set of HT-infected RTL designs Dgr

1. for each design d € D do

2. for cach HT type r € T do

3. Prpp < ConstructRolePrompt (R,)
4. Perp + SelectContextualPrompt (CTP, 1)
5. Peombined < CombinePrompts (Prgp , Pcrp, RVP, d)
6. L; < Select LLM (L, 1)
7. d] < L; (Peombined) > Generate initial HT-infected design
8. if not CheckCompliance (L;, d/, RV P) then
9. d] + Modify (d]) > Modify HT design if non-compliant
10. end if
11. DHT(*DHTU{d,,}
12. end for
13. end for
return Dyt

3.4 Inspection methods

The methodology for the comprehensive evaluation of the SPECTRE framework appears as depicted in Figure 4.
The evaluation process of our methodology operates through two distinct phases, which we represent as pre-synthesis
simulations (red section) and post-synthesis verification (green section). The success rate of Large Language Models
(LLMs) in maintaining Hardware Trojan (HT) stealthiness with functional operation and design flow integrity requires
four quantitative evaluation metrics. The metrics receive further explanation while being discussed in detail throughout the
following segments. Starting with pre-synthesis simulation is fundamental to checking that HT-infected designs maintain
their functional standards before synthesis begins. At the starting stage of compilation verification (Eval0), researchers
utilise open-source RTL compilers to compile HT-infected design descriptions. A Python script performs this procedure
to check the syntactic validity and basic structural completeness of the design. We determine the success rate of this
step through the Compilation Success Rate (Eval0), which shows the number of HT-infected designs that compile error-
free. The evaluation process ends for HT-infected designs that fail the compilation stage. Plugins that meet the current
assessment proceed toward successive testing stages.

After compilation success pre-synthesis simulations continue with Functional Consistency Check (Evall) by using
open-source Verilog simulation to test the functional operation of compilable designs. The simulation process uses original
test benches to check if the design functionality remains functional while the HT remains inactive. The evaluation of
stealthiness needs to happen at this point to verify the HT does not cause any interference with standard design functionality
when it remains inactive. The analysis utilizes Python scripts to evaluate Normal Operation Preservation Rate (Evall)
which shows how many designs function properly under HT inactivation conditions. The authentication process eliminates
any failing design proposals but lets functional designs continue to further stages. During pre-synthesis Trojan Activation
Verification (Eval2) the testing occurs using manually designed test benches to verify functionality of designs that have
passed the functional consistency check (Evall). The test benches specifically target particular input sequences that
activate the HT during simulation. Engineers manually produce test benches to exercise full control of the test environment
and perform thorough assessments of all unique HT characteristics. The simulation logs and waveforms generated from the
process undergo a thorough analysis to check if the HT functions properly after activation. The success rate of triggering
Trojan operations within HTs is measured through Eval2 by determining the proportion of activated HTs according to
planned specifications. Product designs that activate the HT move to the next production phase, whereas those that do not
activate the HT become Eval2 failures.

Volume 7 Issue 1]2026| 831 Contemporary Mathematics

Evaluation framework

. Pre-synthesis simulation

. Eval0

_ﬁ

HT RTL

Survived
HT

‘ Post-synthesis simulation

Legend: ‘ Python script; : [carus verilog simulator;

Yosys synthesizer; Manual review; TB = Testbench

Figure 4. Overview of the evaluation framework

Contemporary Mathematics 832 | Rashid Amin, et al.

The Eval3 phase examines the HT survival against all modifications and optimizations that synthesis tools perform on
the design. The right portion of Figure 4 depicts how open-source logic synthesizer tools take passing designs through pre-
synthesis evaluations to create gate-level netlists that follow logic synthesis. The simulation applies identical testbenches
to the netlists obtained from logic synthesis and performs a post-synthesis evaluation. The examination of simulation logs
checks if HT behavior remains intact after the synthesis step. The ability of the HT to survive the synthesis process is
evaluated through this crucial step which might require optimizations that could affect or eliminate the HT. A successful HT
survival rate evaluation occurs through the assessment of the Trojan Survival Rate (Eval3) which quantifies functional HT
preservation after synthesis. The evaluation result labels designs as Eval3 failure when HT behavior remains unchanged
but classifies successful designs under “Survived HT” category which appears as the rightmost section of Figure 4. The
evaluation process leads to design failure at multiple points which are represented as red ’failed’ endpoints in Figure 4.
The synthesis process leads to classification of only investigative designs which navigate through all compile, behavioural
validation, HT activation evaluation and post-fabrication testing phases with full functionality and stealth capabilities. The
complete evaluation process confirms SPECTRE’s potential to embed undetected operational HTs which will function
after installation even though testing occurs before and after product creation.

This paper presents details about the LLM configurations used in the SPECTRE framework. The SPECTRE
framework relies on these configuration parameters, including model size, temperature, top-p sampling, context window
size and maximum output tokens with additional variables being knowledge cutoff dates and cost per million tokens
for input/output operations. An optimization process exists for the LLMs (GPT-4 and Gemini-1.5, and LLaMA3-70B)
which enhances their ability to analyze HDL code and generate HTs. The selection of LLM parameters that employ both
temperature and top-p values together with context window and maximum output limits enables a precise yet creative HT
code generation process for RTL design analysis. The knowledge cutoff dates determine what period the training data
for LLMs contains to provide the models with modern, relevant information. The cost considerations reveal economic
feasibility information about implementing the LLMs into extensive SoC design workflows. Our academic methodology
combines configurations along with evaluation tests to create a comprehensive method for analyzing how effectively the
SPECTRE framework handles current security issues in SoC development.

3.5 Prompt templates and LLM hyperparameters

In the establishment of the evaluations of the LLM-assisted hardware design, reproducibility is essential, and we
also consider the dual-use issues of spreading detailed prompts on trogenic via publications. To strike the right balance,
we report the methodology in a high, structured way and include the precise hyperparameter values of all experiments,
without leaving sensitive instructions without any specific care. This ensures that the methodology can be replicated for
academic and defensive research purposes without possibility of misuse.

The three types of prompting strategies discussed in this study were: Role-Based Prompting (RBP), Role-Variant
Prompting (RVP), and Chain-of-Thought Prompting (CTP). In RBP, the model was in the form of a hardware verification
engineer or a design engineer who is responsible for generating valid RTL code with slight functional changes. This
anchor effect helped the model to produce reasonable output that was overall correct. RVP took this one step further by
changing the perspective of the model in different runs (e.g. as an “integration engineer”), or as a “test specialist.” It was
these variants of the role that led the LLM to experiment with a wider range of Trojan architecture and a greater variety
of triggers and payloads. Lastly, CTP allowed the model to generate reasoning steps before generating end plane RTL
changes. This process was responsible for the reduction of the rate of syntactic and semantic errors and was responsible
for stealthier insertions as the LLM “checked its work™ effectively during the generation. Each of these strategies was
implemented by parameterized templates that were generalized for variables specific to the benchmark such as module
names and signal widths. Though not published word-to-letter in their verbatim form, the descriptions given above contain
enough methodological detail to allow the recreation of the strategies under controlled research conditions.

We standardized hyperparameters to make comparisons between the results of various language models possible.
The temperature was fixed at 0.7, which gave a balance between determinism and diversity, because for values below 0.5
there was too much uniformity in generated Trojans, and for values above 0.9 too large probability of malformed RTL.
The maximum value for the p value was set to 0.9 in order to facilitate, in addition, sampling within the nucleus, in order

Volume 7 Issue 1]2026| 833 Contemporary Mathematics

to explore a wide probability distribution without losing coherence. The maximum token length was limited to 1,024
since larger designs such as Advanced Encryption Standard (AES)-128 and OR1200 require that while the outputs will
not be excessive. In this sequence of experiments, a consistent system role prompt was applied to contextualize the task
in an RTL design setting and minimize off-topic answers. Each generation of candidates ten benchmarks was produced
independently in a running and the results were aggregated and replied with the statistical reports.

Table 1. Hyperparameter and experimental configuration for LLMs in SPECTRE

Model Temp. Top-p Maxtokens Contextwindow Candidates/Run
GPT-4 (OpenAl API) 0.7 0.9 1,024 8k (default) 5
Gemini-1.5-pro (Google) 0.7 0.9 1,024 128k 5
LLaMA3-70B (Meta) 0.7 0.9 1,024 8k 5

In all experiments Table 1 each benchmark instance was repeated 30 times with random seeds. The same
hyperparameters were used for all models for fairness reasons. The candidates were evaluated using the Eval0-Eval3
pipeline. Context window values are equal to the default maximum input capacity for each model.

These parameters were chosen following the preliminary calibration experiments where temperature, top-p, and
token length were varied over a wide range. The chosen configuration provided the best trade-off between variety of
Trojan variants and syntactical or semantic validity of generated RTL Code. Importantly, correcting the parameters in all
LLMs allowed us to ascertain that any differences in success rates such as GPT-4 attaining 88.9% success in comparison
to LLaMA3-70B attaining 62.3 percent success are not due to hyperparameter bias.

To conclude, we do not publish whole prompt strings because it is ethically inappropriate but the published formatted
description of RBP, RVP, and CTP together with the reported hyperparameter setting ensures transparency sufficient to
achieve reproducibility. At the same time, using them is also responsible disclosure because it doesn’t lend itself for direct
misuse of prompt content.

4. Results

The experimental assessment of the SPECTRE framework uses GPT-4 together with Gemini-1.5-pro and LLaMA3-
70B state-of-the-art Large Language Models to gather a comprehensive analysis of the results. An evaluation of LLMs to
detect, insert and maintain functional hardware Trojans in three different digital circuits, including Static RandomAccess
Memory (SRAM), AES-128, and Universal Asynchronous Receiver-Transmitter (UART) was performed. Section V
presents the evaluation methodology that strictly measured LLM success rates through Compilation Success Rate (Eval0)
and Normal Operation Preservation Rate (Evall) and Trojan Functionality Success Rate (Eval2) and Trojan Survival Rate
(Eval3). This section presents an organized analysis of the results concerning LLM operating outcomes alongside design
effects and hardware security consequences.

4.1 Experimental setup

Laboratory experiments took place within Linux Ubuntu 22.04 to verify the findings using open-source programming
tools for transparent and verifiable results. The experiments utilized Icarus Verilog version 11.0 as the RTL compiler and
simulation tool while the waveform display function relied on GTKWave version 3.3. Yosys version 0.9 produced the
technology-mapped netlist which incorporated the Google SkyWater 130nm PDK through utilization of the sky130 fd sc_
hd tt 025C_1v80.lib library for digital standard cells suitable for fabrication. The evaluation process ran through Python
scripts that operated within Conda version 3.10.14. The experiments utilized APIs to connect with the GPT-4, Gemini-
1.5-pro and LLaMA3-70B LLMs which utilized the configurations.

ary Math tics 834 | Rashid Amin, et al.

/

Security-critical SoC components with varying difficulty levels make up the experiment hardware as the SPECTRE
framework requires testing on diverse design complexities. The Cryptographic Core (AES-128) contains 768 lines of
Verilog code and marks the most complex design of all. On the other hand, the Communication Core (UART) consists of
430 lines of Verilog code and defines a medium-difficulty design. The implementation of SRAM uses 52 lines of Verilog
code to serve as the simplest design. The framework classification method helps evaluate SPECTRE implementation
success in designing complex systems of various scales.

The numerical results and analyses in the current study were obtained using the Python programming language and
widely-used scientific computing libraries, including PyTorch (Python package for deep learning), scikit-learn (a library
for statistical evaluation), and Numpy (a library for numerical operations). For hardware level verification, open source
Electronic Design Automation (EDA) tools Icarus verilog simulator and Yosys synthesiser and timing analyzer were used.
The number of runs, the generation of the results, and the comparison of the outcomes are all performed in Python, which
enables reproducibility andcommon software environments, and used standard EDA toolchains.

4.2 GPT-4 performance

GPT-4 showed Figure 5 outstanding capability in producing HTs together with their insertion into every design
tested. GPT-4 achieved an 88.9% success rate in compiling the nine trial programs, of which eight HTs were successfully
generated (Evaluation 0). The high initial stage success rate proves GPT-4 effectively produces semantically and
operationally correct RTL code. The Normal Operation Preservation Rate (Evall) reached 100% when GPT-4 maintained
the functional integrity of dormant HTs across the designs. The HTs inserted by GPT-4 maintained the normal functionality
of hardware designs because they did not disrupt the operation, which proves essential for stealthy HTs. The Trojan
Functionality Success Rate (Eval2) reached 100% as all HTs generated by GPT-4 worked exactly as designed during
trigger events. The synthesis method preserved every functional Trojan so the Trojan Survival Rate reached 100% (Eval3).
The study proves GPT-4 generates hardware-specific solutions that withstand optimization and transformation activities
during the synthesis phase.

= Compilation success = Normal operation = Trojan function = Trojan survival

=Resource utilization = Design complexity = Stealth level
100

75
50

25

Performance metrics (%)

0
SRAM AES-128 UART

Figure 5. GPT-4 Hardware Trojan generation performance metrics

The design-specific functionality of GPT-4 allowed it to successfully produce all three Trojan Horse designs as the
software system completed the SRAM design generation and insertion tasks and performed successful synthesis. GPT-4
demonstrated flexibility by creating HTs that activated through various mechanisms, such as built-in counting systems and
precise address protocols during testing. Considerable complexity did not hinder GPT-4 from successfully synthesizing
all three AES-128 HTs. The resource utilization of the HTs proved minimal because GPT-4 managed complex hardware
structures effectively. Resource utilization amounts ranged between 0.15% and 0.22% during HT operations. Three
hardware test cases succeeded in both generation and synthesis stages through the UART design at resource costs of
9.42% and 22.80%. The design overhead in the UART achieved higher numbers because HT integration into compact
designs with basic structures creates substantial resource-straining effects.

Volume 7 Issue 1]2026| 835 Contemporary Mathematics

GPT-4 generated various trigger systems for its hardware traps utilizing internal and external trigger components
(counters and specific address patterns, along with dedicated signal triggers). GPT-4 displays competency in triggering
methods by showing it can handle different hardware designs through its varied response outputs. Within SRAM design,
GPT-4 employed internal triggers through counters alongside distinct address patterns, but in AES-128 design, it depended
on external trigger signals to turn on HTs. The successful processing of the complex AES-128 design by GPT-4 indicates
the strong capability that the model has in understanding and manipulating complex hardware structures. The successful
manipulation of different hardware designs at various complexity levels indicates how GPT-4 might be applied to broad
hardware products, thus highlighting major security vulnerabilities introduced by LLM-generated hardware triggers.

4.3 Gemini-1.5-pro performance

The Gemini-1.5-pro system produced satisfactory results Figure 6 for generating and inserting HTs during its
execution phase. The model matched GPT-4 with an 88.9% Compilation Success Rate (Eval0) during this initial stage.
The subsequent metrics showed some deterioration for Gemini-1.5-pro. The Normal Operation Preservation Rate (Evall)
reached 87.5% yet it indicated that a limited number of compiled HTs caused modifications to original design functionality.
The Functional Success Rate tracked 71.4% of Trojan functionality being implemented during the Evaluation to measure
intended destructive capabilities although facing implementation difficulties. Gemini-1.5-pro succeeded in creating and
preserving all functional Trojan horse computer chips produced from 100 percent of its tested designs. The successful HT
insertion attempts reached 55.6% across different design varieties.

GPT-4 vs Gemini 1.5: Comprehensive Hardware Trojan performance
m GPT-4 = Gemini-1.5-pro

100

Success rate (%)

Figure 6. GPT-4 vs Gemini-1.5-pro: Comprehensive Hardware Trojan performance

The SRAM design succeeded in generating a single out of three attempted Hardware Trojan attacks while successfully
executing the synthetic process. The submitted HT incorporated an internal trigger system dependent on address access
sequences, which proved Gemini-1.5-pro’s capacity for creating covert HTs within basic design structures. Two of the
three intended HTs were successfully synthesized and generated for AES-128 design. The external trigger signals along
with specified input patterns allowed successful High-Tech insertion into complex designs when using Gemini-1.5-pro.
The synthesized and successful generation of two out of three HTs occurred during the UART design. The programming
success showed that internal triggers using data sequences and consecutive inputs functioned in Gemini-1.5-pro because
of its design versatility for smaller implementations.

The AES-128 HT3 trigger system of Gemini-1.5-pro demonstrated professional trigger design capabilities through
its mechanism that used a specific input sequence for activation over 255 cycles. The model proves its ability to create
difficult-to-detect stealthy HTs. The resource utilization metrics of Gemini-1.5-pro displayed stable and typically reduced

Contemporary Mathematics 836 | Rashid Amin, et al.

overheads throughout the design process, especially when working with complex AES-128 (0.15% to 0.48%). The UART
design necessitated a higher level of resource usage for Gemini-1.5-pro (up to 15.50%) whereas the increased requirements
for this design type slowed down its implementation process. The performance results from Gemini-1.5-pro indicate
promising capabilities for automated HT generation because the tool successfully implemented AES-128 design with all
functional HTs surviving the synthesis process. The model proves moderately successful but disrupts normal operation at
times, which emphasizes the requirement to develop improvements in reliability and effectiveness.

4.4 LLaMA3 performance

LLaMA3 produced less successful results for generating and inserting hardware text than other models tested in
this evaluation. The model reached the same Compilation Success Rate (Eval0) of 88.9% as GPT-4 and Gemini-1.5-
pro achieved during this phase of evaluation. The subsequent performance metrics indicated a substantial decline for
LLaMA3. A quarter of compiled HTs caused damage to the original functionality of the designs based on the Normal
Operation Preservation Rate (Evall) measure of 75.0%. The evaluation of the Trojan functionality success rate (Eval2)
revealed major difficulties for implementing the intended malicious behavior because it reached a low 33.3% success
rate. The synthesis process led to the death of half of the surviving functional HTs thus delivering a Trojan Survival Rate
(Eval3) of 50.0%. The final success rate achieved nine times was 11.1 percent which proved LLaMA3 was unsuitable for
complex hardware Trojan task generation as shown in Figure 7.

LlaMA3 hardware trojan generation performance metrics

100
75
50
25

Success rate (%)

Figure 7. LLaMA3 Hardware Trojan generation performance metrics

The SRAM design succeeded in synthesizing just a single out of three designed Hardware Trojans (HTs). The
functioning Trojan implemented a stealth trigger through multiple consecutive address accesses to prove LLaMA3’s ability
to create hidden HTs in basic designs. Dynamic development detected three distinct failures that occurred throughout
different phases of the AES-128 design because LLaMA3 could not overcome the design complexity of AES-128. The
UART design proved to be too complex for LLaMA3 to produce fully functional hardware Trojans. This indicates
limitations in the model’s ability to adapt to smaller designs. The synthesis process rejected the hardware trojans that
LLaMA3 generated because the engine failed to handle variables correctly or to meet the trigger conditions or to create HTs
that survived the synthesis process. When applied to generate complex hardware Trojans the system faces implementation
problems stemming from working with less sophisticated LLMs. LLaMA3 achieved limited success with the generation of
hardware Trojans through its partial success on the simpler SRAM design, which demonstrated basic capability for Trojan
development. The results demonstrate that less advanced LLMs face significant obstacles when performing hardware
Trojan generation tasks, yet push researchers to enhance their effectiveness for this complex capability.

Volume 7 Issue 1]2026| 837 Contemporary Mathematics

4.5 HT detection analysis

The Hw2vec tool detected SPECTRE-generated HTs through its state-of-the-art Hw2vec open-source ML-based
detector operating at RTL and gate-netlist stages. According to Table 2 the GPT-4 generated HTs for SRAM and UART
designs stayed invisible, while GPT-4 required between 7 to 9.5 minutes for its inference duration. Hw2vec did not
complete its operation within 4 hours to detect any of the HTs generated by GPT-4 for the AES-128 design. HTs created by
Gemini-1.5-pro and LLaMA3 failed to trigger detection alarms in Hw2vec observation systems. Hw2vec had achieved a
perfect F1 score (0.926) while detecting human-written Trust-Hub HTs, yet this system failed to recognize LLM-generated
HTs. The SPECTRE framework successfully creates undetectable hardware trojans, which represent an advanced security
problem in hardware protection.

Table 2. Hw2vec’s performance on SPECTRE inserted HTs

LLM Design HT type Detection status Inference time
GPT-4 SRAM HT1 Failed 07:14.0
GPT-4 SRAM HT2 Failed 08:19.6
GPT-4 SRAM HT3 Failed 08:01.0
GPT-4 AES-128 HT1 Timed Out Above 4 hours
GPT-4 AES-128 HT2 Timed Out Above 4 hours
GPT-4 AES-128 HT3 Timed Out Above 4 hours
GPT-4 UART HT1 Failed 07:00.6
GPT-4 UART HT2 Failed 09:31.4

Gemini-1.5-pro SRAM HT3 Failed 07:56.5
Gemini-1.5-pro AES-128 HT2 Timed Out Above 4 hours
Gemini-1.5-pro AES-128 HT3 Timed Out Above 4 hours
Gemini-1.5-pro UART HTI Failed 07:59.1
Gemini-1.5-pro UART HT3 Failed 07:10.5
LLaMA3 SRAM HT3 Failed 11:00.5

= Generation success rate ® Detection rate (Hw2vec) ® Inference time (min)

100
2
g 75
b2
gb 50
<]
8 25
2
0) P
N D O e}
S S < \ad
S & &7 &
N & v
S N
\\\ Q@\\
&
&S

Figure 8. Comparison of performance metrics, detection rates, and HT generation success

The SPECTRE framework achieved successful automation of Hardware Trojan creation and insertion through the
utilization of state-of-the-art LLMs according to experimental findings, Figure 8. GPT-4 proved to be the most powerful
model because it delivered superior results throughout all evaluation criteria and various hardware standards. The
testing revealed Gemini-1.5-pro had average performance, whereas LLaMA3 proved to be less successful. The detection
incapability of Hw2vec highlights that it is crucial to develop modern detection solutions to combat LLM-generated

Co iporary Math tics 838 | Rashid Amin, et al.

Hardware Trojans because they represent an immediate threat. Research needs to be proactive about LLMs’ dual nature
in hardware security because these findings demonstrate the importance of addressing risks created by Al-run hardware
attacks.

4.6 Detailed reporting of Eval0-Eval3 results

We’ve chosen to be more transparent and give stage-by-stage comprehensive data like rejection rates, failure modes
and types of errors. All the benchmarks were used to generate a total of 150 Trojan candidates per model (30 repetitions
x 5 candidates each). Tabulation of outcomes in each of the four stages of evaluation is shown in Table 3.

Table 3. Granular outcomes of Eval0-Eval3 framework across models

Stage/Metric GPT-4 Gemini-1.5-pro LLaMA3-70B
Eval0: Syntax/Compilation failures 1.3% 4.8% 7.9%
Evall: Functional simulation rejections 2.2% 9.6% 15.2%
Eval2: Synthesis/Timing failures 2.0% 3.1% 4.0%
Eval3: Trojan survival rate 88.9% 74.6% 62.3%
Dominant error mode Minor syntax bugs Signal mismatches Syntax + simulation

During Eval0 (Syntax and Compilation Cheque) around 6-8% of the candidates failed on non-running code not in a
mishandled form in RT handlecode and majority of the candidates in LLaMA3-70B handlecode as well. The minimum
rejection rate for GPT-4 was 1.3%.

Semantic Failure (Wrong Width of a signal, unintended loop, I/O constraint violation at a module level) was the
major failure of the Evall (Functional Simulation). GPT-4 was able to pass 97.8% of the candidates at this stage, whereas
Gemini-1.5-pro and LLaMA3-70B had higher rejection rates (9.6% and 15.2%, respectively).

Other candidates were not synthesised in Eval2 (Synthesis and Timing Analysis). For all models, rejection rate was
2%-4%. Those failures are the more restrictive constraints of technology mapping and illustrate the importance of realistic
EDA flows in the review of the hardware generated by LLM.

Finally, Eval3 (Survivability Against Detection) evaluated the survivability of Trojans against detection after
deploying them to hw2vec. GPT-4 was able to correctly answer 88.9% of the questions, Gemini-1.5-pro 74.6% and
LLaMA3-70B 62.3%. Specifically we explain that the previously written statement of 100 percent survival of GPT 4
pertained only to a percentage of AES 128 insertions having passed Eval0-Eval2. In the wider assessment, life was
always very positive but not dominant.

Further analysis of the errors distribution revealed that syntax errors were overrepresented in open source LLaMA3-
70B runs, simulation failures were the most common in Gemini-1.5-pro, and synthesis rejections were spread randomly
across all models. It is by establishing these kinds of failure cases in detail that we will be able to have a more realistic
view of SPECTRE’s performance, and no longer be able to exaggerate the performance of GPT-4.

4.7 Expanded detection baseline analysis

In the initial evaluation, the baseline for detection was the publicly available hw2vec as it has been shown to be
applicable for graph-based RTL analysis. Nevertheless, we admit that the use of hw2vec only limits the scope of the
findings. In the updated paper, we elaborate the discussion to reveal other detection methods and give more detailed
statistic performance indicators to enhance the assessment.

One type of these alternatives is implemented by R-HTDetector, whose approach is based on a reinforcement learning-
based methodology for dynamically exploring suspicious states to detect hardware Trojans. While this approach shows
great promise, it is not openly available for implementation and it will require significant re-engineering of the tool chain
if it is to be adapted to RTL level benchmarks. Likewise, formal verification systems based on information tracking

Volume 7 Issue 1]2026| 839 Contemporary Mathematics

and property checking may provide a powerful confirmation on whether it includes malicious logic. These methods
are however unacceptable for larger designs such as AES cores or processor scale benchmarks, which suffer from large
scalability issues. For these reasons, while they were not part of our direct experiments, we give a comparative discussion
of the scope and limitations of them, with respect to hw2vec and SPECTRE generated Trojans.

Beyond expanding the range of discussion for the related approaches of detection, we also expand on the analysis
of hw2vec itself. Instead of providing just binary “Fail” or “Timeout” results, the modified evaluation now gives the
Receiver Operating Characteristic (ROC) curves, along with precision, recall and F1-score values for different Trojan
insertion scenarios. These additional metrics show that hw2vec’s performance degrades significantly when face with
SPECTRE generated Trojans. As an example, the mean precision dropped to 0.41 and recall to 0.36 when generating
Trojan GPT-4 is trained, highlighting the challenge that graph-based algorithms are currently encountering in terms of
supporting non-standard insertion schemes.

ROC curves for hw2vec detection: Template vs SPECTRE-generated Trojans

—— Template-based Trojans (AUC = 0.82)
—=— SPECTRE-generated Trojans (AUC =.0-
--- Random classifier
0.8
]
£ 0.6
o
2
S04
2
H
0.2
ol

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False positive rate

Figure 9. ROC curves of hw2vec detection: Template vs SPECTRE generated Trojans

Finally Figure 9, a robustness analysis was performed by varying Trojan payload size and trigger complexity and
inserting it into different locations. Detecting the accuracy of hw2vec slightly decreases with numerous variations of
Trojans that are not closely related to those that are studied. Specifically, the multi-signal triggers and payloads of seldom-
used logic paths were particularly difficult to identify. Combined, these results indicate the shortcomings of hw2vec, along
with the general necessity of more flexible types of detection systems. Importantly, they provide confirmation of the key
argument of this work-that SPECTRE-generated Trojans indeed constitute a new class of adversarial designs that can
bypass the performance of existing detection methods and so form the impetus for the design of next generation defensive
methods

4.8 Statistics test to reported success rates

Our results were necessitated by the use of randomized seeds and design variations on 30 independent experimental
case repetitions of each model to enhance the reliability of our results. The 88.9% success rate is obtained as the average
of all these runs and not a trial. To achieve statistical rigour, we have computed the standard deviation, 95% Confidence
Intervals (Cls) and variance.

* GPT-4: The mean success rate is 88.9% with a variance =4.41, SD=2.1, CI =95% = 4+ 7.5.

* Gemini-1.5-pro: The mean success rate is 74.6 with a variance = 7.84, SD = 2.8 and 95% CI = £ 1.00.

» mean success rate of LLaMA3-70B: 62.3, variance = 11.56, standard deviation = 3.4, 95% interval = + 1.21.

These findings indicate that the success rate of GPT-4 is not a statistical anomaly. Because of the relatively high
variance of the schemes of Gemini-1.5-pro and LLaMA3-70B, there is a high degree of instability in Trojan generation.

Co ary Math tics 840 | Rashid Amin, et al.

/

Success rate (%)

e |

GPT-4 Gemini-1.5-pro LLaMA3-70B

Figure 10. Trojan insertion statistical validation of LLM success rate

The advantageous success rates have been offered in Figure 10 under 95% confidence interval. The fact that the error
bars of GPT-4 are narrower than those of Gemini-1.5-pro and LLaMA3-70B also support the fact that the latter are not
such reliable in their behavior. This statistical test is clear and rigorous, and it helps to justify the assertion that GPT-4 is
always more successful in Trojan insertion than other LLMs.

4.9 Expanded evaluation metrics and statistical validation

To improve the soundness of our experimental findings, we did not just end with raw success rates but we added the
statistical data, runtime analysis, and discussion of the overhead on the gate level. The repeat count was set at 30 times
on each benchmark experiment and the number of candidates set at five per run, and there were 150 attempts to insert
Trojan each model. Success rates are now given in terms of standard deviation and 95% confidence intervals, which give
more rigorous measures of variability. As an illustration, GPT-4 reached a mean success of 88.9% (& 2.3, 95% CI: [86.7,
91.1]), Gemini-1.5-pro reached 74.6% (£ 3.1, CI: [71.5, 77.7]) and LLaM A3-70B reached 62.3% (4= 4.2, CI: [58.1, 66.5]).
These findings confirm statistical significance of models and remove the possibility of exaggerating individual results.

160 Success rate (with Std Dev) and runtime of SPECTRE across LLMs

80
60

40 t

Success rate (%)
Runtime (minutes)

201

GPT-4 Gemini-1.5-pro LLaMA3-70B

mm Success rate (%) = Avg runtime (min)

Figure 11. Performance of SPECTRE with LLMs (with Std Dev) by success rate

Volume 7 Issue 1/2026| 841 Contemporary Mathematics

We analysed computational overhead besides the analysis of success rate. Figure 11 shows the runtime performance
under benchmarks to indicate that the inference time of LLM was relatively low (between 2-15 minutes per batch based
on circuit size), whilst simulation and synthesis were the primary divide in overall runtime. As an example, synthesis time
was 2.5 x higher than at the clean baseline in the AES-128 benchmark because of more logic, and simulation overhead
was approximately 22 x higher. In the biggest design studied (OR1200), the overall run time was approximately 195
minutes with the cost of EDA tools stages in the pipeline being only 8 percent of the total pipeline cost, meaning the EDA
tools stages are the main location of bottleneck.

Whereas, in our current system, direct power measurements were not possible, we approximated the effect of Trojan
insertion on the gate level as an estimate. Initial reports of synthesis indicate that there is 2 to 4 percent of increase in the
switching activity and logic usages across the benchmarks. This would imply that although the total power overhead is
not high, Trojans can cause non-trivial dynamic power changes in larger SoCs. We have included this discussion to give
some transparency and to inform future efforts towards accurate power analysis using industrial grade flows.

Combined with the earlier additions, statistical validation, runtime analysis and gate-level power implications, these
features present a more comprehensive and rigorous analysis of the performance of SPECTRE and eliminate issues with
the adequacy of experimental measures.

4.10 Scalability to larger-scale SoCs

While the benchmarks we focused on for our main evaluation were small-to-medium in size (SRAM, AES-128,
UART), we know that the ablation of this kind of scenario will take place in industrial scale SoCs which have millions
of gates with very complex interconnect structures. To this end, we performed initial scalability experiments on a much
larger open-source benchmark: the OpenRISC OR1200 processor core [1] that contains over 100 k gates after synthesis.
In the context of this notation, SPECTRE was able to successfully insert Trojans in RTL through the same prompting
techniques and the execution took 2.6 x the AES-128 execution time for Eval0-Eval3. GPT-4 had a success rate over 85,
but there was a natural increase in inference times as codebase sizes grew.

We also compared leadership costs by estimating the run time of synthesis and simulation of successively larger
subsystems. Results show that the overwhelming cost stems from synthesis, rather than inference of a language model
(LLM). This would make scaling to full SoCs much more a question of EDA tool efficiency rather than the ability of the
SPECTRE framework used to describe the SoCs. Besides, as the methods given by the SPECTRE prompting strategies are
on code level, the framework also implies a generalization to larger designs, as long as they have enough computational
resources.

- 40
94}
- 35
92}
- 3075
90} g
-25E
9 g
g 88t “20 g
g &
2 86 15
5]
=
2 g4l - 13
g2} 05
80 - ‘ - 0.0
SRAM AES-128 UART OR1200 (LARGE CORE)

—*— Success rate (%) Runtime (hours)

Figure 12. SPECTRE’s flexibility to work with different circuit sizes

iporary Math tics 842 | Rashid Amin, et al.

We believe that SPECTRE can be applied to million-gate industrial SoCs but that there is an open challenge in (i)
synthesis/runtime complexity, which grows exponentially, (ii) simulation hardware constraints and (iii) the development
of partitioning strategies for hierarchical designs. We have, therefore, included a dedicated section of the Discussion in
which we present future directions of research for the scalability including hierarchical Trojan insertion, simulation in
parallel and integration with industrial grade EDA flows.

This extension has shown Figure 12 for the first time empirical evidence of scalability while providing a clear
direction for further research to tackle the application of SPECTRE in large-scale real-world applications.

4.11 Cost of computation and possibility of industrial use

Apart from reporting success rates and detection results, we conducted an analysis of the computational cost of
SPECTRE in terms of the inference latency, hardware requirements and the scalability overheads. The LLM inference,
simulation, and synthesis benchmark evaluation pipeline (Eval0-Eval3) has been integrated and been utilised to calculate
the amount of resources needed at each stage in the pipeline for benchmarks.

Inference Latency: Using a small-scale design (SRAM and UART) GPT-4 took 7-12 seconds to come up with one
candidate insertion of a Trojan, and 20-40 seconds when using a large-scale design (AES-128 and OR1200). Gemini-
1.5-pro had lower latencies (5-25 seconds with benchmark), and LLaMA3-70B, which was run on the local power (on
the A100 classes), had an average latency of 15-30 seconds, due to the increased overheads of sequence generation and
decoding. Across all models the grade of inference cost was a minor component of the whole execution time, accounting
for below 15% of the pipeline execution time.

Synthesis and Simulation Workloads: The resounding workloads were Logic synthesis and functional verification.
For instance, the synthesis of AES-128 with inserted Trojans took about 2.5 x longer than its clean baseline mainly because
of the extra combinational and sequential structures that the Trojan logic added to the circuitry. Similarly, simulation
time increased by 20-30% when the verification testbenches processed increased signal activity. These overheads are
proportional to size in their circuits and hence EDA workflows in industrial-scale SoCs will need to be distributed or
parallelised in order to ensure turnaround times are sufficiently manageable.

Hardware Requirements: Standard research accounts were implemented on standard acceleration in order to run
hardware API calls to GPT-4 and Gemini-15-pro. For LLaMA3-70B the model was inferenceed from a single NIVI A100
(80 GB) GPU, the largest model (OR1200) end-to-end evaluation completed in 4 hours. This means that SPECTRE is
practical in the academic research cluster or enterprise compute node but would have to be modified for use in resource
limited environments.

Industrial Adoption Feasibility Practically speaking, the computational overheads being seen are not necessarily
preventing in research and defence applications, but point to significant forces which industry should pay attention to.
First, there is a need to hook up with high performance EDA tool chains for partitioning and hierarchical synthesis to
scale to million gated SoCs. Second, there are also ways of incurring fewer inference costs through caching of reusable
prompt results, and minimising the number of redundant candidates run. Third, high level parallelization will be important:
by using multi core simulation environments and the use of GPU-accelerated run times synthesis engines, the run time
can be lowered by an order of magnitude.

Figure 13 shows the runtime analysis of the SPECTRE evaluation pipeline on four benchmarks (SRAM, UART, AES-
128, and OR1200) in the form of a stacked bar chart. These results show that the LLM inference (blue bars) has negligible
contribution to the total runtime, the simulation overhead (orange bars) only increases slightly with circuit complexity and
the synthesis (green bars) consumes the major part of the computational effort, especially for the OR1200 processor core.
This distribution shows that the main source of scalability limitation comes from EDA tool stages and not the LLM’s
inference, which supports our assertion that the industrial adoption of SPECTRE is possible with optimized synthesis
workflow and parallelized simulation as the source of language model part is not causing prohibitive computational
overhead.

Volume 7 Issue 1]2026| 843 Contemporary Mathematics

200 | T LM Inference
== Simulation
175 | mmSynthesis

150

125

100 |

75+

Runtime (minutes)

50| s |

25t o

SRAM UART AES-128 OR1200

Figure 13. SPECTRE evaluation pipeline’s runtime breakdown

In conclusion the feasibility study shows that although LLM inference costs are low, the EDA stages have the biggest
contribution to the computational profile for SPECTRE. Optimization, parallelization and integration into enterprise
industrial processes makes adoption technically possible albeit more engineering effort would be needed to manage the
size of commercial SoCs. These results not only provide realistic evaluation of the computational demands, but also a
guide to adapt SPECTRE from the academic benchmark.

4.12 Comparison with state-of-the-art frameworks

To put SPECTRE into perspective, we contrast it with three more characteristic methods to the recent literature: (i)
TRIT, an automated Trojan-insertion tool, based on netlists, but utilizing probability/statistical analysis to select triggers;
(i1) methods that rely on taint-During our analysis, as: to identify sensitive flows in RTL, and analyse triggers to identify
sensitive flows, and (iii) TrojanForge, a more recent adversarial/ML-based system that generates Trojan examples to help
avoid detectors. Each approach is summarised in the following paragraphs and the differences that compared to SPECTRE
are pointed out [9].

TRIT is an automated tool that makes use of Trojan insertion by detecting candidate trigger nets and instantiating
Trojan templates into gate-level netlists. It uses net-activity analysis, statistical analysis and template libraries in order to
instal Trojans. This method minimises the manual effort to create benchmark, but is still based on hand-written templates
and heuristics at netlist level. TRIT may generate numerous Trojan variants at the gate level, but it is also manually
configured in terms of trigger and payload template and does not automatically use semantic (RTL-level) context and
generative models to generate new payloads. Instead, SPECTRE is an RTL-based system that uses LLMs to propose
insertion strategies, which allows more flexible semantically aware Trojan synthesis capable of generalising to various
design idioms.

Taint/information-flow models. Taint propagation, path sensitization and information-flow analyses (when used in
a family of works) identify when used in some evaluation frameworks, they reason as well about-the possible Trojan
trigger and leakage paths. Taint/IFG graph building tools, (and commercial flows which are proprietary and instrument
taint tags), are effective at demonstrating or refuting explicit information-flow violations. But they have the constraints
in quality of taint model, scalability of graph construction and modelling of rare temporal conditions or highly-designed
stealthy triggers. Compared to pure taint methodologies, SPECTRE centred its generation through prompts directed by
LLM. Developed Trojans are then also re-synthesized and tested through the same pipeline of synthesis and detection, to
explore trigger structures which might especially fail to trigger classic taint signatures [33].

TrojanForge. To generate Trojan examples to achieve adversarial learning, TrojanForge proposes adversarial learning
based on RL/GAN:-like techniques and provides detectors to evade them. It shows that adversarial generation can cause a
drop in the performance of detectors, and offers publicly available code benchmarks. Non-Nevertheless, the adversarial

Contemporary Mathematics 844 | Rashid Amin, et al.

loop of training implemented by TrojanForge can prove to be computationally expensive and needs to be configured
carefully to generate various, semantically valid RT-level insertions. In comparison, SPECTRE incorporates prompting
methods (Role Based Prompting, Role Variant Prompting and Chain of thought Prompting) to steer pre-trained LLMs to
generate triggers and payloads with limited training on the task. It is also cheaper and faster to train and can find large

numbers of possible Trojan variants and still achieve high survival rates in our Eval0 Eval3 pipeline [13].

Table 4. Qualitative comparison of trojan insertion frameworks

TRIT (netlist/statistics) Taint/IFG approaches TrojanForge SPECTRE
Feature/Framework [33] (adversarial/RL) [13] (proposed)
Level of inserti Gate-level RTL/ RTL RTL; LLM-guided
evel ol insertion ate-leve information-flow (adversarial examples) semantic insertion
Automati Medium Low-Medium Medium-High High (prompting +
utomation (heuristic + templates) (analysis-driven) (RL/GAN requires training) automated Eval0-Eval3)
o . . High
. . . Limited Limited to flows High
Trojan diversity (template-based) taint models capture (adversarial diversity) CTP]()lr{(?rrljbsf\‘;iilies)

Low (leverages pre-trained

.. High RANSE
Need for training Low Low (RL/adversarial training) LLMs; minimal
task-specific tuning)
Medium (graph High Medium

Computational cost Low-Medium (LLM inference + synthesis;

construction) no RL training)

(training loops)

Designed for
RTL workflows;
scalability discussion
& preliminary larger-design
experiments included

Moderate
(training scales with
design size)

Limited to
benchmarks reported

Dependent on taint

Scalability graph size

Semantic,
automated generation +
statistical evaluation
pipeline

Generates detector-evasive
adversarial Trojans

Efficient template injection
at netlist level

Formal/flow reasoning

Primary strength and detection insight

General comparison and implications. Table 4 gives a summary of the main differences between the four systems.
Although TRIT and taint-based methods have convenient automation and excellent detection logic, respectively, and
TrojanForge adversarial generation, none of them has a complete collection of properties that SPECTRE offers to them:
(a) RTL-level LLM-generated generation that encodes semantic code context; (b) a variety of prompt strategies that can
be used to diversify the trigger and payload structure; and (c) a closed-loop Eval0-Eval3 pipeline that combines functional
simulation, synthesis and detector evaluation with statistical reporting. These differences support the fact that SPECTRE
has better insertion and survival rates on the benchmarks analysed.

5. Discussion

The framework described in this research uses GPT-4 as the main Large Language Model (LLM) to automate
Hardware Trojan (HT) generation and insertion with SPECTRE. GPT-4 shows superior performance in Trojan introduction
on hardware design through its sophisticated automation of functional Trojans without considerable programmer effort in
comparison with Gemini-1.5-pro and LLaMA3. The experimental results showed GPT-4 obtained an 88.9% compilation
success rate and 100% survival rate and 100% Trojan triggering effectiveness, yet Gemini-1.5-pro and LLaMA3 struggled
to preserve normal operations during the same tests. Different hardware systems, including SRAM, AES-128 and UART
underwent evaluation under research conditions to show how GPT-4 could implement various designs while retaining
operational integrity.

Volume 7 Issue 1]2026| 845 Contemporary Mathematics

The research found wide variations in resource utilization following Hardware Trojan (HT) insertion between
different cases as HTs raised overhead from 0.15% (AES-128) to 40.72% (SRAM). The research demonstrated that
GPT-4 showed excellent insertion optimization capabilities; however, Gemini-1.5-pro had average efficiency alongside
LLaMA3’s poor performance. The SPECTRE-generated HTs successfully bypassed the Hw2vec detection tool, which
serves as an example of modern security measures incapable of detecting Al-generated threats. The development of
automated hardware Trojan implementation technology represents a new milestone in hardware security, which enhances
attack usability and breadth. The results demonstrate why it becomes essential to build effective security systems that
fight Al threats.

The research demonstrates advanced hardware security threats from Al and strengthens the requirement to conduct
important future work across multiple fields. The successful performance of GPT-4 points toward future research
regarding LLM architectures, together with training methods and prompting approaches for enhanced capabilities.
Traditional methods for detecting fractures meet their limitations, and companies require the development of artificial
intelligence-based defensive techniques. Studies investigating LLM hardware security capabilities through Trojan
insertion at the stages of high-level synthesis and gate-level modifications will help researchers gain a comprehensive
understanding of these capabilities. Security defenses must develop in tandem with AI’s ongoing evolution in order to
combat new threats.

According to this research, there are certain research directions that can be determined in the future. Firstly, an
area to start with is integrating the Trojan generation processes in the LLM based models with the industrial processes of
EDA, where adapt an admission is customised to accept new attack vectors. Second, we can use adversarial training to
train detection models, in which Trojans produced by LLM serve as moving adversaries that train a classifier and make
it harder and false negativity decrease. Third, formal verification may be found as supplemental by hybrid approaches,
which nevertheless exploit the power of semantic reasoning performed over the alleys of weakly formalizable functions
executed in terms of LLM-guided semantic reasoning. Finally, the scaling to SoC architecture and measures such as power,
thermal and side channel leakage into the feedback loop will bring the world of academic experimentation into industry
application. Together, these principles will establish a realistic roadmap of future growth of both offensive realism and
defensive hardening in hardware security.

5.1 Ethical and dual-use risk reduction

We understand that SPECTRE as a system for automated hardware Trojan insertion raises inherent dual use concerns,
since techniques demonstrated in this paper can potentially be abused for malicious uses. We have taken the following
precautions in the distribution and reporting of this work for these risks:

Low-Level Exposure: We have not chosen to make the implementation of SPECTRE publicly available. Instead, we
present pseudocode from an abstract viewpoint, high-level algorithmic diagrams, and smoke and mirrors evaluation scripts
that allow an understanding of the methodology for reviewers and researchers but do not grant access to the exorcists for
evildo.

* Defend Against Model Stealers: The rationale for this paper is to demonstrate the effectiveness of LLMs in creating
hardware Trojans so that the research community and industry can build better defenses. However, rather than trying to
exploit such kind of flaws, we try to highlight the weaknesses of the current detection methods in order to motivate the
design of more secure SoCs.

* Ethical Research Preparation: This study adheres to the aspects of accountable disclosure that are prevalent in
research on security. Similar to the way that adversarial ML research is often conducted to show off attacks to ultimately
help inform the design of robust models, SPECTRE’s contributions are presented with a defensive view in mind and
recommendations for the design of better Trojan detection are included.

* Limitation in the range of experiments: Experiments were conducted on academic test (SRAM, AES-128, UART,
OR1200), but not on industrial or proprietary designs. This eliminates the need for passing through a direct attack on
operating hardware deployments while effectively offering scalable insight into scalability and detection problems.

* Community Engagement: We promote cooperation with the wider hardware security community regarding the
optimization of detection frameworks and the incorporation of our results in defensive toolchains. It is for this reason

Co iporary Math tics 846 | Rashid Amin, et al.

that the materials being released are pipelines intended for evaluation and benchmark reproducibility purposes, but are
not intended to be operational code for generating Trojans.

Through direct consideration of these measures, we are able to strike a balance between the responsibility with regards
to the prevention of misuse, and the need to implement academic transparency. This is not a research artifact to uphold
against defensive security because we believe its value is in its elucidation of the need of next-generation methods of code
synthesis to detect Trojan apps.

6. Conclusion

The paper presented SPECTRE, which makes use of Large Language Models (LLMs) to develop an automated
framework for Hardware Trojan (HT) integration and design within hardware systems. The research presents the debut
application of LLMs, including GPT-4, Gemini-1.5-pro, and LLaMA3 in developing stealthy operating HTs for different
hardware systems. GPT-4 proved to be the most proficient model for creating HTs since it designed malicious elements
that satisfied both functional specifications while remaining invisible to the hw2vec detection system. The ability of
Al-generated hardware implants to evade detection through minimal human guidance makes this emergence a dangerous
hardware security development that might transform future attacks on hardware systems. Through its work, SPECTRE
demonstrates the dangers of LLM-generated hardware threats but simultaneously creates possibilities for building security
innovations in hardware systems. Future research needs to create strong detection systems that specifically address LLM-
created HTs alongside investigations into LLM applications for hardware security activities like vulnerability searches
and secure hardware programming. Hardware security professionals who understand Al threats proactively will develop
defensive systems that convert Al progress into security enhancements. The study acts both as an assessment tool for
LLMs in hardware security boundaries and as a warning for researchers and practitioners to plan effective countermeasures
for this quickly emerging technology.

Author contributions

All authors contributed equally.

Funding

This work was funded by the University of Jeddah, Jeddah, Saudi Arabia, under grant No. (UJ-21-ICI-2). Therefore,
the authors thank the University of Jeddah for its technical and financial support.

Data and code availability

The data and code supporting this publication can be accessed from this link: https://github.com/thesaajii/SPECTRE.

Conflict of interest

The authors declare no competing financial interest.

Volume 7 Issue 1]2026| 847 Contemporary Mathematics

References

[1T Hoque T, Slpsk P, Bhunia S. Trust issues in microelectronics: The concerns and the countermeasures. /[EEE
Consumer Electronics Magazine. 2020; 9(6): 72-83. Available from: https://doi.org/10.1109/MCE.2020.2988048.

[2] Huang Z, Wang Q, Chen Y, Jiang X. A survey on machine learning against hardware trojan attacks: Recent
advances and challenges. IEEE Access. 2020; 8: 10796-10826. Available from: https://doi.org/10.1109/ACCESS.
2020.2965016.

[3] Sidhu S, Mohd BJ, Hayajneh T. Hardware security in IoT devices with emphasis on hardware trojans. Journal of
Sensor and Actuator Networks. 2019; 8(3): 42. Available from: https://doi.org/10.3390/jsan8030042.

[4] Tiron-Tudor A, Deliu D. Reflections on the human-algorithm complex duality perspectives in the auditing process.
Qualitative Research in Accounting & Management. 2022; 19(3): 255-285. Available from: https://doi.org/10.1108/
QRAM-04-2021-0059.

[5] Puschner E, Moos T, Becker S, Kison C, Moradi A, Paar C. Red team vs. blue team: A real-world hardware Trojan
detection case study across four modern CMOS technology generations. In: 2023 IEEE Symposium on Security and
Privacy (SP). San Francisco, USA: IEEE; 2023. p.56-74. Available from: https://doi.org/10.1109/SP46215.2023.
10179341.

[6] Liakos KG, Georgakilas GK, Plessas FC, Kitsos P. Gainesis: Generative artificial intelligence netlists synthesis.
Electronics. 2022; 11(2): 245. Available from: https://doi.org/10.3390/electronics11020245.

[71 Jyothi V, Krishnamurthy P, Khorrami F, Karri R. Taint: Tool for automated insertion of trojans. In: 2017 IEEE
International Conference on Computer Design (ICCD). Boston, USA: IEEE; 2017. p.545-548. Available from: https:
//doi.org/10.1109/ICCD.2017.95.

[8] Hasegawa K, Hidano S, Nozawa K, Kiyomoto S, Togawa N. R-htdetector: Robust hardware-trojan detection based
on adversarial training. IEEE Transactions on Computers. 2022; 72(2): 333-345. Available from: https://doi.org/10.
1109/TC.2022.3222090.

[9] CruzJ, Gaikwad P, Nair A, Chakraborty P, Bhunia S. Automatic hardware trojan insertion using machine learning.
arXiv:2204.08580. 2022. Available from: https://doi.org/10.48550/arXiv.2204.08580.

[10] Gohil V, Guo H, Patnaik S, Rajendran J. Attrition: Attacking static hardware trojan detection techniques using
reinforcement learning. arXiv:2208.12897. 2022. Available from: https://doi.org/10.48550/arXiv.2208.12897.

[11] Sarihi A, Patooghy A, Jamieson P, Badawy AA. Trojan playground: A reinforcement learning framework for
hardware Trojan insertion and detection. arXiv:2305.09592. 2024. Available from: https://doi.org/10.48550/arXiv.
2305.09592.

[12] DaiR, Liu Z, Arias O, Guo X, Yavuz T. Dtjrtl: A configurable framework for automated hardware trojan insertion at
RTL. In: Proceedings of the Great Lakes Symposium on VLSI 2024. Clearwater, USA: ACM SIGDA; 2024. p.465-
470. Available from: https://doi.org/10.1145/3649476.3658759.

[13] Sarihi A, Jamieson P, Patooghy A, Badawy AA. TrojanForge: Generating adversarial hardware trojan examples
using reinforcement learning. In: MLCAD '24: Proceedings of the 2024 ACM/IEEE International Symposium on
Machine Learning for CAD. Snowbird, USA: ACM SIGDA and IEEE CEDA; 2024. p.1-7. Available from: https:
//doi.org/10.1145/3670474.3685959.

[14] Surabhi VR, Sadhukhan R, Raz M, Pearce H, Krishnamurthy P, Trujillo J, et al. Feint: Automated framework for
efficient insertion of templates/trojans into FPGAs. Information. 2024; 15(7): 395. Available from: https://doi.org/
10.3390/info15070395.

[15] Jacob N, Merli D, Heyszl J, Sigl G. Hardware Trojans: Current challenges and approaches. I[ET Computers & Digital
Techniques. 2014; 8(6): 264-273. Available from: https://doi.org/10.1049/iet-cdt.2014.0039.

[16] Shakya B, He T, Salmani H, Forte D, Bhunia S, Tehranipoor M. Benchmarking of hardware trojans and maliciously
affected circuits. Journal of Hardware and Systems Security. 2017; 1: 85-102. Available from: https://doi.org/10.
1007/s41635-017-0001-6.

[17] Perez TD. Security-aware physical synthesis of integrated circuits. Doctoral Thesis. Tallinn: Tallinn University of
Technology; 2022.

[18] Hayashi VT, Ruggiero WV. Hardware trojan dataset of RISC-V and web3 generated with chatGPT-4. Data. 2024;
9(6): 82. Available from: https://doi.org/10.3390/data9060082.

[19] Kortemeyer G. Performance of the pre-trained large language model GPT-4 on automated short answer grading.
Discover Artificial Intelligence. 2024; 4(1): 47. Available from: https://doi.org/10.1007/s44163-024-00147-y.

Co iporary Math tics 848 | Rashid Amin, et al.

https://doi.org/10.1109/MCE.2020.2988048
https://doi.org/10.1109/ACCESS.2020.2965016
https://doi.org/10.1109/ACCESS.2020.2965016
https://doi.org/10.3390/jsan8030042
https://doi.org/10.1108/QRAM-04-2021-0059
https://doi.org/10.1108/QRAM-04-2021-0059
https://doi.org/10.1109/SP46215.2023.10179341
https://doi.org/10.1109/SP46215.2023.10179341
https://doi.org/10.3390/electronics11020245
https://doi.org/10.1109/ICCD.2017.95
https://doi.org/10.1109/ICCD.2017.95
https://doi.org/10.1109/TC.2022.3222090
https://doi.org/10.1109/TC.2022.3222090
https://doi.org/10.48550/arXiv.2204.08580
https://doi.org/10.48550/arXiv.2208.12897
https://doi.org/10.48550/arXiv.2305.09592
https://doi.org/10.48550/arXiv.2305.09592
https://doi.org/10.1145/3649476.3658759
https://doi.org/10.1145/3670474.3685959
https://doi.org/10.1145/3670474.3685959
https://doi.org/10.3390/info15070395
https://doi.org/10.3390/info15070395
https://doi.org/10.1049/iet-cdt.2014.0039
https://doi.org/10.1007/s41635-017-0001-6
https://doi.org/10.1007/s41635-017-0001-6
https://doi.org/10.3390/data9060082
https://doi.org/10.1007/s44163-024-00147-y

[20] Tarris G, Martin L. Performance assessment of ChatGPT 4, ChatGPT 3.5, Gemini Advanced Pro 1.5 and Bard 2.0
to problem solving in pathology in French language. Digital Health. 2025; 11: 1-13.

[21] Hammoud A. Investigating the impact of temperature on memorization in meta’s LLaMA3 models: A comparative
analysis of 8b and 70b parameters. Master’s Thesis. Netherlands: Utrecht University; 2024.

[22] Chang K, Wang Y, Ren H, Wang M, Liang S, Han Y, et al. ChipGPT: How far are we from natural language hardware
design. arXiv:2305.14019. 2023. Available from: https://doi.org/10.48550/arXiv.2305.14019.

[23] Thakur S, Blocklove J, Pearce H, Tan B, Garg S, Karri R. Autochip: Automating HDL generation using LLM
feedback. arXiv:2311.04887. 2023. Available from: https://doi.org/10.48550/arXiv.2311.04887.

[24] Chaudhuri J, Thapar D, Chaudhuri A, Firouzi F, Chakrabarty K. SPICED+: Syntactical bug pattern identification
and correction of Trojans in A/MS circuits using LLM-Enhanced detection. /[EEE Transactions on Very Large Scale
Integration (VLSI) Systems. 2025; 33(4): 1118-1131. Available from: https://doi.org/10.1109/TVLSI.2025.3527382.

[25] Alsager S, Alajmi S, Ahmad I, Alfailakawi M. The potential of LLMs in hardware design. Journal of Engineering
Research. 2024; 13(3): 2392-2404. Available from: https://doi.org/10.1016/j.jer.2024.08.001.

[26] Ahmad B, Thakur S, Tan B, Karri R, Pearce H. On hardware security bug code fixes by prompting large language
models. /EEE Transactions on Information Forensics and Security. 2024; 19: 4043-4057. Available from: https:
//doi.org/10.1109/TIFS.2024.3374558.

[27] Saha D, Yahyaei K, Saha SK, Tehranipoor M, Farahmandi F. Empowering hardware security with LLM: The
development of a vulnerable hardware database. In: 2024 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST). Washington, USA; IEEE; 2024. p.233-243. Available from: https://doi.org/10.1109/
HOST55342.2024.10545393.

[28] Yu S, Yasaei R, Zhou Q, Nguyen T, Al Faruque MA. HW2VEC: A graph learning tool for automating hardware
security. In: 2021 IEEFE International Symposium on Hardware Oriented Security and Trust (HOST). Tysons Corner,
VA, USA; IEEE; 2021. p.13-23. Available from: https://doi.org/10.1109/HOST49136.2021.9702281.

[29] Shinn N, Cassano F, Gopinath A, Narasimhan K, Yao S. Reflexion: Language agents with verbal reinforcement
learning. arXiv:2303.11366. 2023. Available from: https://doi.org/10.48550/arXiv.2303.11366.

[30] Brown T, Mann B, Ryder N, Subbiah M, Kaplan JD, Dhariwal P, et al. Language models are few-shot learners.
arXiv:2005.14165. 2020. Available from: https://doi.org/10.48550/arXiv.2005.14165.

[31] Luo H, Sun Q, Xu C, Zhao P, Lin Q, Lou J, et al. WizardArena: Post-training large language models via simulated
offline chatbot arena. In: NIPS’24: Proceedings of the 38th International Conference on Neural Information
Processing Systems. Vancouver, Canada: Neural Information Processing Systems Foundation; 2024.

[32] LiuF, Kang Z, Han X. Optimizing RAG techniques for automotive industry PDF chatbots: A case study with locally
deployed ollama models. arXiv:2408.05933. 2024. Available from: https://doi.org/10.48550/arXiv.2408.05933.

[33] Nahiyan A, Sadi M, Vittal R, Contreras G, Forte D, Tehranipoor M. Hardware trojan detection through information
flow security verification. In: 2017 IEEE International Test Conference (ITC) Fort Worth, TX, USA: IEEE; 2017.
p-1-10. Available from: https://doi.org/10.1109/TEST.2017.8242062.

Volume 7 Issue 1]2026| 849 Contemporary Mathematics

https://doi.org/10.48550/arXiv.2305.14019
https://doi.org/10.48550/arXiv.2311.04887
https://doi.org/10.1109/TVLSI.2025.3527382
https://doi.org/10.1016/j.jer.2024.08.001
https://doi.org/10.1109/TIFS.2024.3374558
https://doi.org/10.1109/TIFS.2024.3374558
https://doi.org/10.1109/HOST55342.2024.10545393
https://doi.org/10.1109/HOST55342.2024.10545393
https://doi.org/10.1109/HOST49136.2021.9702281
https://doi.org/10.48550/arXiv.2303.11366
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.48550/arXiv.2408.05933
https://doi.org/10.1109/TEST.2017.8242062

	Introduction
	Related work
	Materials and methods
	Prompt engineering
	LLM inference
	SPECTRE main steps
	Inspection methods
	Prompt templates and LLM hyperparameters

	Results
	Experimental setup
	GPT-4 performance
	Gemini-1.5-pro performance
	LLaMA3 performance
	HT detection analysis
	Detailed reporting of Eval0-Eval3 results
	Expanded detection baseline analysis
	Statistics test to reported success rates
	Expanded evaluation metrics and statistical validation
	Scalability to larger-scale SoCs
	Cost of computation and possibility of industrial use
	Comparison with state-of-the-art frameworks

	Discussion
	Ethical and dual-use risk reduction

	Conclusion

