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Abstract: Suppose G = (V, E) is a graph of p vertices and g edges. Let f: VUE — {1, 2, ..., p+ g} be a bijection
such that WT (u) = Y[ f (ux) + f(x)] (over every neighbor x of u) is the total weight of vertex u induced by f. We say G is
(a, d)-total neighborhood-antimagic if all the total weights form an arithmetic progression with first term @ and common
difference d. In this paper, we obtain many necessary and sufficient conditions for 1- and 2-regular graphs, and the one
point union of such graphs to admit (a, d)-total neighborhood-antimagic labeling.
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1. Introduction

For a graph G = (V, E) with vertex set V(G) and edge set E(G) that has order p and size ¢, a bijective labeling
g E(G) = {1,2, ..., q} is an antimagic labeling if all the induced vertex labels, each given by the sum of the incident
edge labels, are distinct. The most famous unsolved problem is the conjecture that all connected graphs, except the
graph K5, are antimagic (see [1]). We also say g is a magic labeling if all the induced vertex labels are equal. In [2],
the authors introduced the concept of (a, d)-antimagic labeling in which the induced vertex labels form an arithmetic
progression with first term a and common difference d. Motivated by this, the authors in [3] introduced the concept
of vertex-antimagic total labeling (respectively, the (a, d)-vertex-antimagic total labeling). A bijective total labeling
fV(G)UE(G) — {1,2, ..., p+q} is vertex-antimagic total (respectively, (a, d)-vertex-antimagic total) if the weight of
all the vertices are distinct (respectively, form an arithmetic progression with first term a and common difference d), where
the weight of a vertex u is f(u) + Y, f(ux) over all the vertices x adjacent to u. Further, we say a bijective total labeling f
is a total neighborhood-antimagic labeling if for every two distinct vertices u, v, WT (u) # WT (v) where the total weight
WT(u) = Y.(f(ux) + f(x)), over every neighbor x of u. Moreover, we say a total neighborhood-antimagic labeling is
also an (a, d)-total neighborhood-antimagic if all the total weights form an arithmetic progression with first term a and
common difference d > 1 (see [4]). Note that if we allow d = 0, the labeling is also known as a total neighborhood-magic
labeling (with magic constant a) since all the vertices have total weights a (see [5, 6]). Interested readers may refer to [7—
14] for more known results. The disjoint union of graphs G and H is denoted G+ H. For n > 2, the disjoint union of n
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copies of G is denoted nG. Let [a, b] = {a, a+1, ..., b} for integers a, b and a < b. For a vertex v of G, let deg(v) be the
degree of v in G, A and § be the maximum and minimum degree of vertices in G.

In [4], the authors obtained necessary or sufficient conditions for a cycle to admit (a, d)-total neighborhood-antimagic
labeling. Motivated by the fact that a cycle is a 2-regular graph, we study the (a, d)-total neighborhood-antimagic labeling
of 1-regular graphs in Section 2. In Section 3, we obtain necessary or sufficient conditions for 2-regular graphs to admit
an (a, d)-total neighborhood-antimagic labeling. Consequently, we completely determine the (a, d)-total neighborhood-
antimagic labeling of nC; and nCy4 for some even d. As a by-product, we obtain necessary and sufficient condition for
nCs to admit a total neighborhood-magic labeling. In Section 4, we completely determine the (a, d)-total neighborhood-
antimagic labeling of the one point union of the three families of graphs in Sections 2 and 3. Suitable problems for further
research are given in Section 5.

The following theorem in [4] is needed.

Theorem 1 Suppose G is a graph of order p > 2 and size ¢ > 1. If G admits an (a, d)-total neighborhood-antimagic
labeling f, then

(a) the sum of all the total weights is }.,cy (g deg( Vf(v)+2S, = pa+ @d, where S, is the sum of all the edge
labels,

(b)a>6(25+1),

(c) d < A2t 20+ 1008+

2. 1-regular graphs

In this section, we study 1-regular graphs nPs, n > 1 with vertex set {u;, v; | 1 <i<n} and edge set {e; = u;v; | 1 <
i<n}.

Lemma 1 If nP; is (a, d)-total neighborhood-antimagic, then 1 <d < 2.

Proof. By Theorem 1(c), we have d < w ond _3_ ﬁ < 3. Thus,d =1 or2. O

n—1 2n—1

Theorem 2 If n > 1 is odd, nP; is (3("; D} 1)-total neighborhood-antimagic.

Proof. Define a labeling f: V (nP2) UE(nPy) — [1, 3n] as follows:

() fle))=i,1<i<n,

(ii) f(upim1) = 252 —i, 1 <i< 2L,

(iii) f(vaim1) =2n+2—i, 1 <i< L

(iv) f(u) = 5"+3 -, 1<i< Tl,

™) f(vai) f3n+lfz 1<i< =

ThUS, {f(el) | 1 <i< l’l} = [ ; ]s {f(MZi—1)7 f(VZi—l) ‘ 1<i< % = [n—"_lu 2”—'-1}, {f(u2i>7 f(VZi) | 1<i<
1y = 2n+2, 3n).

Thus, f is a bijective total labeling of nP,. Moreover, for 1 <i < %, WT (uzi—1) = flezi—1) + f(vaic1) =2n+ 141
So{WT(ugi_1)|1<i< %} =[2n+2, %] Similarly, we have

Tn+1,

{WT (uz) 5k

=[3n+2,

n+1 _ 3n+3

{WT(vai1) [ 1<i < 5 1= 5

,2n+1];

n—1, Sn+5

{WT(v) | 1<i<
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Thus, fisa (%, 1)-total neighborhood-antimagic labeling. This completes the proof. O

Lemma 2 2P, is not (a, 1)-total neighborhood-antimagic.

Proof. Suppose 2P, admits an (a, 1)-total neighborhood-antimagic f. So the sum of all the total weights is 4a +6 =
21424+ 46) — T2, [f(u) + F(v)]- Thus, X2, [£(u) + £(v1)] = 36 — 4a. Since 10 < T2, [f(uy) + F(v)] < 18, we
have 10 < 36 —4a < 18 so that 5 < a < 6. Note that the labels set is [1, 6].

Case 1. Suppose a = 5. So the total weights are 5 to 8. Without loss of generality, assume WT (1) = 5 so that f(e;) €
{], 2,3, 4}. Iff(el) =1, then f(Vl) =4 and f(ul) S {5, 6}. Iff(ul) =5, then WT(Vl) =06, {f(uz), f(Vz), f<62)} =
{2, 3, 6} and the total weight 7 does not exist, a contradiction. If f(u;) = 6, then WT (vi) =7, {f(u2), f(v2), f(e2)} =
{2, 3, 5} and the total weight 6 does not exist, a contradiction. If f(e;) =2, 3 or 4, then f(v;) =3, 2 or 1. Consequently,
we can conclude that total weight 8, 6 or 7 does not exist.

Case 2. Suppose a = 6. So that total weights are 6 to 9. Without loss of generality, assume W7 (u;) = 6 so that
fler) €{1,2,4,5}. For each possible values of f(e;), we can get a contradiction similar to Case 1. The details are thus
omitted. O

Theorem 3 For evenn > 4, nP; is (37" +2, 1)-total neighborhood-antimagic.

Proof. For n = 4, Figure 1 gives an (8, 1)-total neighborhood-antimagic labeling for 4P;:

11 12 10 7
1 2 5 6
8 9 3 4
Figure 1. The total weight of each vertex is indicated on the vertex

Suppose n > 6, define a labeling f: V (nPy) UE (nPy) — [1, 3n] as follows:

(i) fer) =iforie[l,n]\{5+1,5+2}, and f(eg 1) =n+1, f(ey2) = n+2. The labels used are in {[1, 5], n+
Ln+2, [543, 1]},

(i) f(u;) = 37”+1+ifori€ (L, 5], flus ) = ’;+1 flugip) =5+2,and f(u;) = 5 +ifor 543 <i<n. The

labels used arein {2 +1, 2 +2, 22 +2,2n+ 1], [n+3 1}
(iii) f(v;) = 5—2"+iforze 1, 4, f (v;ﬂ) (V,H) =341, and f(v;) = —1+ifor 2 +3<i<n. The
labels used are in {3 + 1, [32, 3n], 2n+2, 2 1]}

Thus, f is a bijective total labeling of I’le. Moreover,

(DWT () = 3 +2ifori <5, WT(ugyy) = +1, WT(un+2) =243, andWT (u;) = % —14+2ifor 2 +3<i<nm

Q) WT(v;) = 3"+1+21f0r1 <i<EWT(vay) =342, WT(vm) B4 WT(vi) =2 +2ifori+3<i<n.

Thus, the total weights set is [3 +2, 2 +1]. Therefore, fisa (3” +2, 1)-total neighborhood-antimagic labeling.
This completes the proof. l

Lemma 3 Forn > 1, nP, is (n+ 2, 2)-total neighborhood-antimagic.

Proof. Define a bijective total labeling f: V (nP2) UE(nPy) — [1, 3n] such that f(u;) =i, f(e;) =n-+iand f(v;) =
2n+ifor 1 <i<n. Itiseasy to verify that WT (v;) =n+2iand WT (u;) = 3n+2ifor 1 <i<n. So fisan (n+2,2)-total
neighborhood-antimagic labeling. This completes the proof. O

Corollary 1 Suppose n > 1, nP; is (i) (a, 1)-total neighborhood-antimagic if and only if n # 2, and (ii) (a, 2)-total
neighborhood-antimagic, for all n and some suitable a.
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3. 2-regular graphs nC3 and nCy

Form>3,letV(nC,) ={vi j|1<i<n, 1< j<m}and E(nC,) ={e; j=vi jvi j+1 |1 <i<n, 1 < j<m,vimp1 =
V,'_’ 1}.
Lemma 4 If nC, is (a, d)-total neighborhood-antimagic, then

4 ifmn=23,
5 ifmn=4,

6 if5<mn<8§

7 ifmn>9.

Proof. Since A= 8 =2 and p = ¢ = mn, by Theorem 1, d < 2 1)710 = 8%:}6 =8— m}i] . It is easy to verify

that the lemma holds. O
Lemma 5 For n > 1, m > 3, if nC, is (a, d)-total neighborhood-antimagic, then a = 4mn +2 — 1 (mn — 1)d.
Moreover, (i) nCy, is not (a, d)-total neighborhood-antimagic if mn is even and d is odd; (ii) nCs is not (a, d)-total
neighborhood-antimagic for even n and d = 2k, k is odd. -
Proof. Suppose nCy, is (a, d)-total neighborhood-antimagic, then sum of all the total weights is k; [a+ (k—1)d] =

(4mn—3
mn—

2mn
2 ¥ k. Thus %5 [2a + (mn—1)d] = 2mn(2mn + 1). Hence,
k=1

2a+ (mn—1)d =4(2mn+1). (1)

From (1), we have (mn—1)d =0 (mod 2). Thus, if nCy, is (a, d)-total neighborhood-antimagic, then either mn is
odd or d is even. Hence we have (i).
Suppose m =3 and d =2 (mod 4). If nCs is (a, d)-total neighborhood-antimagic, then from (1) we have

2a+(Bn—1)d=0 (mod 4)
<=2a—-2(n+1)=0 (mod4)
< a=n+1 (mod?2).

If n is even, then a is odd. This implies that all the total weights are odd. Without loss of generality, we have

3 3

Y WT(vi,;)=2Y [f(vi,j)+ f(e1, )] is odd, a contradiction. O

j=1 j=1
By the same argument as in proving Lemma 5 (i), we have the following corollary.

Corollary 2 Let G be a2-regular graph with even number of edges, then G is not (a, d)-total neighborhood-antimagic
for odd d.
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3.1 nC3

Theorem 4 3Cs; is not (a, 7)-total neighborhood-antimagic.

Proof. Suppose 3Cj is (a, 7)-total neighborhood-antimagic. From the proof of Lemma 5, we have 2a + 56 = 4(19)
so that a = 10. Without loss of generality, let WT (vi 3) = f(vi,1) + f(v1,2) + f(e1,2) + f(e1,3) = a = 10. Since the
labels are in [1, 18], we must have {f(vi 1), f(v1,2), f(e1,2), fle1,3)} = {1, 2, 3, 4}. Moreover, WT'(v; ;) = 10+
7i, WT(VLZ) =1047j for i 75 J- Thus, WT(V], 1) — WT(V[’Q) = f(V]’z) +f(e|,3) —f(vl,z) —f(el,z) =0 (mod 7).
Therefore, WT'(vi,1) —WT(vi2) <4+3—-2—1=4%#0 (mod 7), a contradiction. O

For convenience, let A([i, j]; d) be the arithmetic progression with common difference d, the first term i and the last
term j.

Theorem 5 For n > 1, nCjs is (a, 4)-total neighborhood-antimagic if and only if @ = 6n 4.

Proof. By Lemma 5, the necessity holds. To prove the sufficiency, we give a (6n + 4, 2)-total neighborhood-
antimagic of nCs.

Suppose n is even. Define a labeling f: V (nC3) UE(nCs) — [1, 6n] as follows.

(D) For 1 <i< 3, f(vi1) =2i—1, f(vi2) =2n+2i—1, f(v;3) = 4n+2i— 1. The labels used are odd numbers in
[1,n]U2n+1, 3n|U[4n+1, 5n].

(2) For 5 +1<i<n, f(vii1) =2i—n, f(vi2) =n+2i, f(vi3) = 3n+2i. The labels used are even numbers in
[1,n]U[2n+1,3n]U[4n+ 1, 5n].

(3)For1 <i< 7%, flei1) =5n+2i—1, f(e;2) =n+2i—1, f(e; 3) = 3n+2i— 1. The labels used are odd numbers
in[n+1,2n|U[3n+1,4n]U[5n+ 1, 6n].

(4) For 54+ 1<i<mn, f(ej1) =4n+2i, f(ei2) = 2i, f(e;3) = 2n+2i. The labels used are even numbers in
[n+1,20|U[3n+1,4n]U[5n+1, 6n].

Clearly, f is a bijective total labeling. Moreover, for 1 <i <n, WT (v 1) = f(vi,2) + f(vi,3) + f(ei.1) + f(ei.3),
WT (vi2) = f(vi1)+ f(vi,3)+ flei1)+ flei2) and WT (vi 3) = f(vi,1) + f(vi,2) + flei2) + fei 3).

Suppose 1 <i < 7.

@ WT(vi1)=02n+2i—1)+(4n+2i—1)+(5n+2i— 1)+ (3n+2i—1) = 14n+8i — 4.

So{WT(vi1) | 1<i<2}=A([14n+4, 18n—4]; 8).

(Y WT (vi2) = (2i— 1)+ (4n+2i— 1)+ (5n+2i— 1)+ (n+2i — 1) = 10n+ 8i — 4.

So {WT(vi2) |1 <i< 3} =A([10n+4, 14n—4]; 8).

©WT(vi3)=Q2i—1)+2n+2i—1)+(n+2i—1)+Bn+2i—1)=6n+8i—4.

So {WT(vi;3) |1 <i< 5} =A([6n+4,10n—4];8).

Suppose 5 +1 <i < n. Similarly, we have

() {WT(vi1)|5+1<i<n}=A([14n+38, 18n]; 8);

@ {WT(vi2) | 5+1<i<n}=A([10n+8, 14n]; 8);

O {WT(vi3) | 5+1<i<n}=A([6n+8, 10n]; 8).

Thus, f is a (6n + 4, 4)-total neighborhood-antimagic labeling.

Suppose 7 is odd. Define a labeling f: V (nC3) UE (nCs3) — [1, 6n] as follows.

(DFor1<i<mn, f(vi1)=2i—1, f(vi2) =2n+2i—1, f(v;3) =4n+2i—1. The labels used are odd numbers in
[1, 6n].

2)For1<i< %, flei1) =6n+4—4i, f(e;2) =2n+4—4i, f(e;3) =4n+4 —4i. The labels used are in
A([2, 2n]; 4) UA([2n+2, 4n]; 4) UA([4n+2, 6n]; 4).

(3) For ”—;3 <i<mn, flei1) =8n+4—4i, f(ejr) =4n+4 —4i, f(e;3) = 6n+4 —4i. The labels used are in
A([4,2n—=2];4)UA(2n+4,4n—2]; 4) UA(4n+4, 6n—2|; 4).

Clearly, f is a bijective total labeling. By a similar computation as above, we have

@) {WT(vi1) |1 <i< ™} =A([l4n+4, 16n+2]; 4);

B {WT(v;p) | 1 <i< ™Y =A([10n+4, 12n+2]; 4);

(©) {WT(vi3) |1 <i< ™} =A([6n+4,8n+2];4), and

(A {WT(vi1) | =2 <i<n}=A([16n+6, 18n]; 4);

)
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() {WT(vi2) | %42 <i<n}=A([12n+6, 14n]; 4);

) {WT(vi3) | 42 <i<n}=A(8n+6, 10n]; 4).

Thus, fis a (6n—i—47 4)-total neighborhood-antimagic labeling. This completes the proof. O

Theorem 6 Forn > 1, nCj is (a, 2)-total neighborhood-antimagic if and only if n is odd and a = 9n + 3.

Proof. By Lemma 5, the necessity holds. To prove the sufficiency, we give a (9n + 3, 2)-total neighborhood-
antimagic of nCs;. Now consider odd n > 1. Define a labeling f: V (nCz) UE(nC3) — [1, 6n] as follows:

(D) For 1 <i<wn, f(vi1)=1i, f(vi2) =n+i, f(vi3) =2n+i. The labels used are in [1, 3n].

(2Q)For1 <i< "“ , flei1)= 11” Lti, flein) = 7” Li, fleis) = 9" L 4 i. The labels used are in [7”+1 4n} U
[9n+1 571] [lln+l 6n }

(3)For 23 <i<n, f(ei 1) = 25 +i, f(ei2) = 25 +1i, f(e;,3) = 25 +i. The labels used are in [3n+ 1, 751U
[4n+1, 2= ‘] Ulsn+1, tn=l),

Clearly, fisa bijective total labeling.

Suppose 1 < i< 2H.

(@ WT(vi,1) = (n+l) +2n4i)+ (B2 i) 4+ (25 i) = 130 — 1+ 4i.

So {WT(v;,1) |1 <i< ™} =A([13n+43, 15n+1]; 4).

OYWT (vi2) = {i+ 2n+i)+ (ML +i) + (L +i) = 1ln— 1+ 4i.

So {WT(vi2) | 1 <i< ™} =A([11n+3, 13n+1]; 4).

©WT (vi;3) = {i+(n+i)+ (2L +i)+ (2L +i) =9 — 1 +4i.

So {WT(v;3) |1 <i<™H}=A(9n+3, lin+1]; 4).

Suppose 243 < i < n. Similarly we have

(d) {WT(V,, )] 52 <i<n}=A([13n+5,15n—1]; 4),

) {WT(vi2) | %52 <i<n}=A([lln+5, 13n—1]; 4),

O {WT(vi3) | 2 <i<n}=A(9n+5,1ln—1]; 4)

Thus, f is a (9n+ 3, 2)-total neighborhood-antimagic labeling. This completes the proof. O

Theorem 7 nCs; is (a, 6)-total neighborhood-antimagic if and only if n > 3 is odd and a = 3n+5.

Proof. By Lemmas 4 and 5, the necessity holds. To prove the sufficiency, we give a (3n+ 5, 6)-total neighborhood-
antimagic of nCs for odd n > 3.

Case (1). n=6¢+1 > 7. We shall show that nC3 admits an (187 4 8, 6)-total neighborhood-antimagic labeling.
Suppose n = 7. A required labeling is given in Figure 2 below.

Figure 2. The total weights set is A([26, 146]; 6)
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Suppose n > 13 (i.e., t > 2). We shall define a total labeling f: V(nC3) UE(nC3) — [1, 36t + 6.

(a) Firstly, we label the vertices and edges of the first 3r 41 C3’s.
For vertices v, j, where 1 <k <3t+1and 1< j<3,

j 1 2 3
f(vaiaj) | 9i—8 9i—7 9i—6
fOvaii1j) | 9i—5 9i—4 9i—3
f(V3,'Aj) 9i—2 9i—1 9i

here 1 <i<r—1,

Jj 1 2 3
fva—a ;) | 9t —8 9—7 9—6
f(V3t_1’j) 9—5 9r—4 9r-3

fva ) | 9—=2 9t+1 9r+4
F3sr,j) [ 9—1 942 9r+3

The labels used are in

[1, 9t +4]\ {9}.

For edges ey, j, where 1 <k <3r—3and 1 < j <3,

j | 2 3 1
flesia,j) | 9r+18i—18 9r+18i—13 9r+18i—8
flezicn j) | 9r+18i—12 9r+18i—7 9r+18i—2
flezij) | 9t+18i—6 9r+18i—1 9r+18i+4

here 1 <i <t — 1. The labels used are in

j 2 3

@)

flesia ) | A(9r,27:—36;18)  A([9r+5,27r—31]; 18)  A([9¢ + 10, 271 — 26]; 18)

flesizr,j) | A([9r+6,27t—30];18) A
[

(
flesij) | A(9t+12, 27t —24);18)  A([9¢ + 17,27t —19]; 18)  A([9 422, 27t — 14]; 18)

For edges ey, j, where 3r —2 <k <3r+1land 1 < j <3,

j | 2 3 1
fles—a,j) | 27t —18 27t—13 27t 8
fles—1,j) | 2Tt—12 27t—7 27t—2

fle, j) 27t—6  27t—3 27t
f(€3t+1,j) 27t4+2  27t+5 27t+10

Combining with the above edge labels, the labels used are in

Co iporary Math tics
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{27t +2, 27t — 3} UA([9¢, 27¢); 18) UA([9f +5, 27¢ +5]; 18) UA([9¢ +6, 27t — 12]; 18)
UA([9f + 10, 27¢ + 10]; 18) UA([9¢ + 11, 27¢ — 7); 18) UA([9% + 12, 27t — 6]; 18) 3)
UA([9t + 16, 27t — 2]; 18) UA([9¢ + 17, 27t — 19]; 18) UA([9¢ +22, 27¢ — 14]; 18).

(b) Secondly, we label the vertices and edges of the next 3¢ C3’s. For vertices vy, j, where 3t +2 < k < 6t + 1 and
1<j<3,

j 1 2 3
f(vsiorj) | 18i—9t—11 18i—9t—10 18i—91—9
fvsij) | 18i—9r—5 18i—9r—4 18i—9—3
fOaipr)) | 18i=9+1  18i—9r+2 18i—9r+3

herer+1<i<2r—1,

j |1 2 3
fvei—1,j) | 27t—11 27t—10 27t—9
fve,j) | 27t=5 27t—4 27t—1
f(v6,+17j) 27t +1 27t +4 27t +7

The labels used are in
A([9t+7,27t+7]; 18) UA([9t + 8, 27t — 10]; 18) UA([9¢ + 9, 27t — 9]; 18)
UA([9 413,27t — 5]; 18) UA([9¢ + 14, 27t — 4]; 18) UA([9r + 15, 27¢ —21]; 18) 4
UA([9r + 19, 27t + 1]; 18) UA([9¢ 420, 27¢ — 16]; 18) UA([9r +21, 27t — 15]; 18)
U{27r—1, 27t +4}.
Combining (3) and (4) we have the label used in
[9z, 27t + 2] U {27t +4, 27t + 5,27t +7, 27t + 10}. 5)

For edges ey, ;, where 3t +2 <k <6t+1and 1 < j <3,
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j | 2 3 1
f(e3,'_1,j) 18t4+9i—6 18t+9i—1 18+9i+4
flesi,j) | 18t4+9i—3 184+9i+2 18:+9i+7
flesitt, ;) 18t +9i 18+9i+5 18t+9i+10

heret4+1<i<2t—1,

j ] 2 3 1
flea—1.7) | 361 —6 36r—1 36t+4
fleer;) | 361—3 36642 36t+5
f(66f+1.,j) 36t 36r+3 36r+6

The labels used are in

A([27t 43, 36t 4 3]; 9) UA([27t +6, 361 +6]; 9) UA([27¢ +8, 361 — 1]; 9)

UA([27t 49, 361]; 9) UA([27¢ + 11, 36 +2]; 9) UA([27¢ + 13, 36t +4]; 9)

UA([27t + 14, 361 +5]; 9) UA([27¢ + 16, 361 — 2]; 9) UA([271 + 19, 36t + 1]; 9)

=27t + 11,36t 4+ 6] U {27t +3, 27t +6, 27t 48, 27t + 9}. (6)

Combining (2), (5) and (6), we see that all labels in [1, 367 + 6] are used.

We shall now determine the total weights of the vertices.

1) Consider 1 <i <r— 1. The vertices of the (3i —2)-nd C3 have total weights 18z + 54i — 46, 18 + 54i — 40 and
18t +54i — 34. The vertices of the (3i — 1)-st C3 have total weights 187 +54i — 28, 18¢ +54i —22 and 18¢ + 54i — 16. The
vertices of the (3i)-th C3 have total weights 18¢ + 54i — 10, 18¢ + 54i — 4 and 18¢ 4 54i + 2. So the total weights set for
these vertices is A([18¢ + 8, 72t — 52]; 6).

2) For vertices in the (37 — 2)-nd to the (37 + 1)-st C3, one may check that their total weights set is A([72f — 46, 72t +
20]; 6).

3) Consider # + 1 <i <2t — 1. The vertices of the (3i — 1)-st C3 have total weights 187 + 54i — 28, 18t — 54i —22
and 187+ 54i — 16. The vertices of the (3i)-th C3 have total weights 18¢ + 54i — 10, 18¢ 4 54i — 4 and 18¢ + 54i + 2. The
vertices of the (3i + 1)-st C3 have total weights 18¢ 4 54i + 8, 187 + 54i + 14 and 187 + 54i + 20. So the total weights set
for these vertices is A([72¢ + 26, 126t — 34]; 6).

4) For vertices in the (6f — 1)-st to (67 + 1)-st C3, one may check that their total weights set is A([126¢ — 28, 126t +
20]; 6).

Thus, f is an (18t + 8, 6)-total neighborhood-antimagic labeling.

Case (2). n =6t +3 > 3. We shall show that nCs admits an (187 + 14, 6)-total neighborhood-antimagic labeling.
Suppose n = 3. A required labeling is given in Figure 3 below.
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Al7 Alg
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8 S 16 13
Figure 3. The total weights set is A([14, 62]; 6)

Suppose n = 9. A required labeling is given in Figure 4 below.

1 2 3
@ WF® @
7 4 8 5 9 6
19 21 29 37
(5 W9 WAy 5
25 22 27 24 35 32 43 40

Figure 4. The total weights set is A([32, 188]; 6)

Suppose n > 15 (or ¢ > 2). We shall define a total labeling f: V (nC3) UE (nCs) — [1, 36t 4 18].
(a) Firstly, we label the vertices and edges of the first 37 +3 C3’s.
For vertices vy j, where 1 <k <3t+3and1<j<3,

j | 2 3
f(v3ica,j) | 9i—8 9i—5 9i—2
f(V3,;1‘”/') 9i—7 9i—4 9i—1

fvsij) [9i—6 9i—-3  9i

here 1 <i<r,

j |1 2 3
fvag1,j) | 9t +1 944 947
f(\/3t+27 j) 9G%+2 9+5 9r+8
f(vags,) | 9410 9413 9 +16

The set of all vertex labels of the first 37 +3 C3’s is
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C

[1,9t+16]\ {9t +3,9+6,9:+9, 9+ 11,97+ 12, 9r + 14, 9 + 15}.

For edges ey, j, where 1 <k <3r+3and 1 < <3,

j | 2 3 1
flesiza, j) 9t+181.—15 9t—|—18z.—12 9t+181.—9 here 1 <i <1,
flesiz1,j) | 9t+18i—7 9r+18i—4 9r+18i—1
flesij) | 9r+18i+1 9 +18i+4 9r+18i+7
i | 2 3 1
f(€3t+17j) 27t+3  27t+6  27t+9
flessa ) | 276411 271414 271417
flesss ) | 276412 276415 27418
The edge labels used in the first 3¢ C3’s are in
j | 2 3 1

flesiza, j) | A([9t+3,27t —15]; 18) A([9r+6,27t —12]; 18)  A([9r+9,27r—9]; 18)
flesion, ) | A9 +11,27t —7);18)  A([9r+ 14,27t —4];18)  A([9¢ +17, 271 — 1]; 18)
flesi;) | A([9t+19,27t+1];18)  A([9¢ +22, 27t +4]; 18)  A([9¢ +25, 27t +7]; 18)

Combining with the next 3 C3’s, the set of all edge labels of the first 37 43 C3’s is

A([9¢ +3, 27t +3]; 18) UA([9¢ + 6, 27t +6]; 18) UA([9¢ +9, 27t +9]; 18)

UA([9¢ + 11, 27t + 11]; 18) UA([9f + 14, 27t + 14]; 18) UA([9r + 17, 27t + 17];

UA([9¢ +19, 27t +1]; 18) UA([9¢ +22, 27t +4]; 18) UA([9 +25, 271 +7]; 18)

U{27t+12,27r+ 15,27t + 18}

(b) Secondly, we label the vertices and edges of the last 3¢ Cs’s.
For vertices vy ;j and edges e; j , where 3t +4 <k <6t+3and 1 < j <3,

iporary Math tics
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j | 1 2 3
F(vsiaj) | 18i—9r—24 18i—9r—21 18i—9r—18
F(vsici j) | 18i—9r—16 18i—9r—13 18i—9r—10
fvsi) | 18i—9r—8 18i—9r—5 18i—9r—2

herer+2<i<2t+1,

j | 2 3 1
f(€3,'_27j) 18t +9i+1 18t+9i+4 18+9i+7
flesiz1,j) | 18+9i+2 18 +9i+5 18:+9i+8

flesi,j) | 18t+9i+3 18:4+9i+6 18 +9i+9

heret+2 <i<2t+1.

From the very top array above, we have that the labels used are in

i | 1 2 3
fiaj) | A(9r+12,27t—6];18)  A([9¢+15,27t—3];18)  A((9¢+ 18, 271]; 18)
Si1j) | A([9r+20,27t+2];18)  A([9¢+23,27t+5];18)  A([9+26, 271 +8]; 18)
fv3ij) | A(9r+28,27t+10]; 18)  A([9¢+31,27t +13]; 18)  A([9 +34, 27t 4 16]; 18)

herer+2 <i<2r+1.
Combining the above array with (7) and (8), we see that the labels used are in [1, 277 + 18].
From the second top array, we have that the labels used are in

j | 2 3 1
flesia i) | A(27t+19,36t +10];9)  A([27r +22, 36¢ +13];9)  A([277 +25, 361 + 16]; 9)
flesic1,j) | A(27t 420,36t +11];9)  A([27t+23, 36t + 14];9)  A([27¢ +26, 36t + 17]; 9)
flesij) | A(27t+21,3664+12];9)  A([27r+24, 36t +15];9)  A([271 427, 36t +18]; 9)

herer+2 <i<2r+1.

Thus the set of edge labels of the last 3¢ C3’s is [27¢ + 19, 367 + 18].

Thus, f is bijective. We shall now determine the total weights of the vertices.

1) For 1 <i <t, the vertices of the (3i — 2)-nd C; have total weights 18z 4 54i — 40, 18¢ +54i — 34 and 187+ 54i — 28.
The vertices of the (3i — 1)-st C3 have total weights 18¢ 4 54i — 22, 18¢ + 54i — 16 and 18¢ + 54i — 10. The vertices of the
(3i)-th C5 have total weights 18 +54i —4, 18¢ +54i+ 2 and 187 + 54i + 8. So the total weights set is A([187 + 14, 721 +
8]; 6).

2) For the (3t + 1)-st to (37 + 3)-rd C3, their total weights set is A([72f + 14, 721 + 62]; 6).

3) For t +2 < i <2t + 1, the vertices of the (3i —2)-nd C; have total weights 187 + 54i — 40, 18 + 54i — 34 and
18t + 54i — 28. The vertices of the (3i — 1)-st C3 have total weights 18z + 54i — 22, 18t + 54i — 16 and 18¢ + 54i — 10.
The vertices of the (37)-th C3 have total weights 187 +54i —4, 187+ 54i+2 and 18+ 54i + 8. So, the total weights set is
A([72t + 68, 126t +8]; 6).

Thus, f is an (187 + 14, 6)-total neighborhood-antimagic labeling.

Case (3). n =6t +5 > 5. We shall show that nCs admits an (18t 420, 6)-total neighborhood-antimagic labeling. A
required labeling for n =5 and n = 11 are given in Figure 5 and Figure 6 below.
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2 3 7 10 8 9 14 17

Figure 5. The total weights set is A([20, 104]; 6)

1 2
Alg l A29
O ONOL 20
7 4 8 5

14 22 24 32 40
Asg Aﬂ4 Ag“ A594 AS
E0) () @5 () 51w
20 17 28 25 30 27 36 35 44 41

Figure 6. The total weights set is A([38, 230]; 6)

Consider n > 17 (or t > 2). We shall define a total labeling f: V (nC3) UE (nCs) — [1, 36¢ + 30].
(a) Firstly, we label the vertices and edges of the first 31 +4 C3’s.
For vertices vy j, where 1 <k <3t+4and1<j<3,

j |1 2 3
f(vaica,j) | 9i—8 9i—5 9i—2
fvaict,j) | 9i—=7 9i—4 9i—1
fOvsij) [ 9i—6 9i—3  9i

here 1 <i<r,

j |1 2 3

Faer ) | 9+1 9%+2 9 +3
f(vag2,j) | 9t+4  9+7 9+10
fags ) | 9+5  9r+8 9r+11
f( )9t +13 9416 9r+19

V3r+4, j

The set of all vertex labels of the first 37 +4 C3’s is
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(1,9t +19]\ {9 +6, 9t +9, 9 + 12, 9t + 14, 9 + 15, 9t + 17, 9 + 18}. )

For edges ey, j, where 1 <k <3r+3and 1 < <3,

j | 2 3 1
flesiza, j) 9t+18z.— 12 9t—|—181.—9 9t—|—181.—6 here 1 <i <1,
flesiz1,j) | 9t+18i—4 9r+18i—1 9r+18i+2
flesi, ) Ot +18i+4 9r+18i+7 9r+18i+10
j | 2 3 1
f(€3t+17j) 27t+6  27t+11 27t+16
flesa j) | 276412 276415 27t +18
flesys, j) | 27t4+20 27t+23 271426
flesiqa,j) | 27t +21 27t+24 27427
The edge labels used in the first 3¢ C3’s are in
j | 2 3 1
flesiza,j) | A([9t+6,27r —12];18)  A([9r+9,27t—9];18)  A([9 +12,27r—6]; 18) here 1 < i<t
flesiz1,j) | A([9t+ 14,27t —4];18)  A([9r+17,27r —1]; 18)  A([9¢ +20, 27r +2]; 18) -
flesi ) | A([9t+22, 27t +4];18)  A([9¢ 425,27t +7); 18)  A([9 +28, 27t + 10]; 18)
Combining with the next 4 Cs’s, the set of all edge labels of the first 3¢ +4 C3’s is
A([9t 46,27t 4 24]; 18) UA([9t 49, 27t — 9]; 18) UA([9t + 12, 27t +12]; 18)
UA([9¢ + 14, 27t + —4]; 18) UA([9¢ + 17, 27t — 1]; 18) UA([9¢ + 20, 27t + 20]; 18) (10)

UA([97 +22, 27t +4]; 18) UA([97 + 25, 27t +7]; 18) UA([97 + 28, 27t + 10]; 18)
U{27t+ 11,27t + 15,27t + 16, 27t + 18, 27t + 21, 27t 4+ 23, 27t + 26, 27t +27}.

(b) Secondly, we label the vertices and edges of the last 3¢ + 1 Cs’s.
For vertices vy, j, where 3t +5 <k <6t+5and 1 < j <3,

i 1 2 3
fvsiing) | 18i—9r—2 18i—9r—18 18i—9—15
f(vsij) | 18i—9r—13 18i—9r—10 18i—9r—7
fvaipr)) | 18i=9—5  18i—9r—2  18i—9r+1

heret +2 <i <2t,
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j |1 2 3
£( Yl 27t=3 271t 271+3
fOess, ) | 27t+5  27+8 27149
f( )
f( )

27t +13 27t+14 27t +17
27t+19 27t +22 27t +25

Vér+4, j
Vet+5, j

The set of all vertex labels of the first 37 +1 C3’s is
A([9t+15, 27t —3]; 18) UA([97r + 18, 27¢]; 18) UA([9¢ + 21, 27r + 3]; 18)
UA([9 423, 27t 4+ 5]; 18) UA([9¢ 4 26, 27t + 8]; 18) UA([9¢ 429, 27t —7]; 18) (11)
UA([9f 431, 27t +13]; 18) UA([97 + 34, 27t — 2]; 18) UA([97 + 37, 27t + 19]; 18)
U{27t+9,27t+ 14, 27t + 17, 27t +22, 27t +25}.

Combining (9), (10) and (11), we see that the labels used in [1, 277 + 27].
For edges ey, j, where 3t +5 <k < 6r+5and 1 < j <3,

j | 2 3 1
flesiot,j) | 1864+9i4+10 18+9i+13 18/+9i+16
flesij) | 1849i+11 18 +9i4+14 18 +9i+17
flesivr j) | 1864+9i+12 18t +9i+15 18 +9i+18

heret +2 <i <2t

j | 2 3 1
f( ) | 36t+19 36r+22 361425
fleass,j) | 361420 36t+23 36t-+28
( )
I( )

36r+21 36t+26 36t+29
36t +24 36t+27 36t+30

The set of all edge labels of the last 37 + 1 C3’s is [27¢ 4 28, 36t 4 30]. Thus f is bijective.

We shall now determine the total weights of the vertices.

1) For 1 <i <t, the vertices of the (3i — 2)-nd C; have total weights 18z 4 54i — 34, 18¢ +54i — 28 and 187+ 54i — 22.
The vertices of the (3i — 1)-st C3 have total weights 18¢ +54i — 16, 18¢ +54i — 10 and 18t + 54i — 4. The vertices of the (3i)-
th C3 have total weights 187 4-54i+2, 1814 54i+8 and 187+ 54i+ 14. So the total weights setis A([187 +20, 72t + 14]; 6).

2) For the (37 + 1)-st to (3¢ +4)-th C3, their total weights set is A([727 + 20, 72¢ + 86]; 6).

3) For t +2 < i < 2t, the vertices of the (3 — 1)-st C3 have total weights 18 + 54i — 16, 18 + 54i — 10 and 18¢ +
54i — 4. The vertices of the (37)-th C3 have total weights 187 + 54 + 2, 18¢ + 54i + 8 and 18¢ + 54i + 14. The vertices
of the (3i+ 1)-st C3 have total weights 18¢ 4 54i + 20, 18t + 54i + 26 and 18f + 54i + 32. So the total weights set is
A([72¢ +92, 126t +32]; 6).

4) For the (67 +2)-nd to (6¢ 4 5)-th C3, their total weights set is A([126¢ + 38, 1261 + 104]; 6).
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Thus, f is an (18¢ + 20, 6)-total neighborhood-antimagic labeling. This completes the proof. O

As a by-product, we also have the following theorem on total neighborhood-magic.

Theorem 8 For n > 1, nCs is total neighborhood-magic if and only if the magic constant is 12n + 2.

Proof. By Lemma 5 (i), the necessity holds. To prove the sufficiency, we give a total neighborhood-magic labeling
of nCs with magic constant 12n+ 2. For 1 <i < n, define a labeling f: V (nC3) UE(nCs) — [1, 6n] as follows:

(D) fvi1) =3i=2, f(vi2) =3i—1, f(vi;3) =3i,

(2) f(ei,1) =6n—3i+1, f(e;2) =6n—3i+3, f(e;3) =6n—3i+2.

Clearly, f is a bijective total labeling. For 1 <i < n,

WT (vi1) = 3i— 1)+ (3i)+ (6n—3i+ 1)+ (6n—3i+2) = 12n+2,
WT(vi2)=(3i—2)+(3i)+ (6n—3i+ 1)+ (6n —3i+3) = 12n+2,
WT(vi3)=3i—=2)+Bi—1)+(6n—3i+3)+(6n—3i+2) = 12n+2.

This completes the proof. O

3.2 nC4

Lemma 6 Forn > 1, if nCy is (a, d)-total neighborhood-antimagic, then d is even.
4n

Proof. Suppose nCy is (a, d)-total neighborhood-antimagic. The sum of all the total weights is ¥ [a+ (n—1)d] =
i=1

8n
2Y i So2n2a+ (4n—1)d] =8n(8n+1) or2a+ (4n—1)d =4(8n+1). Thus,2a—d =0 (mod 4). Sod iseven. [
=1

Lemma 7 Suppose nCy is (a, d)-total neighborhood-antimagic, then

4 ifn=1,
d<
6 ifn>2.
Proof. From the proof above, we have a = % (mod 2). Combining with Lemma 4, we have the conclusion. O

Theorem 9 For n > 1, nCy is (a, 2)-total neighborhood-antimagic if and only if a = 12n+ 3.

Proof. By Lemma 5, we have a = 12n + 3. This proves the necessity.

We shall now give a (12n+ 3, 2)-total neighborhood-antimagic labeling of nCy4. Consider f: V(nCs) UE(nCy) —
[1, 8n] as follows.

j 1 2 3 4
f(vij) | 6n+3—6i 6n+2—6i 6n—1+2i 6n+2i | where 1 <i<n-—1
fn, ) 8n 8n—1 2 3
flei j) 6i—2 6i—1 6i 6i—5 | where1 <i<n

We have that the labels used are in
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j | 1 2 3 4
Fvi;) | A(9,6n—3]:6) A([8,6n—4]:6) A(j6n+1,8n—3]:2) A(j6n+2,8n—2];2)
fn,j) 8n 8n—1 2 3
flei ;) | A([4,6n—2];6) A([5,6n—1];6) A([6, 6n]; 6) A([1, 6n—15]; 6)

Thus, all labels in [1, 8x] are used and hence f is a bijective total labeling.
We now determine the total weights of the vertices.
(@For1<i<n—1,

WT(vi1) = (6n+2—6i)+ (6n+2i) + (6i —2) + (6i — 5) = 12n+8i — 5,
WT (vi2) = (6n+3—6i)+ (6n+2i— 1)+ (6i —2) + (6i— 1) = 12n+8i — 1,
WT (vi3) = (6n+2—6i) + (6n+2i) + (6i — 1) + (6i) = 12n+8i + 1,

WT (vi4) = (6n+2i—1)+ (6n+3 —6i) + (6i) + (6i —5) = 12n+ 8i — 3.

So the total weights set is

A([12n+3, 20n — 13]; 8) UA([12n+ 7, 20n — 9]; 8) UA([12n+9, 20n — 7]; 8) UA([12n+5, 20n — 11]; 8).

O)YWT (vp, 1) =Bn—1)+3+(6n—2)+ (6n—5) =20n—5, WT (v, 2) =8n+2+(6n—2)+(6n—1) =20n—1,
WT(vy3)=8n—1)+3+(6n—1)+6n=20n+1, WT (vs4) =8n+2+6n+(6n—5) =20n—3.
Hence, the total weights set is {20n — 5, 20n —3,20n— 1, 20n+ 1}.

Clearly, the total weights set is A([12n+ 3, 20n+ 1]; 2). Thus, f is a (12n+ 3, 2)-total neighborhood-antimagic
labeling. This completes the proof. O

4. Some one point union graphs

Let H; be a graph and v; € V(H;) be fixed, 1 <i < n. A one point union of H;, 1 <i < n, is the graph obtained from
the disjoint union of H; by merging all v; into a single vertex which is called the merged vertex or core vertex. We denote
n

the one point union of H;, 1 <i<n,by | H; forn > 2.
i=1

=

n n
Specially, if H; = P», then 4} H;, n > 2, is a star, denoted St(n). If H; = C3, then |t} H;, n > 2, is called a friendship
i=1 i=1

graph, denoted F;,. For convenience, we let St(1) = P, and F; = C3.

In this section, we investigate the one point union of the three families of graphs in Sections 2 and 3.
Theorem 10 For n > 1, St(n) is (a, d)-total neighborhood-antimagic if and only if

(nya,d)e{(1,3,1),(1,3,2),(1,4,1), (2,4,4), (2,6,2),(2,7,2), (2,8, 1) }.
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Proof. Let the vertex set and the edge set of St(n) be {v; | | <i<n}U{u} and {e; = uv; | 1 <i<n}, respectively.
It is easy to verify case n = 1. Now, we consider n > 2. Suppose St(n) admits an (a, d)-total neighborhood-antimagic
labeling f: V(St(n)) UE(St(n)) — [1, 2n+ 1]. Now,

2n+1

WT (u) = ) [f(vi)+ flei)] = ; i—f(u) = (n+1)2n+1) = f(u),

-

i=1

WT(vi) = f(u)+ f(e;) for 1 <i<n.

Thus, WT (u) —WT(v;) = (n+1)2n+1) =2f(u) — f(e;) > (n+1)2n+1)—-22n+1)—2n=(n—1)2n+1) —
2n > 0. So, WT (1) = a+ nd is the largest total weight of all the vertices.

Without loss of generality, let WT (v;) =a+ (i—1)d for 1 <i<n. Thus, d = f(e;j+1) — f(e;) for 1 <i < n. Since all
the values of f(ey), ..., f(en) are in [1, 2n+ 1] and form an arithmetic progression with common difference d, we have
d < 2. Recall that WT'(u) = (n+1)(2n+1) — f(u). Since WT (u) =a+nd and a = WT(v;) = f(u) + f(e1), we now
have (n+1)(2n+1) — f(u) = f(u) + f(e1) +nd. Thus,

0=m+1)2n+1)—2f(u)— f(e1) —nd

=(n—=2)2n+1)+2[2n+1) — f(u)]+[(2n+1) — f(e1)] —nd

>(n—=2)2n+1)—nd >2n(n—2)—nd.

So, d > 2n—4. Therefore, 2n —3 < d < 2. Hence n < 2. Consequently,n =2 and d = 1, 2.

Suppose St(2) admits an (a, d)-total neighborhood-antimagic f. Now the labels set is [1, 5]. Thus, the sum of all
the total weights is a+ (a +d) + (a+2d) = 2f(u) + f(vi) + f(v2) + 2f(e1) +2f(e2). This gives 3a+3d =2(1+2+
344+5)—f(vi) — f(v2). Thus, f(vi)+ f(v2) =0 (mod 3). Therefore, we must have f(v;)+ f(v2) =1+2o0r2+4
or 1 4+ 5. By symmetry, we may assume that f(v;) < f(v2).

(M) fv) =1, f(v2) =2.

If f(u) =5, f(e1) =3 (or 4), f(ex) =4, (or 3), then the total weights of the vertices are 8, 9 and 10. So, S¢(2) is
(8, 1)-total neighborhood-antimagic.

If f(u) =4, f(e1) =3, f(ez) =5, then the total weights of the vertices are 7, 9 and 11. So, S#(2) is (7, 2)-total
neighborhood-antimagic.

If f(u) = 3, then it is easy to check that f is not a required labeling.

@) fv1) =2, f(n) =4

If f(u) =35, f(e1) =1 (or 3), f(ez) =3 (or 1), then the total weights of the vertices are 6, 8 and 10. So, S¢(2) is
(6, 2)-total neighborhood-antimagic.

If f(u) =3, f(e1) =1 (or5), f(ez) =5 (or 1), then the total weights of the vertices are 4, 8 and 12. So, St(2) is
(4, 4)-total neighborhood-antimagic.

If f(u) = 1, then it is easy to check that f is not a required labeling.

(3) f(vi) =1, f(v2) =5. By enumeration, it is easy to check that f is not a required labeling.

This completes the proof. O

Theorem 11 Forn > 2, F, is (a, d)-total neighborhood-antimagic if and only if n = 2 and (a, d) € {(24, 3), (22, 4),
(20, 5), (18, 6)}.
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Proof. Let the vertex set and the edge set of F;, be {c, u;, v; | | <i<n} and {cu;, cv;, ujv; | 1 <i<n}, respectively.
Suppose F;, admits an (a, d)-total neighborhood-antimagic labeling f: V(F,) UE(F,) — [1, 5n+ 1]. Without loss of
generality, we may assume that W7 (u;) is the largest total weight among all total weights of non-core vertices. Then

WT(c) = fl [f (i) + f(vi) + f (cwi) + f (cvi) | and WT (ur) = f(c) + f(vi) + f(cur) + f(urv1). Now,

=

=

WT () =WT (ur) = ) [f (i) + f(vi) + f (cur) + fevi)] = [f () + f(vi) + f(ewr) + f (urvi)]

14

Il
-

>[1424+---+(@4n—-2)]—[5n+ (5n+1)] =8n(n—2) > 0.

Since WT (¢) #WT (u1), WT (c) > WT(uy). Thus WT(c) = a+ 2nd is the largest total weight. From Theorem 1
(b), a > 10. Thus WT (¢) = a+ 2nd > 10+ 2nd. Moreover,

[f (i) + f(vi) + fewi) + fevi)]

-

WT(c)=

i=1

w
+

1 n

i—[fle)+ Y flum)] <

i=1

n

(5n+1)(5n+2) = [1 424+ (n+1)]

I
1
N —

= 121 + 6n.

Thus, 121> +6n > 10+2nd. Hence d < 6n+3— 3. Sinced =WT (c) —WT (u1) > 8n(n—2),6n+3—> > 8n(n—2)
so that 8n%2 —22n—3 < —% < 0. Thus n < 2. Under the hypothesis, n = 2.

2
Observe that the sum of total weights is 4f(c) +2 ¥ [f(u;) + f(vi) + f(cu;) + f(cvi) + f(uvi)] = 3(2a+4d) =
i=1
5(a+2d). Thus, 2f(c) +2(1+2+---+11) = 5a+ 10d. So that

5a=2f(c)+132—10d. (12)

Since 1 < f(c) < 11and f(c) =4 (mod 5), f(c) € {4, 9}. Also, from Theorem 1 (c), d < 8.

(1) Suppose f(c) =4. Wehave WT (¢) is the sum of eight integers in {1, 2, 3,5,6,7,8,9, 10, 11} sothat WT (c) > 41.
Therefore, (a, d, WT(c)) € {(14, 7, 42), (12, 8, 44)}. Thus, (i) WT(c) =14+2+3+5+6+7+ 8+ 10 = 42 or (ii)
WT(c)=1+2+3+5+6-+8+9+10 =44 or (iii) WI'(c) = 1 +2+3+5+6+7+9+11 =44,

In (i), (a, d) = (14, 7) and {f(u1v1), f(uzva)} = {9, 11}. Now 35 =a+3d =WT (u;) < 114+4+ f(vi) + f(cuy).
This implies that f(v;) + f(cu;) > 20 which is not possible. In (ii) and (iii), by a similar argument, we have the same
conclusion.

(2) Suppose f(c) =9. Since a is a total weight of a non-core vertex, a is the sum of 9 and three integers in [1, 11]\ {9}.
Wehavea > 94 1+2+3 = 15. From (12), a+2d =30. Thusd <7. Sincea+4d =WT(c) >36,d > 3. Thus3 <d <7.
Therefore, (a, d, WT'(c)) € {(24, 3, 36), (22, 4, 38), (20, 5, 40), (18, 6, 42), (16, 7, 44)}.

For (a, d) = (24, 3), (22, 4), (20, 5), (18, 6), a required (a, d)-total neighborhood-antimagic labeling is given in
Figure 7.
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Figure 7. From left to right: (a, d) = (24, 3), (22, 4), (20, 5), (18, 6)

Consider a = 16, d = 7. Now, WT (c) = 44. There are four cases: 1)) WT(c) =14+2+3+4+5+8+10+11 =44;
(i) WT(c) = 1+ 243 +4+6+7+ 10+ 11 = 44; (iii) WT'(c) = 1 +2+4+5+6+7+8+ 11 = 44; (iv) WT(c) =
14+34+4+54+6+74+8+10=44.

Since 37 =WT (u1) =9+ f(vi) + f(cur) + f(uvi) <9+ 11410+ f(ugvi) =30+ f(urvi), fuivy) >7.

In (i), f(u1vi) =7 and f(uav2) = 6. Thus, a is at least the sum of 6, 9 and two integers in {1, 2, 3,4, 5, 8, 10, 11}
which is greater than 16. It is a contradiction. In (ii) and (iii), by a similar argument, we have the same conclusion.

In (iv), we have f(u1v;) = 11 and f(uav2) = 2. Hence {f(v1), f(cu1)} = {7, 10}. Note that, a = 16 is the sum of 9
and three integers in [1, 11]\ {9}. Thus a = 9+ 1+ 2+ 4 which is the smallest total weight of a non-core vertex. Without
loss of generality, we may assume W7 (v2) = a. Hence {f(u1), f(cv2)} = {1, 4}.

Now, the unused integers are 3, 5, 6, 8. WT'(vi) = f(c) + f(uivi) + f(u1) + f(evi) > 9+ 11+3+5=28. Thus
WT(vi) =30and f(u1)+ f(cvi) = 10 which is impossible.

This completes the proof. O

Let H; = C4. Forn > 2, let {c, u;, vi, w; | 1 <i<n} and {cu;, cw;, ujvi, viw; | 1 <i < n} be the vertex set and edge
setof B, = L:Jl H;, respectively.

Theorem 12 For n > 3, B, is not (a, d)-total neighborhood-antimagic.

Proof. Suppose B, admits an (a, d)-total neighborhood-antimagic labeling f: V(B,) UE(B,) — [1, Tn+1]. Then

WT(c) = i} [f (i) + f(wi) + f(cui) + flewi)], WT (wi) = f(c) + f(vi) + fcwi) + f(uivi), WT (vi) = f(ui) + f(wi) +

Suvi) + l(viwi) and WT (w;) = f(c) + f(vi) + f(ew;) + f(viw;). From Theorem 1 (b) and (c), we have a > 10 and
d<Fn+2-3

Without loss of generality, we may assume that the largest total weight among the non-core vertex is WT (u;) or
WT(v;). Now,

WT(c)=WT(uy) > [142++@n—1)]—[(Tn+1)+7Tn+ (Tn—1)] = n(8n—23), (13)
WT(c)—WT(vi) > [1+2+--+@n—2)]—[(Tn+1)+7n] = 4n(2n—5) > n(8n —23). (14)

Therefore, WT (c) is the largest total weight for n > 3, and hence WT'(¢) = a+ 3nd.

From (13) and (14), we get that d > n(8n — 23). Now n(8n—23) <d < % +2-— % < % + 2. It is equivalent to
24n> —89n—6 < 0 or (24n+7)(n—4) < —22. Hence n < 3. Thus n = 3.

Observe that the sum of the total weights is
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w

5(2a+9d) = 6f(c)+2 ) [f(wi) + f(vi) + f(wi) + f (cus) + f (wivi) + f (viwi) + f (ewi)]

i=1

22
=4f(c)+2) f(x) =4f(c)+2) j=4f(c)+506.
j=1

x€V(B3)UE(B3)

Thus,

4f(c)+506 = 10a +45d. (15)

Sodisevenand f(c)=1 (mod 5).

Suppose WT (vy) is the second large weight. From (14), we have d > 12. Buta+96 <a+8d =WT(v;) <22+
21420+ 19 = 82 which is impossible. Thus WT (u;) is the second large weight.

Now a+8d =WT (u1) <22+21+20+ f(c) = f(c) + 63, we have W +8d < f(c) 4 63. This implies
that

35d — 124 < 6f(c) < 126. (16)

Hence d < 8.

12
Substituting (15) in WT (c), we have WT (¢) = W#. Then78=Y i<WT(c) = W. This implies
i=1

that d > 4. Consequently, d = 6 only.

From (16) we have f(c) > 14. Thus f(c) = 16, 21.

1) f(c) = 16. From (15), we have a = 30. Let M be the maximum label that gives to WT'(¢). Since 84 = WT(c) >
142+ 4+114+M,M < 18.

S0, 78 =WT (u;) =16+ f(vi) + f(u1v1) + f(cur). Hence f(vi)+ f(u1vi) + f(cuy) = 62. Thus, {f(v1), f(uiv1),
Sflcup)} ={22, 21, 19}. Thus f(cu;) > 19, which contradicts M < 18.

2) f(c) =21. From (15), we have a = 32. Let M be the maximum label contribute to WT'(c). Since 86 = WT(c) >
14+24---4+114+M,M < 20.

S0, 80 =WT(u;) =21+ f(vi)+ f(u1vi) + f(cur). Hence f(vi)+ f(uivi) + f(cuy) =59. Thus, {f(v1), f(uiv1),
flew)} = {22, 20, 17} or {22, 19, 18}. Since M < 20,20 > f(cu) > 17.

2-1) Suppose f(cui) =20. Then WT(c) — f(cu;) = 66. That means {f(u;), f(w;), f(cu;), f(ewj) |1 <j <
3I\{f(cur)} =1, 11]. Now

WT(Vj) :f(uj)+f(w]-)+f(wjvj)+f(ujvj) <11+10+224+19=62,j=1,2,3,
WT(wj) = fle)+f(vj)+flwivj)+ flew;) <21422+4+19411=73, j=1,2,3,
WT (u;) = f(c)+ f(vi) + fluvi) + flew;) <21422419+11=73,i=2,3.

No total weight is 74, the third largest total weight, a contradiction.
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2-2) Suppose f(cuy) =19, 1.e., {f(v1), f(u1vi)} = {22, 18}. So, WT'(¢) — f(cu1) = 67. That means
{f(uj), f(wj), flcuj), flew;) | 1 < j<3}\{f(cur)} =1, 12]\ {11}. Now

WT(v;) = f(u;)+ f(w;)+ fwjv)) + fluv;) <124+10420+22 =64, j=1,2, 3,
WT (wi) = flc)+ fvi) + fwivi)+ flewr) <214+22+17+12 =72,

WT(w;) = fe)+fvi)+ fwivi) + few;) <21420+17+12=70,i =2, 3,
WT(u;) = fc)+ f(vi) + f(uvi) + fleu;) <214+204+17+12=70,i =2, 3.

Similarly, it is impossible.
2-3) Suppose f(cu1) = 17, ie., {f(v1), f(uivi)} = {22, 20}. So, WT(c) — f(cu;) = 69. We may see that

{f(uj),f(Wj),f(CMj),f(CWj) [1<j< 3}\{f(cu1)} is (i) [17 IO]U{14},(II) [17 9]U{117 13} or (iii) [17 S]U{loa 11, 12}
Thus f(u;) + f(wi) < 24. Now

WT (v;) = [f(uj) + fwi)]+ f(wjvy)+ fuv;) <244+19+22=65,j=1,2,3,
WT(w;) = fe)+ f(vi)+ fwvi) + few;) <214+19418+14=72,i=2, 3,
WT(u;) = f(c)+ f(vi) + fuvi) + fleu;) <21+194+18+14=72,i=2, 3.

Thus, WT (w;) is the third largest total weight and WT (v;) is not the fourth largest total weight for each i. By
symmetry, we may assume the fourth largest total weight is WT (up). Now 53 =74 —21 = WT (wy) — f(c) = f(v1) +
Fwvy) + fewr) <224+ 19+ f(ewy) =41+ f(ewi). So f(ewy) > 12. We consider the following three cases.

(@) f(ew1) =14. Thus WT (w;) = 21420+ 19+ 14 so that WT (ua) = f(c) + f(va) + f(uava) + fcup) <21+18+
16410 =65.

(ii) f(ewy) =13. Thus WT (wy) =214224+ 18+ 13 sothat WT (u2) = f(c) + f(va) + f(uav2) + f(cuz) <214+19+
16411 =67.

(iil) f(ewi) = 12. Thus WT (wy) = 21422+ 19+ 12 so that WT (u2) = f(c) + f(v2) + f(uava) + f(cup) <21+
18+16411 = 66.

We get a contraction for each case.

2-4) Suppose f(cu;) = 18, i.e., {f(v1), f(uivi)} = {22, 19}. So WT(c) — f(cu;) = 68. We may see that
(7, 0w, fleus), Flewi) | 1< 7 <3\ {fleun)}is ) [1, 10U {13}, (i) [1, 9] U{11, 12}, Thus f(u)+ f(ws) < 23.

Now
WT (v;) = [f(uj) + f(wi)]+ f(wjv)+ fuv;) <234+20+22=65,j=1,2,3,
WT(w;) = f(c)+ f(vi)+ fwivi) + few;) <214204+18+14=73,i=2, 3,

WT (u;) = f(c)+ f(vi) + fuivi) + fcui) <214+20+184+14=73,i=2,3.
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Thus, WT (w;) is the third largest total weight and WT (v;) is not the fourth largest total weight for each i. By
symmetry, we may assume the fourth largest total weight is WT (uy). Now 53 =74 —21 =WT(w;) — f(c) = f(v1) +
Fwiv)+ fewr) <22420+ f(ewy) =42+ f(ewy). So fewy) > 11.

(i) In this case, f(cw;) must be 13. So, f(v)+ f(wiv)) = 40. There is no solution since f(cu;) = 18 and f(c) = 21.
(ii) In this case, f(cwq) is 11 or 12.

If f(ewi) = L1, then f(v1)+ f(wiv1) = 42. Since f(wivy) <20, f(vi) =22 and f(wvi) = 20. Then WT (u) =
fle)+ f(v2)+ fluava) + feup) <214+ 17+ 16412 = 66.

If f(ewy) = 12, then f(vy) + f(wivi) = 41. Since f(wiv;) <20 and f(c) € {22, 19}, there is no solution.

This completes the proof. l

Theorem 13 B; is (a, d)-total neighborhood-antimagic if and only if

(a,d) €{(33,1), (30,2), (27, 3), (24, 4), (21, 5), (18, 6), (15,7),

(35, 1), (32, 2), (29, 3), (26, 4), (23, 5), (20, 6), (17,7).}

Proof. From the labelings in Figures 8 and 9, we get the sufficiency.

Figure 8. From left to right, and top to bottom: (a, d) = (33, 1), (30, 2), (27, 3), (24, 4), (21, 5), (18, 6), (15, 7)
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Figure 9. From left to right, and top to bottom: (a, d) = (35, 1), (32, 2), (29, 3), (26, 4), (23, 5), (20, 6), (17, 7)

We now prove the necessity. Similar to the proof of Theorem 12, calculating the sum of the total weights gives
2f(c)+2[14+2+---+15] =7(a+3d). Thus, 7a = 2f(c) +240 — 21d so that f(c) € {6, 13}. Moreover, a > 10.

When f(c) =6, we get a = 36 —3d > 10 so that d < 8. Hence (a, d) = (33, 1), (30, 2), (27, 3), (24, 4), (21, 5),
(18, 6), (15,7), (12, 8). Thus, it suffices to show that the case (a, d) = (12, 8) does not exists.

When (a, d) = (12, 8), the total weights are 12, 20, 28, 36, 44, 52, 60. Observe that fori = 1,2, WT (u;), WT (w;) <
6+ 13+ 14+ 15 =48 and WT (v;) < 12+ 13 + 14+ 15 = 54. Therefore, WT(c) = 60. Without loss of generality,
WT(vi) =52=154+14+ 12+ 11 or 15+ 14+ 13+ 10. Now, the corresponding remaining vertex and edge labels
set must be [1, 5]U[7, 10]U {13} or [1, 5]U[7, 9] U {11, 12}. Moreover, WT (u;) > 10+6+2+1 = 19. Similarly,
WT(w;) > 19. Thus the smallest weight, a = 12, is WT (uz), WT (w;) or WT (v;). By symmetry, we always assume that
WT(u;) >WT (w;) fori =1, 2. Thus, 12 € {WT (w3), WT (v2)}. We have the following two cases.

If the smallest total weight is the sum of 1, 2, 3, 6, then only WT (w;) = a. We get

341341049 =35, 641341043 =32,
WT(v2) < and WT(up) <
3+124114+9 =35, 6+124+11+3=32.

Thus {WT(v,), WT (u3)} = {20, 28}.
If the smallest total weight is the sum of 1, 2, 4, 5, then only WT (v;) = a. We get

6+4+13+10+5 =34,
WT (u2), WT (w2) <
6+124+11+5=234.
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Thus {WT (u2), WT (w2)} = {20, 28}.

From the above cases, we obtain that WT () = 44 and WT (w;) = 36.

(a) Suppose WT (wy) = 1424346, i.e., {f(cwa), f(vawa), f(v2)} ={1, 2, 3}.

a.1) Suppose WT'(v;) = 15+ 144 12+ 11. Since there is only the term f(u;v) of WT (u;) and WT (v1) in common,
WT(u1) =154+ 6+ 13+ 10. Hence f(ujvy) = 15. Now, {f(v1), f(cu1)} = {13, 10}, {f(viw1), f(u1), f(w1)} =
{14, 12, 11} and f(cwy) € {9, 8,7, 5, 4}. So, WT'(wy) = f(c)+ f(vi) + f(viw1) + f(cwy), where (f(vi), f(viwr),
flewy)) = (10, 11, 9), (10, 12, 8) or (13, 12, 5). Thus, {f(cuz), f(uav2), f(uz), f(w2)} =1{8,7,5,4},{9,7,5,4} or
{9, 8, 7, 4}, respectively.

Therefore, WT (v2) <9+4+8+4+7+3 =27 and WT (uy) < 6+9+ 8+ 3 = 26, a contraction.

a.2) Suppose WT (vi) = 15+ 14+ 13+ 10. Similarly, we have WT (u;) = 15+ 6+ 12+ 11. Hence f(ujv;) = 15.
Now, {f(v1), f(cur)} = {12, 11}, {f(viw1), f(u1), f(w1)} = {14, 13, 10} and f(cw;) € {9, 8,7, 5, 4}. Similarly, we
have (f(v1), f(viw1), f(ewr)) = (12, 10, 8), (12, 13, 5), (12, 14, 4), (11, 10, 9) or (11, 14, 5). Similar to case (a.1), we
have WT (v2) <9+8+7+3 =27 and WT (1) < 6+9+ 8+ 3 = 26, a contraction.

(b) Suppose WT (v2) = 1+2+4+5,ie., {f(ua), f(wa), f(uava), flvawa)} ={1, 2,4, 5}.

b.1) Suppose WT (v;) = 154 144 12+ 11. By the same argument in case (a), we have WT (u;) = 15+ 6413+ 10
and f(uyvy) = 15. Now, {f(v1), f(cu1)} = {13, 10}, {f(viw1), f(u1), fF(w1)} = {14, 12, 11} and f(cwy) € {9, 8,7, 3}.
So, (f(v1), f(viwy), f(ewr)) = (10, 11, 9), (10, 12, 8) or (13, 14, 3). Therefore, { f(cuz), f(cwz), f(v2)} =48, 7, 3},
{9,7, 3} or {9, 8, 7}, respectively.

When {f(cuz), f(cwa), f(v2)} ={8,7,3} or {9,7,3}, wehave WT (u2), WT (w2) < 6+8+7+5 =27, a contraction.

When {f(cuz2), f(ewz), f(v2)} ={9, 8, 7}, we have WT (up), WT (w2) < 6+9+8+5=28. Thus, 28 = WT (u2).
Hence {f(cuz), f(va)} = {9, 8} and f(upvy) =5 so that f(cwy) = 7. However, WT'(wp) > 6+7+8+1=22,a
contradiction.

b.2) Suppose WT'(vi) = 15+ 144 13+ 10. Similarly, we have WT (1) = 6 + 154 12+ 11. Hence f(ujv) =
15. Now, {f(v1), f(cur)} = {12, 11}, {f(viw1), f(u1), fw1)} = {14, 13, 10} and f(cw1) € {9, 8, 7, 3}. So,
(fv1), f(viwr), f(ewr)) =(12,10,8) or (11, 10,9). Similar to the above case, we get WT (u2), WT (w2) <6+9+7+5=
27, a contradiction.

When f(c) =13, we geta =38 —3d > 10. Sothatd <9. Therefore, (a,d) € {(35,1), (32,2), (29, 3), (26,4), (23,5),
(20, 6), (17,7), (14, 8), (11,9)}. It suffices to show that the cases (a, d) = (14, 8) and (a, ) =(1 1 , 9) do not exist.

Consider (a, d) = (11, 9). We must have a = 1+2+43+5. Since f(c) = 13, WT (u;), WT'(w;) > 19 fori =1, 2.
Without loss of generality, let WT (vi) = f(u1) + f(w1) + f(uivi) + f(viwy) = 11. Thus, f(ujvi) > 1, f(vi)+ f(cur) >
44 6sothat WT'(u;) > 1+4+6+ 13 =24 > 20. Similarly, WT (u2), WT (w1), WT (w2), WT () > 20. Therefore, total
weight 20 does not exist, a contradiction.

Consider (a, d) = (14, 8). The total weights are 14,22, 30, 38, 46,54, 62. Now WT (v;) <15+ 14412411 =52 and
WT(u;), WT (w;) <12+ 13+ 144 15=54, fori = 1, 2. Thus WT (c) = 62. Without loss of generality, let WT (1) = 54.
Thus, each remaining total weight is at most 15411+ 1049 = 45. So that total weight 46 does not exist, a contradiction.

O

5. Conclusion and open problems

In this paper, we have obtained necessary and / or sufficient condition for 1-regular graphs, 2-regular graphs nCs, nCy,
and one point union of n > 2 copies of P, C3, C4 respectively, to admit an (a, d)-total neighborhood-antimagic labeling.
Particularly, (1) from Lemma 4, we know that if nCs is (a, d)-total neighborhood-antimagic, then d < 7; (2) from Lemma 5,
we know that if n is even and nCs is (a, d)-total neighborhood-antimagic, thend =0 (mod 4). We have completely studied
the cases when d = 2, 4, 6 from Theorem 3.5 to Theorem 3.7. The remaining casesisd =1, 3, 5, 7. The following question
and problems arise naturally.

Question 1 Do there exist odd n, d such that nC; is (a, d)-total neighborhood-antimagic?
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Problem 1 For d = 1, 2, determine all the possible @ such that nP, admits an (a, d)-total neighborhood-antimagic
labeling.

Problem 2 Study the (a, d)-total neighborhood-antimagic labelings of regular graphs.
We end this paper with the following conjecture.

Conjecture 1 The one point union of cycles with order at least 5 is not (a, d)-total neighborhood-antimagic for all
a, d>1.
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