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Abstract: Suppose G = (V, E) is a graph of p vertices and q edges. Let f : V ∪E → {1, 2, . . . , p+ q} be a bijection
such thatWT (u) = ∑[ f (ux)+ f (x)] (over every neighbor x of u) is the total weight of vertex u induced by f . We say G is
(a, d)-total neighborhood-antimagic if all the total weights form an arithmetic progression with first term a and common
difference d. In this paper, we obtain many necessary and sufficient conditions for 1- and 2-regular graphs, and the one
point union of such graphs to admit (a, d)-total neighborhood-antimagic labeling.
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1. Introduction
For a graph G = (V, E) with vertex set V (G) and edge set E(G) that has order p and size q, a bijective labeling

g: E(G)→ {1, 2, . . . , q} is an antimagic labeling if all the induced vertex labels, each given by the sum of the incident
edge labels, are distinct. The most famous unsolved problem is the conjecture that all connected graphs, except the
graph K2, are antimagic (see [1]). We also say g is a magic labeling if all the induced vertex labels are equal. In [2],
the authors introduced the concept of (a, d)-antimagic labeling in which the induced vertex labels form an arithmetic
progression with first term a and common difference d. Motivated by this, the authors in [3] introduced the concept
of vertex-antimagic total labeling (respectively, the (a, d)-vertex-antimagic total labeling). A bijective total labeling
f : V (G)∪E(G)→{1, 2, . . . , p+q} is vertex-antimagic total (respectively, (a, d)-vertex-antimagic total) if the weight of
all the vertices are distinct (respectively, form an arithmetic progression with first term a and common difference d), where
the weight of a vertex u is f (u)+∑ f (ux) over all the vertices x adjacent to u. Further, we say a bijective total labeling f
is a total neighborhood-antimagic labeling if for every two distinct vertices u, v,WT (u) ̸=WT (v) where the total weight
WT (u) = ∑( f (ux)+ f (x)), over every neighbor x of u. Moreover, we say a total neighborhood-antimagic labeling is
also an (a, d)-total neighborhood-antimagic if all the total weights form an arithmetic progression with first term a and
common difference d ≥ 1 (see [4]). Note that if we allow d = 0, the labeling is also known as a total neighborhood-magic
labeling (with magic constant a) since all the vertices have total weights a (see [5, 6]). Interested readers may refer to [7–
14] for more known results. The disjoint union of graphs G and H is denoted G+H. For n ≥ 2, the disjoint union of n
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copies of G is denoted nG. Let [a, b] = {a, a+1, . . . , b} for integers a, b and a < b. For a vertex v of G, let deg(v) be the
degree of v in G, ∆ and δ be the maximum and minimum degree of vertices in G.

In [4], the authors obtained necessary or sufficient conditions for a cycle to admit (a, d)-total neighborhood-antimagic
labeling. Motivated by the fact that a cycle is a 2-regular graph, we study the (a, d)-total neighborhood-antimagic labeling
of 1-regular graphs in Section 2. In Section 3, we obtain necessary or sufficient conditions for 2-regular graphs to admit
an (a, d)-total neighborhood-antimagic labeling. Consequently, we completely determine the (a, d)-total neighborhood-
antimagic labeling of nC3 and nC4 for some even d. As a by-product, we obtain necessary and sufficient condition for
nC3 to admit a total neighborhood-magic labeling. In Section 4, we completely determine the (a, d)-total neighborhood-
antimagic labeling of the one point union of the three families of graphs in Sections 2 and 3. Suitable problems for further
research are given in Section 5.

The following theorem in [4] is needed.
Theorem 1 Suppose G is a graph of order p ≥ 2 and size q ≥ 1. If G admits an (a, d)-total neighborhood-antimagic

labeling f , then
(a) the sum of all the total weights is ∑v∈V (G) deg(v) f (v)+2Se = pa+ p(p−1)

2 d, where Se is the sum of all the edge
labels,

(b) a ≥ δ (2δ +1),
(c) d ≤ ∆[2(p+q)−2∆+1]−δ (2δ+1)

p−1 .

2. 1-regular graphs
In this section, we study 1-regular graphs nP2, n ≥ 1 with vertex set {ui, vi | 1 ≤ i ≤ n} and edge set {ei = uivi | 1 ≤

i ≤ n}.
Lemma 1 If nP2 is (a, d)-total neighborhood-antimagic, then 1 ≤ d ≤ 2.
Proof. By Theorem 1(c), we have d ≤ 1(6n−1)−1(2+1)

2n−1 = 6n−4
2n−1 = 3− 1

2n−1 < 3. Thus, d = 1 or 2.
Theorem 2 If n ≥ 1 is odd, nP2 is

( 3(n+1)
2 , 1

)
-total neighborhood-antimagic.

Proof. Define a labeling f : V (nP2)∪E(nP2)→ [1, 3n] as follows:
(i) f (ei) = i, 1 ≤ i ≤ n,

(ii) f (u2i−1) =
3n+3

2 − i, 1 ≤ i ≤ n+1
2 ,

(iii) f (v2i−1) = 2n+2− i, 1 ≤ i ≤ n+1
2 ,

(iv) f (u2i) =
5n+3

2 − i, 1 ≤ i ≤ n−1
2 ,

(v) f (v2i) = 3n+1− i, 1 ≤ i ≤ n−1
2 .

Thus, { f (ei) | 1 ≤ i ≤ n} = [1, n], { f (u2i−1), f (v2i−1) | 1 ≤ i ≤ n+1
2 } = [n+ 1, 2n+ 1], { f (u2i), f (v2i) | 1 ≤ i ≤

n−1
2 }= [2n+2, 3n].

Thus, f is a bijective total labeling of nP2. Moreover, for 1 ≤ i ≤ n+1
2 ,WT (u2i−1) = f (e2i−1)+ f (v2i−1) = 2n+1+ i.

So {WT (u2i−1) | 1 ≤ i ≤ n+1
2 }= [2n+2, 5n+3

2 ]. Similarly, we have

{WT (u2i) | 1 ≤ i ≤ n−1
2

}= [3n+2,
7n+1

2
];

{WT (v2i−1) | 1 ≤ i ≤ n+1
2

}= [
3n+3

2
, 2n+1];

{WT (v2i) | 1 ≤ i ≤ n−1
2

}= [
5n+5

2
, 3n+1].
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Thus, f is a ( 3n+3
2 , 1)-total neighborhood-antimagic labeling. This completes the proof.

Lemma 2 2P2 is not (a, 1)-total neighborhood-antimagic.
Proof. Suppose 2P2 admits an (a, 1)-total neighborhood-antimagic f . So the sum of all the total weights is 4a+6 =

2(1+ 2+ · · ·+ 6)−∑2
i=1[ f (ui)+ f (vi)]. Thus, ∑2

i=1[ f (ui)+ f (vi)] = 36− 4a. Since 10 ≤ ∑2
i=1[ f (ui)+ f (vi)] ≤ 18, we

have 10 ≤ 36−4a ≤ 18 so that 5 ≤ a ≤ 6. Note that the labels set is [1, 6].
Case 1. Suppose a= 5. So the total weights are 5 to 8. Without loss of generality, assumeWT (u1) = 5 so that f (e1)∈

{1, 2, 3, 4}. If f (e1) = 1, then f (v1) = 4 and f (u1) ∈ {5, 6}. If f (u1) = 5, then WT (v1) = 6, { f (u2), f (v2), f (e2)} =
{2, 3, 6} and the total weight 7 does not exist, a contradiction. If f (u1) = 6, then WT (v1) = 7, { f (u2), f (v2), f (e2)}=
{2, 3, 5} and the total weight 6 does not exist, a contradiction. If f (e1) = 2, 3 or 4, then f (v1) = 3, 2 or 1. Consequently,
we can conclude that total weight 8, 6 or 7 does not exist.

Case 2. Suppose a = 6. So that total weights are 6 to 9. Without loss of generality, assume WT (u1) = 6 so that
f (e1) ∈ {1, 2, 4, 5}. For each possible values of f (e1), we can get a contradiction similar to Case 1. The details are thus
omitted.

Theorem 3 For even n ≥ 4, nP2 is ( 3n
2 +2, 1)-total neighborhood-antimagic.

Proof. For n = 4, Figure 1 gives an (8, 1)-total neighborhood-antimagic labeling for 4P2:

Figure 1. The total weight of each vertex is indicated on the vertex

Suppose n ≥ 6, define a labeling f : V (nP2)∪E(nP2)→ [1, 3n] as follows:
(i) f (ei) = i for i ∈ [1, n]\{ n

2 +1, n
2 +2}, and f (e n

2+1) = n+1, f (e n
2+2) = n+2. The labels used are in {[1, n

2 ], n+
1, n+2, [ n

2 +3, n]}.
(ii) f (ui) =

3n
2 + 1+ i for i ∈ [1, n

2 ], f (u n
2+1) =

n
2 + 1, f (u n

2+2) =
n
2 + 2, and f (ui) =

n
2 + i for n

2 + 3 ≤ i ≤ n. The
labels used are in { n

2 +1, n
2 +2, [ 3n

2 +2, 2n+1], [n+3, 3n
2 ]}.

(iii) f (vi) =
5n
2 + i for i ∈ [1, n

2 ], f (v n
2+1) =

5n
2 , f (v n

2+2) =
3n
2 + 1, and f (vi) =

3n
2 − 1+ i for n

2 + 3 ≤ i ≤ n. The
labels used are in { 3n

2 +1, [ 5n
2 , 3n], [2n+2, 5n

2 −1]}.
Thus, f is a bijective total labeling of nP2. Moreover,
(1)WT (ui) =

5n
2 +2i for i≤ n

2 ,WT (u n
2+1) =

7n
2 +1,WT (u n

2+2) =
5n
2 +3, andWT (ui) =

3n
2 −1+2i for n

2 +3≤ i≤ n;
(2)WT (vi) =

3n
2 +1+2i for 1 ≤ i ≤ n

2 ,WT (v n
2+1) =

3n
2 +2,WT (v n

2+2) =
3n
2 +4,WT (vi) =

n
2 +2i for n

2 +3 ≤ i ≤ n.
Thus, the total weights set is [ 3n

2 + 2, 7n
2 + 1]. Therefore, f is a ( 3n

2 + 2, 1)-total neighborhood-antimagic labeling.
This completes the proof.

Lemma 3 For n ≥ 1, nP2 is (n+2, 2)-total neighborhood-antimagic.
Proof. Define a bijective total labeling f : V (nP2)∪E(nP2)→ [1, 3n] such that f (ui) = i, f (ei) = n+ i and f (vi) =

2n+ i for 1 ≤ i ≤ n. It is easy to verify thatWT (vi) = n+2i andWT (ui) = 3n+2i for 1 ≤ i ≤ n. So f is an (n+2, 2)-total
neighborhood-antimagic labeling. This completes the proof.

Corollary 1 Suppose n ≥ 1, nP2 is (i) (a, 1)-total neighborhood-antimagic if and only if n ̸= 2, and (ii) (a, 2)-total
neighborhood-antimagic, for all n and some suitable a.
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3. 2-regular graphs nC3nC3nC3 and nC4nC4nC4

Form≥ 3, letV (nCm) = {vi, j | 1≤ i≤ n, 1≤ j ≤m} and E(nCm) = {ei, j = vi, jvi, j+1 | 1≤ i≤ n, 1≤ j ≤m, vi, m+1 =

vi, 1}.
Lemma 4 If nCm is (a, d)-total neighborhood-antimagic, then

d ≤



4 if mn = 3,

5 if mn = 4,

6 if 5 ≤ mn ≤ 8

7 if mn ≥ 9.

Proof. Since ∆ = δ = 2 and p = q = mn, by Theorem 1, d ≤ 2(4mn−3)−10
mn−1 = 8mn−16

mn−1 = 8− 8
mn−1 . It is easy to verify

that the lemma holds.
Lemma 5 For n ≥ 1, m ≥ 3, if nCm is (a, d)-total neighborhood-antimagic, then a = 4mn + 2 − 1

2 (mn − 1)d.
Moreover, (i) nCm is not (a, d)-total neighborhood-antimagic if mn is even and d is odd; (ii) nC3 is not (a, d)-total
neighborhood-antimagic for even n and d = 2k, k is odd.

Proof. Suppose nCm is (a, d)-total neighborhood-antimagic, then sum of all the total weights is
mn
∑

k=1
[a+(k−1)d] =

2
2mn
∑

k=1
k. Thus mn

2 [2a+(mn−1)d] = 2mn(2mn+1). Hence,

2a+(mn−1)d = 4(2mn+1). (1)

From (1), we have (mn−1)d ≡ 0 (mod 2). Thus, if nCm is (a, d)-total neighborhood-antimagic, then either mn is
odd or d is even. Hence we have (i).

Suppose m = 3 and d ≡ 2 (mod 4). If nC3 is (a, d)-total neighborhood-antimagic, then from (1) we have

2a+(3n−1)d ≡ 0 (mod 4)

⇐⇒ 2a−2(n+1)≡ 0 (mod 4)

⇐⇒ a ≡ n+1 (mod 2).

If n is even, then a is odd. This implies that all the total weights are odd. Without loss of generality, we have
3
∑
j=1

WT (v1, j) = 2
3
∑
j=1

[ f (v1, j)+ f (e1, j)] is odd, a contradiction.

By the same argument as in proving Lemma 5 (i), we have the following corollary.
Corollary 2 LetG be a 2-regular graphwith even number of edges, thenG is not (a, d)-total neighborhood-antimagic

for odd d.
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3.1 nC3nC3nC3

Theorem 4 3C3 is not (a, 7)-total neighborhood-antimagic.
Proof. Suppose 3C3 is (a, 7)-total neighborhood-antimagic. From the proof of Lemma 5, we have 2a+56 = 4(19)

so that a = 10. Without loss of generality, let WT (v1, 3) = f (v1, 1)+ f (v1, 2)+ f (e1, 2)+ f (e1, 3) = a = 10. Since the
labels are in [1, 18], we must have { f (v1, 1), f (v1, 2), f (e1, 2), f (e1, 3)} = {1, 2, 3, 4}. Moreover, WT (v1, 1) = 10+
7i, WT (v1, 2) = 10+ 7 j for i ̸= j. Thus, WT (v1, 1)−WT (v1, 2) = f (v1, 2)+ f (e1, 3)− f (v1, 2)− f (e1, 2) ≡ 0 (mod 7).
Therefore, WT (v1, 1)−WT (v1, 2)≤ 4+3−2−1 = 4 ̸≡ 0 (mod 7), a contradiction.

For convenience, let A([i, j]; d) be the arithmetic progression with common difference d, the first term i and the last
term j.

Theorem 5 For n ≥ 1, nC3 is (a, 4)-total neighborhood-antimagic if and only if a = 6n+4.
Proof. By Lemma 5, the necessity holds. To prove the sufficiency, we give a (6n + 4, 2)-total neighborhood-

antimagic of nC3.
Suppose n is even. Define a labeling f : V (nC3)∪E(nC3)→ [1, 6n] as follows.
(1) For 1 ≤ i ≤ n

2 , f (vi, 1) = 2i−1, f (vi, 2) = 2n+2i−1, f (vi, 3) = 4n+2i−1. The labels used are odd numbers in
[1, n]∪ [2n+1, 3n]∪ [4n+1, 5n].

(2) For n
2 + 1 ≤ i ≤ n, f (vi, 1) = 2i− n, f (vi, 2) = n+ 2i, f (vi, 3) = 3n+ 2i. The labels used are even numbers in

[1, n]∪ [2n+1, 3n]∪ [4n+1, 5n].
(3) For 1 ≤ i ≤ n

2 , f (ei, 1) = 5n+2i−1, f (ei, 2) = n+2i−1, f (ei, 3) = 3n+2i−1. The labels used are odd numbers
in [n+1, 2n]∪ [3n+1, 4n]∪ [5n+1, 6n].

(4) For n
2 + 1 ≤ i ≤ n, f (ei, 1) = 4n + 2i, f (ei, 2) = 2i, f (ei, 3) = 2n + 2i. The labels used are even numbers in

[n+1, 2n]∪ [3n+1, 4n]∪ [5n+1, 6n].
Clearly, f is a bijective total labeling. Moreover, for 1 ≤ i ≤ n, WT (vi, 1) = f (vi, 2)+ f (vi, 3)+ f (ei, 1)+ f (ei, 3),

WT (vi, 2) = f (vi, 1)+ f (vi, 3)+ f (ei, 1)+ f (ei, 2) and WT (vi, 3) = f (vi, 1)+ f (vi, 2)+ f (ei, 2)+ f (ei, 3).
Suppose 1 ≤ i ≤ n

2 .
(a) WT (vi, 1) = (2n+2i−1)+(4n+2i−1)+(5n+2i−1)+(3n+2i−1) = 14n+8i−4.
So {WT (vi, 1) | 1 ≤ i ≤ n

2}= A([14n+4, 18n−4]; 8).
(b) WT (vi, 2) = (2i−1)+(4n+2i−1)+(5n+2i−1)+(n+2i−1) = 10n+8i−4.
So {WT (vi, 2) | 1 ≤ i ≤ n

2}= A([10n+4, 14n−4]; 8).
(c) WT (vi, 3) = (2i−1)+(2n+2i−1)+(n+2i−1)+(3n+2i−1) = 6n+8i−4.
So {WT (vi, 3) | 1 ≤ i ≤ n

2}= A([6n+4, 10n−4]; 8).
Suppose n

2 +1 ≤ i ≤ n. Similarly, we have
(d) {WT (vi, 1) | n

2 +1 ≤ i ≤ n}= A([14n+8, 18n]; 8);
(e) {WT (vi, 2) | n

2 +1 ≤ i ≤ n}= A([10n+8, 14n]; 8);
(f) {WT (vi, 3) | n

2 +1 ≤ i ≤ n}= A([6n+8, 10n]; 8).
Thus, f is a (6n+4, 4)-total neighborhood-antimagic labeling.
Suppose n is odd. Define a labeling f : V (nC3)∪E(nC3)→ [1, 6n] as follows.
(1) For 1 ≤ i ≤ n, f (vi, 1) = 2i−1, f (vi, 2) = 2n+2i−1, f (vi, 3) = 4n+2i−1. The labels used are odd numbers in

[1, 6n].
(2) For 1 ≤ i ≤ n+1

2 , f (ei, 1) = 6n+ 4− 4i, f (ei, 2) = 2n+ 4− 4i, f (ei, 3) = 4n+ 4− 4i. The labels used are in
A([2, 2n]; 4)∪A([2n+2, 4n]; 4)∪A([4n+2, 6n]; 4).

(3) For n+3
2 ≤ i ≤ n, f (ei, 1) = 8n+ 4− 4i, f (ei, 2) = 4n+ 4− 4i, f (ei, 3) = 6n+ 4− 4i. The labels used are in

A([4, 2n−2]; 4)∪A(2n+4, 4n−2]; 4)∪A(4n+4, 6n−2]; 4).
Clearly, f is a bijective total labeling. By a similar computation as above, we have
(a) {WT (vi, 1) | 1 ≤ i ≤ n+1

2 }= A([14n+4, 16n+2]; 4);
(b) {WT (vi, 2) | 1 ≤ i ≤ n+1

2 }= A([10n+4, 12n+2]; 4);
(c) {WT (vi, 3) | 1 ≤ i ≤ n+1

2 }= A([6n+4, 8n+2]; 4), and
(d) {WT (vi, 1) | n+3

2 ≤ i ≤ n}= A([16n+6, 18n]; 4);

Contemporary Mathematics 292 | Zhen-Bin Gao, et al.



(e) {WT (vi, 2) | n+3
2 ≤ i ≤ n}= A([12n+6, 14n]; 4);

(f) {WT (vi, 3) | n+3
2 ≤ i ≤ n}= A([8n+6, 10n]; 4).

Thus, f is a (6n+4, 4)-total neighborhood-antimagic labeling. This completes the proof.
Theorem 6 For n ≥ 1, nC3 is (a, 2)-total neighborhood-antimagic if and only if n is odd and a = 9n+3.
Proof. By Lemma 5, the necessity holds. To prove the sufficiency, we give a (9n + 3, 2)-total neighborhood-

antimagic of nC3. Now consider odd n ≥ 1. Define a labeling f : V (nC3)∪E(nC3)→ [1, 6n] as follows:
(1) For 1 ≤ i ≤ n, f (vi, 1) = i, f (vi, 2) = n+ i, f (vi, 3) = 2n+ i. The labels used are in [1, 3n].
(2) For 1 ≤ i ≤ n+1

2 , f (ei, 1) =
11n−1

2 + i, f (ei, 2) =
7n−1

2 + i, f (ei, 3) =
9n−1

2 + i. The labels used are in [ 7n+1
2 , 4n}∪

[ 9n+1
2 , 5n]∪ [ 11n+1

2 , 6n].
(3) For n+3

2 ≤ i ≤ n, f (ei, 1) =
9n−1

2 + i, f (ei, 2) =
5n−1

2 + i, f (ei, 3) =
7n−1

2 + i. The labels used are in [3n+1, 7n−1
2 ]∪

[4n+1, 9n−1
2 ]∪ [5n+1, 11n−1

2 ].
Clearly, f is a bijective total labeling.
Suppose 1 ≤ i ≤ n+1

2 .
(a) WT (vi, 1) = (n+ i)+(2n+ i)+( 11n−1

2 + i)+( 9n−1
2 + i) = 13n−1+4i.

So {WT (vi, 1) | 1 ≤ i ≤ n+1
2 }= A([13n+3, 15n+1]; 4).

(b) WT (vi, 2) = {i+(2n+ i)+( 11n−1
2 + i)+( 7n−1

2 + i) = 11n−1+4i.
So {WT (vi, 2) | 1 ≤ i ≤ n+1

2 }= A([11n+3, 13n+1]; 4).
(c) WT (vi, 3) = {i+(n+ i)+( 7n−1

2 + i)+( 9n−1
2 + i) = 9n−1+4i.

So {WT (vi, 3) | 1 ≤ i ≤ n+1
2 }= A([9n+3, 11n+1]; 4).

Suppose n+3
2 ≤ i ≤ n. Similarly we have

(d) {WT (vi, 1) | n+3
2 ≤ i ≤ n}= A([13n+5, 15n−1]; 4),

(e) {WT (vi, 2) | n+3
2 ≤ i ≤ n}= A([11n+5, 13n−1]; 4),

(f) {WT (vi, 3) | n+3
2 ≤ i ≤ n}= A([9n+5, 11n−1]; 4).

Thus, f is a (9n+3, 2)-total neighborhood-antimagic labeling. This completes the proof.
Theorem 7 nC3 is (a, 6)-total neighborhood-antimagic if and only if n ≥ 3 is odd and a = 3n+5.
Proof. By Lemmas 4 and 5, the necessity holds. To prove the sufficiency, we give a (3n+5, 6)-total neighborhood-

antimagic of nC3 for odd n ≥ 3.
Case (1). n = 6t + 1 ≥ 7. We shall show that nC3 admits an (18t + 8, 6)-total neighborhood-antimagic labeling.

Suppose n = 7. A required labeling is given in Figure 2 below.

Figure 2. The total weights set is A([26, 146]; 6)
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Suppose n ≥ 13 (i.e., t ≥ 2). We shall define a total labeling f : V (nC3)∪E(nC3)→ [1, 36t +6].
(a) Firstly, we label the vertices and edges of the first 3t +1 C3’s.
For vertices vk, j, where 1 ≤ k ≤ 3t +1 and 1 ≤ j ≤ 3,

j 1 2 3
f (v3i−2, j) 9i−8 9i−7 9i−6
f (v3i−1, j) 9i−5 9i−4 9i−3
f (v3i, j) 9i−2 9i−1 9i

here 1 ≤ i ≤ t −1,

j 1 2 3
f (v3t−2, j) 9t −8 9t −7 9t −6
f (v3t−1, j) 9t −5 9t −4 9t −3
f (v3t, j) 9t −2 9t +1 9t +4

f (v3t+1, j) 9t −1 9t +2 9t +3

The labels used are in

[1, 9t +4]\{9t}. (2)

For edges ek, j, where 1 ≤ k ≤ 3t −3 and 1 ≤ j ≤ 3,

j 2 3 1
f (e3i−2, j) 9t +18i−18 9t +18i−13 9t +18i−8
f (e3i−1, j) 9t +18i−12 9t +18i−7 9t +18i−2
f (e3i, j) 9t +18i−6 9t +18i−1 9t +18i+4

here 1 ≤ i ≤ t −1. The labels used are in

j 2 3 1
f (e3i−2, j) A([9t, 27t −36]; 18) A([9t +5, 27t −31]; 18) A([9t +10, 27t −26]; 18)
f (e3i−1, j) A([9t +6, 27t −30]; 18) A([9t +11, 27t −25]; 18) A([9t +16, 27t −20]; 18)
f (e3i, j) A([9t +12, 27t −24]; 18) A([9t +17, 27t −19]; 18) A([9t +22, 27t −14]; 18)

For edges ek, j, where 3t −2 ≤ k ≤ 3t +1 and 1 ≤ j ≤ 3,

j 2 3 1
f (e3t−2, j) 27t −18 27t −13 27t −8
f (e3t−1, j) 27t −12 27t −7 27t −2
f (e3t, j) 27t −6 27t −3 27t

f (e3t+1, j) 27t +2 27t +5 27t +10

Combining with the above edge labels, the labels used are in
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{27t +2, 27t −3}∪A([9t, 27t]; 18)∪A([9t +5, 27t +5]; 18)∪A([9t +6, 27t −12]; 18)

∪A([9t +10, 27t +10]; 18)∪A([9t +11, 27t −7]; 18)∪A([9t +12, 27t −6]; 18) (3)

∪A([9t +16, 27t −2]; 18)∪A([9t +17, 27t −19]; 18)∪A([9t +22, 27t −14]; 18).

(b) Secondly, we label the vertices and edges of the next 3t C3’s. For vertices vk, j, where 3t + 2 ≤ k ≤ 6t + 1 and
1 ≤ j ≤ 3,

j 1 2 3
f (v3i−1, j) 18i−9t −11 18i−9t −10 18i−9t −9
f (v3i, j) 18i−9t −5 18i−9t −4 18i−9t −3

f (v3i+1, j) 18i−9t +1 18i−9t +2 18i−9t +3

here t +1 ≤ i ≤ 2t −1,

j 1 2 3
f (v6t−1, j) 27t −11 27t −10 27t −9
f (v6t, j) 27t −5 27t −4 27t −1

f (v6t+1, j) 27t +1 27t +4 27t +7

The labels used are in

A([9t +7, 27t +7]; 18)∪A([9t +8, 27t −10]; 18)∪A([9t +9, 27t −9]; 18)

∪A([9t +13, 27t −5]; 18)∪A([9t +14, 27t −4]; 18)∪A([9t +15, 27t −21]; 18) (4)

∪A([9t +19, 27t +1]; 18)∪A([9t +20, 27t −16]; 18)∪A([9t +21, 27t −15]; 18)

∪{27t −1, 27t +4}.

Combining (3) and (4) we have the label used in

[9t, 27t +2]∪{27t +4, 27t +5, 27t +7, 27t +10}. (5)

For edges ek, j, where 3t +2 ≤ k ≤ 6t +1 and 1 ≤ j ≤ 3,

Volume 7 Issue 1|2026| 295 Contemporary Mathematics



j 2 3 1
f (e3i−1, j) 18t +9i−6 18t +9i−1 18t +9i+4
f (e3i, j) 18t +9i−3 18t +9i+2 18t +9i+7

f (e3i+1, j) 18t +9i 18t +9i+5 18t +9i+10

here t +1 ≤ i ≤ 2t −1,

j 2 3 1
f (e6t−1, j) 36t −6 36t −1 36t +4
f (e6t, j) 36t −3 36t +2 36t +5

f (e6t+1, j) 36t 36t +3 36t +6

The labels used are in

A([27t +3, 36t +3]; 9)∪A([27t +6, 36t +6]; 9)∪A([27t +8, 36t −1]; 9)

∪A([27t +9, 36t]; 9)∪A([27t +11, 36t +2]; 9)∪A([27t +13, 36t +4]; 9)

∪A([27t +14, 36t +5]; 9)∪A([27t +16, 36t −2]; 9)∪A([27t +19, 36t +1]; 9)

= [27t +11, 36t +6]∪{27t +3, 27t +6, 27t +8, 27t +9}. (6)

Combining (2), (5) and (6), we see that all labels in [1, 36t +6] are used.
We shall now determine the total weights of the vertices.
1) Consider 1 ≤ i ≤ t − 1. The vertices of the (3i− 2)-nd C3 have total weights 18t + 54i− 46, 18t + 54i− 40 and

18t +54i−34. The vertices of the (3i−1)-stC3 have total weights 18t +54i−28, 18t +54i−22 and 18t +54i−16. The
vertices of the (3i)-th C3 have total weights 18t + 54i− 10, 18t + 54i− 4 and 18t + 54i+ 2. So the total weights set for
these vertices is A([18t +8, 72t −52]; 6).

2) For vertices in the (3t −2)-nd to the (3t +1)-stC3, one may check that their total weights set is A([72t −46, 72t +
20]; 6).

3) Consider t + 1 ≤ i ≤ 2t − 1. The vertices of the (3i− 1)-st C3 have total weights 18t + 54i− 28, 18t − 54i− 22
and 18t +54i−16. The vertices of the (3i)-th C3 have total weights 18t +54i−10, 18t +54i−4 and 18t +54i+2. The
vertices of the (3i+1)-st C3 have total weights 18t +54i+8, 18t +54i+14 and 18t +54i+20. So the total weights set
for these vertices is A([72t +26, 126t −34]; 6).

4) For vertices in the (6t −1)-st to (6t +1)-st C3, one may check that their total weights set is A([126t −28, 126t +
20]; 6).

Thus, f is an (18t +8, 6)-total neighborhood-antimagic labeling.
Case (2). n = 6t + 3 ≥ 3. We shall show that nC3 admits an (18t + 14, 6)-total neighborhood-antimagic labeling.

Suppose n = 3. A required labeling is given in Figure 3 below.
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Figure 3. The total weights set is A([14, 62]; 6)

Suppose n = 9. A required labeling is given in Figure 4 below.

Figure 4. The total weights set is A([32, 188]; 6)

Suppose n ≥ 15 (or t ≥ 2). We shall define a total labeling f : V (nC3)∪E(nC3)→ [1, 36t +18].
(a) Firstly, we label the vertices and edges of the first 3t +3 C3’s.
For vertices vk, j, where 1 ≤ k ≤ 3t +3 and 1 ≤ j ≤ 3,

j 1 2 3
f (v3i−2, j) 9i−8 9i−5 9i−2
f (v3i−1, j) 9i−7 9i−4 9i−1
f (v3i, j) 9i−6 9i−3 9i

here 1 ≤ i ≤ t,

j 1 2 3
f (v3t+1, j) 9t +1 9t +4 9t +7
f (v3t+2, j) 9t +2 9t +5 9t +8
f (v3t+3, j) 9t +10 9t +13 9t +16

The set of all vertex labels of the first 3t +3 C3’s is
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[1, 9t +16]\{9t +3, 9t +6, 9t +9, 9t +11, 9t +12, 9t +14, 9t +15}. (7)

For edges ek, j, where 1 ≤ k ≤ 3t +3 and 1 ≤ j ≤ 3,

j 2 3 1
f (e3i−2, j) 9t +18i−15 9t +18i−12 9t +18i−9
f (e3i−1, j) 9t +18i−7 9t +18i−4 9t +18i−1
f (e3i, j) 9t +18i+1 9t +18i+4 9t +18i+7

here 1 ≤ i ≤ t,

j 2 3 1
f (e3t+1, j) 27t +3 27t +6 27t +9
f (e3t+2, j) 27t +11 27t +14 27t +17
f (e3t+3, j) 27t +12 27t +15 27t +18

The edge labels used in the first 3t C3’s are in

j 2 3 1
f (e3i−2, j) A([9t +3, 27t −15]; 18) A([9t +6, 27t −12]; 18) A([9t +9, 27t −9]; 18)
f (e3i−1, j) A([9t +11, 27t −7]; 18) A([9t +14, 27t −4]; 18) A([9t +17, 27t −1]; 18)
f (e3i, j) A([9t +19, 27t +1]; 18) A([9t +22, 27t +4]; 18) A([9t +25, 27t +7]; 18)

here 1 ≤ i ≤ t.

Combining with the next 3 C3’s, the set of all edge labels of the first 3t +3 C3’s is

A([9t +3, 27t +3]; 18)∪A([9t +6, 27t +6]; 18)∪A([9t +9, 27t +9]; 18)

∪A([9t +11, 27t +11]; 18)∪A([9t +14, 27t +14]; 18)∪A([9t +17, 27t +17]; 18) (8)

∪A([9t +19, 27t +1]; 18)∪A([9t +22, 27t +4]; 18)∪A([9t +25, 27t +7]; 18)

∪{27t +12, 27t +15, 27t +18}

(b) Secondly, we label the vertices and edges of the last 3t C3’s.
For vertices vk, j and edges ek, j , where 3t +4 ≤ k ≤ 6t +3 and 1 ≤ j ≤ 3,
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j 1 2 3
f (v3i−2, j) 18i−9t −24 18i−9t −21 18i−9t −18
f (v3i−1, j) 18i−9t −16 18i−9t −13 18i−9t −10
f (v3i, j) 18i−9t −8 18i−9t −5 18i−9t −2

here t +2 ≤ i ≤ 2t +1,

j 2 3 1
f (e3i−2, j) 18t +9i+1 18t +9i+4 18t +9i+7
f (e3i−1, j) 18t +9i+2 18t +9i+5 18t +9i+8
f (e3i, j) 18t +9i+3 18t +9i+6 18t +9i+9

here t +2 ≤ i ≤ 2t +1.

From the very top array above, we have that the labels used are in

j 1 2 3
f (v3i−2, j) A([9t +12, 27t −6]; 18) A([9t +15, 27t −3]; 18) A([9t +18, 27t]; 18)
f (v3i−1, j) A([9t +20, 27t +2]; 18) A([9t +23, 27t +5]; 18) A([9t +26, 27t +8]; 18)
f (v3i, j) A([9t +28, 27t +10]; 18) A([9t +31, 27t +13]; 18) A([9t +34, 27t +16]; 18)

here t +2 ≤ i ≤ 2t +1.
Combining the above array with (7) and (8), we see that the labels used are in [1, 27t +18].
From the second top array, we have that the labels used are in

j 2 3 1
f (e3i−2, j) A([27t +19, 36t +10]; 9) A([27t +22, 36t +13]; 9) A([27t +25, 36t +16]; 9)
f (e3i−1, j) A([27t +20, 36t +11]; 9) A([27t +23, 36t +14]; 9) A([27t +26, 36t +17]; 9)
f (e3i, j) A([27t +21, 36t +12]; 9) A([27t +24, 36t +15]; 9) A([27t +27, 36t +18]; 9)

here t +2 ≤ i ≤ 2t +1.
Thus the set of edge labels of the last 3t C3’s is [27t +19, 36t +18].
Thus, f is bijective. We shall now determine the total weights of the vertices.
1) For 1 ≤ i ≤ t, the vertices of the (3i−2)-ndC3 have total weights 18t+54i−40, 18t+54i−34 and 18t+54i−28.

The vertices of the (3i−1)-stC3 have total weights 18t +54i−22, 18t +54i−16 and 18t +54i−10. The vertices of the
(3i)-th C3 have total weights 18t +54i−4, 18t +54i+2 and 18t +54i+8. So the total weights set is A([18t +14, 72t +
8]; 6).

2) For the (3t +1)-st to (3t +3)-rd C3, their total weights set is A([72t +14, 72t +62]; 6).
3) For t + 2 ≤ i ≤ 2t + 1, the vertices of the (3i− 2)-nd C3 have total weights 18t + 54i− 40, 18t + 54i− 34 and

18t + 54i− 28. The vertices of the (3i− 1)-st C3 have total weights 18t + 54i− 22, 18t + 54i− 16 and 18t + 54i− 10.
The vertices of the (3i)-thC3 have total weights 18t +54i−4, 18t +54i+2 and 18t +54i+8. So, the total weights set is
A([72t +68, 126t +8]; 6).

Thus, f is an (18t +14, 6)-total neighborhood-antimagic labeling.
Case (3). n = 6t +5 ≥ 5. We shall show that nC3 admits an (18t +20, 6)-total neighborhood-antimagic labeling. A

required labeling for n = 5 and n = 11 are given in Figure 5 and Figure 6 below.
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Figure 5. The total weights set is A([20, 104]; 6)

Figure 6. The total weights set is A([38, 230]; 6)

Consider n ≥ 17 (or t ≥ 2). We shall define a total labeling f : V (nC3)∪E(nC3)→ [1, 36t +30].
(a) Firstly, we label the vertices and edges of the first 3t +4 C3’s.
For vertices vk, j, where 1 ≤ k ≤ 3t +4 and 1 ≤ j ≤ 3,

j 1 2 3
f (v3i−2, j) 9i−8 9i−5 9i−2
f (v3i−1, j) 9i−7 9i−4 9i−1
f (v3i, j) 9i−6 9i−3 9i

here 1 ≤ i ≤ t,

j 1 2 3
f (v3t+1, j) 9t +1 9t +2 9t +3
f (v3t+2, j) 9t +4 9t +7 9t +10
f (v3t+3, j) 9t +5 9t +8 9t +11
f (v3t+4, j) 9t +13 9t +16 9t +19

The set of all vertex labels of the first 3t +4 C3’s is
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[1, 9t +19]\{9t +6, 9t +9, 9t +12, 9t +14, 9t +15, 9t +17, 9t +18}. (9)

For edges ek, j, where 1 ≤ k ≤ 3t +3 and 1 ≤ j ≤ 3,

j 2 3 1
f (e3i−2, j) 9t +18i−12 9t +18i−9 9t +18i−6
f (e3i−1, j) 9t +18i−4 9t +18i−1 9t +18i+2
f (e3i, j) 9t +18i+4 9t +18i+7 9t +18i+10

here 1 ≤ i ≤ t,

j 2 3 1
f (e3t+1, j) 27t +6 27t +11 27t +16
f (e3t+2, j) 27t +12 27t +15 27t +18
f (e3t+3, j) 27t +20 27t +23 27t +26
f (e3t+4, j) 27t +21 27t +24 27t +27

The edge labels used in the first 3t C3’s are in

j 2 3 1
f (e3i−2, j) A([9t +6, 27t −12]; 18) A([9t +9, 27t −9]; 18) A([9t +12, 27t −6]; 18)
f (e3i−1, j) A([9t +14, 27t −4]; 18) A([9t +17, 27t −1]; 18) A([9t +20, 27t +2]; 18)
f (e3i, j) A([9t +22, 27t +4]; 18) A([9t +25, 27t +7]; 18) A([9t +28, 27t +10]; 18)

here 1 ≤ i ≤ t.

Combining with the next 4 C3’s, the set of all edge labels of the first 3t +4 C3’s is

A([9t +6, 27t +24]; 18)∪A([9t +9, 27t −9]; 18)∪A([9t +12, 27t +12]; 18)

∪A([9t +14, 27t +−4]; 18)∪A([9t +17, 27t −1]; 18)∪A([9t +20, 27t +20]; 18) (10)

∪A([9t +22, 27t +4]; 18)∪A([9t +25, 27t +7]; 18)∪A([9t +28, 27t +10]; 18)

∪{27t +11, 27t +15, 27t +16, 27t +18, 27t +21, 27t +23, 27t +26, 27t +27}.

(b) Secondly, we label the vertices and edges of the last 3t +1 C3’s.
For vertices vk, j, where 3t +5 ≤ k ≤ 6t +5 and 1 ≤ j ≤ 3,

j 1 2 3
f (v3i−1, j) 18i−9t −2 18i−9t −18 18i−9t −15
f (v3i, j) 18i−9t −13 18i−9t −10 18i−9t −7

f (v3i+1, j) 18i−9t −5 18i−9t −2 18i−9t +1

here t +2 ≤ i ≤ 2t,
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j 1 2 3
f (v6t+2, j) 27t −3 27t 27t +3
f (v6t+3, j) 27t +5 27t +8 27t +9
f (v6t+4, j) 27t +13 27t +14 27t +17
f (v6t+5, j) 27t +19 27t +22 27t +25

The set of all vertex labels of the first 3t +1 C3’s is

A([9t +15, 27t −3]; 18)∪A([9t +18, 27t]; 18)∪A([9t +21, 27t +3]; 18)

∪A([9t +23, 27t +5]; 18)∪A([9t +26, 27t +8]; 18)∪A([9t +29, 27t −7]; 18) (11)

∪A([9t +31, 27t +13]; 18)∪A([9t +34, 27t −2]; 18)∪A([9t +37, 27t +19]; 18)

∪{27t +9, 27t +14, 27t +17, 27t +22, 27t +25}.

Combining (9), (10) and (11), we see that the labels used in [1, 27t +27].
For edges ek, j, where 3t +5 ≤ k ≤ 6t +5 and 1 ≤ j ≤ 3,

j 2 3 1
f (e3i−1, j) 18t +9i+10 18t +9i+13 18t +9i+16
f (e3i, j) 18t +9i+11 18t +9i+14 18t +9i+17

f (e3i+1, j) 18t +9i+12 18t +9i+15 18t +9i+18

here t +2 ≤ i ≤ 2t,

j 2 3 1
f (e6t+2, j) 36t +19 36t +22 36t +25
f (e6t+3, j) 36t +20 36t +23 36t +28
f (e6t+4, j) 36t +21 36t +26 36t +29
f (e6t+5, j) 36t +24 36t +27 36t +30

The set of all edge labels of the last 3t +1 C3’s is [27t +28, 36t +30]. Thus f is bijective.
We shall now determine the total weights of the vertices.
1) For 1 ≤ i ≤ t, the vertices of the (3i−2)-ndC3 have total weights 18t+54i−34, 18t+54i−28 and 18t+54i−22.

The vertices of the (3i−1)-stC3 have total weights 18t+54i−16, 18t+54i−10 and 18t+54i−4. The vertices of the (3i)-
thC3 have total weights 18t+54i+2, 18t+54i+8 and 18t+54i+14. So the total weights set is A([18t+20, 72t+14]; 6).

2) For the (3t +1)-st to (3t +4)-th C3, their total weights set is A([72t +20, 72t +86]; 6).
3) For t + 2 ≤ i ≤ 2t, the vertices of the (3i− 1)-st C3 have total weights 18t + 54i− 16, 18t + 54i− 10 and 18t +

54i− 4. The vertices of the (3i)-th C3 have total weights 18t + 54i+ 2, 18t + 54i+ 8 and 18t + 54i+ 14. The vertices
of the (3i+ 1)-st C3 have total weights 18t + 54i+ 20, 18t + 54i+ 26 and 18t + 54i+ 32. So the total weights set is
A([72t +92, 126t +32]; 6).

4) For the (6t +2)-nd to (6t +5)-th C3, their total weights set is A([126t +38, 126t +104]; 6).
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Thus, f is an (18t +20, 6)-total neighborhood-antimagic labeling. This completes the proof.
As a by-product, we also have the following theorem on total neighborhood-magic.
Theorem 8 For n ≥ 1, nC3 is total neighborhood-magic if and only if the magic constant is 12n+2.
Proof. By Lemma 5 (i), the necessity holds. To prove the sufficiency, we give a total neighborhood-magic labeling

of nC3 with magic constant 12n+2. For 1 ≤ i ≤ n, define a labeling f : V (nC3)∪E(nC3)→ [1, 6n] as follows:
(1) f (vi, 1) = 3i−2, f (vi, 2) = 3i−1, f (vi, 3) = 3i,
(2) f (ei, 1) = 6n−3i+1, f (ei, 2) = 6n−3i+3, f (ei, 3) = 6n−3i+2.
Clearly, f is a bijective total labeling. For 1 ≤ i ≤ n,

WT (vi, 1) = (3i−1)+(3i)+(6n−3i+1)+(6n−3i+2) = 12n+2,

WT (vi, 2) = (3i−2)+(3i)+(6n−3i+1)+(6n−3i+3) = 12n+2,

WT (vi, 3) = (3i−2)+(3i−1)+(6n−3i+3)+(6n−3i+2) = 12n+2.

This completes the proof.

3.2 nC4nC4nC4

Lemma 6 For n ≥ 1, if nC4 is (a, d)-total neighborhood-antimagic, then d is even.
Proof. Suppose nC4 is (a, d)-total neighborhood-antimagic. The sum of all the total weights is

4n
∑

i=1
[a+(n−1)d] =

2
8n
∑

i=1
i. So 2n[2a+(4n−1)d] = 8n(8n+1) or 2a+(4n−1)d = 4(8n+1). Thus, 2a−d ≡ 0 (mod 4). So d is even.

Lemma 7 Suppose nC4 is (a, d)-total neighborhood-antimagic, then

d ≤


4 if n = 1,

6 if n ≥ 2.

Proof. From the proof above, we have a ≡ d
2 (mod 2). Combining with Lemma 4, we have the conclusion.

Theorem 9 For n ≥ 1, nC4 is (a, 2)-total neighborhood-antimagic if and only if a = 12n+3.
Proof. By Lemma 5, we have a = 12n+3. This proves the necessity.
We shall now give a (12n+ 3, 2)-total neighborhood-antimagic labeling of nC4. Consider f : V (nC4)∪E(nC4) →

[1, 8n] as follows.

j 1 2 3 4
f (vi, j) 6n+3−6i 6n+2−6i 6n−1+2i 6n+2i where 1 ≤ i ≤ n−1
f (vn, j) 8n 8n−1 2 3
f (ei, j) 6i−2 6i−1 6i 6i−5 where 1 ≤ i ≤ n

We have that the labels used are in
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j 1 2 3 4
f (vi, j) A([9, 6n−3]; 6) A([8, 6n−4]; 6) A([6n+1, 8n−3]; 2) A([6n+2, 8n−2]; 2)
f (vn, j) 8n 8n−1 2 3
f (ei, j) A([4, 6n−2]; 6) A([5, 6n−1]; 6) A([6, 6n]; 6) A([1, 6n−5]; 6)

Thus, all labels in [1, 8n] are used and hence f is a bijective total labeling.
We now determine the total weights of the vertices.
(a) For 1 ≤ i ≤ n−1,

WT (vi, 1) = (6n+2−6i)+(6n+2i)+(6i−2)+(6i−5) = 12n+8i−5,

WT (vi, 2) = (6n+3−6i)+(6n+2i−1)+(6i−2)+(6i−1) = 12n+8i−1,

WT (vi, 3) = (6n+2−6i)+(6n+2i)+(6i−1)+(6i) = 12n+8i+1,

WT (vi, 4) = (6n+2i−1)+(6n+3−6i)+(6i)+(6i−5) = 12n+8i−3.

So the total weights set is

A([12n+3, 20n−13]; 8)∪A([12n+7, 20n−9]; 8)∪A([12n+9, 20n−7]; 8)∪A([12n+5, 20n−11]; 8).

(b) WT (vn, 1) = (8n−1)+3+(6n−2)+(6n−5) = 20n−5, WT (vn, 2) = 8n+2+(6n−2)+(6n−1) = 20n−1,
WT (vn, 3) = (8n−1)+3+(6n−1)+6n = 20n+1, WT (vn, 4) = 8n+2+6n+(6n−5) = 20n−3.

Hence, the total weights set is {20n−5, 20n−3, 20n−1, 20n+1}.
Clearly, the total weights set is A([12n+ 3, 20n+ 1]; 2). Thus, f is a (12n+ 3, 2)-total neighborhood-antimagic

labeling. This completes the proof.

4. Some one point union graphs
Let Hi be a graph and vi ∈V (Hi) be fixed, 1 ≤ i ≤ n. A one point union of Hi, 1 ≤ i ≤ n, is the graph obtained from

the disjoint union of Hi by merging all vi into a single vertex which is called the merged vertex or core vertex. We denote
the one point union of Hi, 1 ≤ i ≤ n, by

n⊎
i=1

Hi for n ≥ 2.

Specially, if Hi = P2, then
n⊎

i=1
Hi, n ≥ 2, is a star, denoted St(n). If Hi =C3, then

n⊎
i=1

Hi, n ≥ 2, is called a friendship

graph, denoted Fn. For convenience, we let St(1) = P2 and F1 =C3.
In this section, we investigate the one point union of the three families of graphs in Sections 2 and 3.
Theorem 10 For n ≥ 1, St(n) is (a, d)-total neighborhood-antimagic if and only if

(n, a, d) ∈ {(1, 3, 1), (1, 3, 2), (1, 4, 1), (2, 4, 4), (2, 6, 2), (2, 7, 2), (2, 8, 1)}.

Contemporary Mathematics 304 | Zhen-Bin Gao, et al.



Proof. Let the vertex set and the edge set of St(n) be {vi | 1 ≤ i ≤ n}∪{u} and {ei = uvi | 1 ≤ i ≤ n}, respectively.
It is easy to verify case n= 1. Now, we consider n≥ 2. Suppose St(n) admits an (a, d)-total neighborhood-antimagic

labeling f : V (St(n))∪E(St(n))→ [1, 2n+1]. Now,

WT (u) =
n

∑
i=1

[ f (vi)+ f (ei)] =
2n+1

∑
i=1

i− f (u) = (n+1)(2n+1)− f (u),

WT (vi) = f (u)+ f (ei) for 1 ≤ i ≤ n.

Thus, WT (u)−WT (vi) = (n+1)(2n+1)−2 f (u)− f (ei)≥ (n+1)(2n+1)−2(2n+1)−2n = (n−1)(2n+1)−
2n > 0. So, WT (u) = a+nd is the largest total weight of all the vertices.

Without loss of generality, letWT (vi) = a+(i−1)d for 1 ≤ i ≤ n. Thus, d = f (ei+1)− f (ei) for 1 ≤ i < n. Since all
the values of f (e1), . . . , f (en) are in [1, 2n+1] and form an arithmetic progression with common difference d, we have
d ≤ 2. Recall that WT (u) = (n+ 1)(2n+ 1)− f (u). Since WT (u) = a+ nd and a = WT (v1) = f (u)+ f (e1), we now
have (n+1)(2n+1)− f (u) = f (u)+ f (e1)+nd. Thus,

0 = (n+1)(2n+1)−2 f (u)− f (e1)−nd

= (n−2)(2n+1)+2[(2n+1)− f (u)]+ [(2n+1)− f (e1)]−nd

> (n−2)(2n+1)−nd > 2n(n−2)−nd.

So, d > 2n−4. Therefore, 2n−3 ≤ d ≤ 2. Hence n ≤ 2. Consequently, n = 2 and d = 1, 2.
Suppose St(2) admits an (a, d)-total neighborhood-antimagic f . Now the labels set is [1, 5]. Thus, the sum of all

the total weights is a+(a+ d)+ (a+ 2d) = 2 f (u)+ f (v1)+ f (v2)+ 2 f (e1)+ 2 f (e2). This gives 3a+ 3d = 2(1+ 2+
3+ 4+ 5)− f (v1)− f (v2). Thus, f (v1)+ f (v2) ≡ 0 (mod 3). Therefore, we must have f (v1)+ f (v2) = 1+ 2 or 2+ 4
or 1+5. By symmetry, we may assume that f (v1)< f (v2).

(1) f (v1) = 1, f (v2) = 2.
If f (u) = 5, f (e1) = 3 (or 4), f (e2) = 4, (or 3), then the total weights of the vertices are 8, 9 and 10. So, St(2) is

(8, 1)-total neighborhood-antimagic.
If f (u) = 4, f (e1) = 3, f (e2) = 5, then the total weights of the vertices are 7, 9 and 11. So, St(2) is (7, 2)-total

neighborhood-antimagic.
If f (u) = 3, then it is easy to check that f is not a required labeling.
(2) f (v1) = 2, f (v2) = 4.
If f (u) = 5, f (e1) = 1 (or 3), f (e2) = 3 (or 1), then the total weights of the vertices are 6, 8 and 10. So, St(2) is

(6, 2)-total neighborhood-antimagic.
If f (u) = 3, f (e1) = 1 (or 5), f (e2) = 5 (or 1), then the total weights of the vertices are 4, 8 and 12. So, St(2) is

(4, 4)-total neighborhood-antimagic.
If f (u) = 1, then it is easy to check that f is not a required labeling.
(3) f (v1) = 1, f (v2) = 5. By enumeration, it is easy to check that f is not a required labeling.
This completes the proof.
Theorem 11 For n ≥ 2, Fn is (a, d)-total neighborhood-antimagic if and only if n = 2 and (a, d)∈ {(24, 3), (22, 4),

(20, 5), (18, 6)}.
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Proof. Let the vertex set and the edge set of Fn be {c, ui, vi | 1 ≤ i ≤ n} and {cui, cvi, uivi | 1 ≤ i ≤ n}, respectively.
Suppose Fn admits an (a, d)-total neighborhood-antimagic labeling f : V (Fn)∪ E(Fn) → [1, 5n+ 1]. Without loss of
generality, we may assume that WT (u1) is the largest total weight among all total weights of non-core vertices. Then
WT (c) =

n
∑

i=1
[ f (ui)+ f (vi)+ f (cui)+ f (cvi)] and WT (u1) = f (c)+ f (v1)+ f (cu1)+ f (u1v1). Now,

WT (c)−WT (u1) =
n

∑
i=1

[ f (ui)+ f (vi)+ f (cui)+ f (cvi)]− [ f (c)+ f (v1)+ f (cu1)+ f (u1v1)]

≥ [1+2+ · · ·+(4n−2)]− [5n+(5n+1)] = 8n(n−2)≥ 0.

Since WT (c) ̸= WT (u1), WT (c) > WT (u1). Thus WT (c) = a+ 2nd is the largest total weight. From Theorem 1
(b), a ≥ 10. Thus WT (c) = a+2nd ≥ 10+2nd. Moreover,

WT (c) =
n

∑
i=1

[ f (ui)+ f (vi)+ f (cui)+ f (cvi)]

=
5n+1

∑
i=1

i− [ f (c)+
n

∑
i=1

f (uivi)]≤
1
2
(5n+1)(5n+2)− [1+2+ · · ·+(n+1)]

= 12n2 +6n.

Thus, 12n2+6n≥ 10+2nd. Hence d ≤ 6n+3− 5
n . Since d =WT (c)−WT (u1)≥ 8n(n−2), 6n+3− 5

n ≥ 8n(n−2)
so that 8n2 −22n−3 ≤− 5

n < 0. Thus n ≤ 2. Under the hypothesis, n = 2.

Observe that the sum of total weights is 4 f (c) + 2
2
∑

i=1
[ f (ui) + f (vi) + f (cui) + f (cvi) + f (uivi)] =

5
2 (2a+ 4d) =

5(a+2d). Thus, 2 f (c)+2(1+2+ · · ·+11) = 5a+10d. So that

5a = 2 f (c)+132−10d. (12)

Since 1 ≤ f (c)≤ 11 and f (c)≡ 4 (mod 5), f (c) ∈ {4, 9}. Also, from Theorem 1 (c), d ≤ 8.
(1) Suppose f (c) = 4. We haveWT (c) is the sum of eight integers in {1, 2, 3, 5, 6, 7, 8, 9, 10, 11} so thatWT (c)≥ 41.

Therefore, (a, d, WT (c)) ∈ {(14, 7, 42), (12, 8, 44)}. Thus, (i) WT (c) = 1+ 2+ 3+ 5+ 6+ 7+ 8+ 10 = 42 or (ii)
WT (c) = 1+2+3+5+6+8+9+10 = 44 or (iii) WT (c) = 1+2+3+5+6+7+9+11 = 44.

In (i), (a, d) = (14, 7) and { f (u1v1), f (u2v2)}= {9, 11}. Now 35 = a+3d =WT (u1)≤ 11+4+ f (v1)+ f (cu1).
This implies that f (v1)+ f (cu1) ≥ 20 which is not possible. In (ii) and (iii), by a similar argument, we have the same
conclusion.

(2) Suppose f (c) = 9. Since a is a total weight of a non-core vertex, a is the sum of 9 and three integers in [1, 11]\{9}.
We have a ≥ 9+1+2+3 = 15. From (12), a+2d = 30. Thus d ≤ 7. Since a+4d =WT (c)≥ 36, d ≥ 3. Thus 3 ≤ d ≤ 7.
Therefore, (a, d, WT (c)) ∈ {(24, 3, 36), (22, 4, 38), (20, 5, 40), (18, 6, 42), (16, 7, 44)}.

For (a, d) = (24, 3), (22, 4), (20, 5), (18, 6), a required (a, d)-total neighborhood-antimagic labeling is given in
Figure 7.
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Figure 7. From left to right: (a, d) = (24, 3), (22, 4), (20, 5), (18, 6)

Consider a = 16, d = 7. Now,WT (c) = 44. There are four cases: (i)WT (c) = 1+2+3+4+5+8+10+11 = 44;
(ii) WT (c) = 1+ 2+ 3+ 4+ 6+ 7+ 10+ 11 = 44; (iii) WT (c) = 1+ 2+ 4+ 5+ 6+ 7+ 8+ 11 = 44; (iv) WT (c) =
1+3+4+5+6+7+8+10 = 44.

Since 37 =WT (u1) = 9+ f (v1)+ f (cu1)+ f (u1v1)≤ 9+11+10+ f (u1v1) = 30+ f (u1v1), f (u1v1)≥ 7.
In (i), f (u1v1) = 7 and f (u2v2) = 6. Thus, a is at least the sum of 6, 9 and two integers in {1, 2, 3, 4, 5, 8, 10, 11}

which is greater than 16. It is a contradiction. In (ii) and (iii), by a similar argument, we have the same conclusion.
In (iv), we have f (u1v1) = 11 and f (u2v2) = 2. Hence { f (v1), f (cu1)}= {7, 10}. Note that, a = 16 is the sum of 9

and three integers in [1, 11]\{9}. Thus a = 9+1+2+4 which is the smallest total weight of a non-core vertex. Without
loss of generality, we may assume WT (v2) = a. Hence { f (u1), f (cv2)}= {1, 4}.

Now, the unused integers are 3, 5, 6, 8. WT (v1) = f (c)+ f (u1v1)+ f (u1)+ f (cv1) ≥ 9+ 11+ 3+ 5 = 28. Thus
WT (v1) = 30 and f (u1)+ f (cv1) = 10 which is impossible.

This completes the proof.
Let Hi =C4. For n ≥ 2, let {c, ui, vi, wi | 1 ≤ i ≤ n} and {cui, cwi, uivi, viwi | 1 ≤ i ≤ n} be the vertex set and edge

set of Bn =
n⊎

i=1
Hi, respectively.

Theorem 12 For n ≥ 3, Bn is not (a, d)-total neighborhood-antimagic.
Proof. Suppose Bn admits an (a, d)-total neighborhood-antimagic labeling f : V (Bn)∪E(Bn)→ [1, 7n+ 1]. Then

WT (c) =
n
∑

i=1
[ f (ui) + f (wi) + f (cui) + f (cwi)], WT (ui) = f (c) + f (vi) + f (cui) + f (uivi), WT (vi) = f (ui) + f (wi) +

f (uivi) + f (viwi) and WT (wi) = f (c) + f (vi) + f (cwi) + f (viwi). From Theorem 1 (b) and (c), we have a ≥ 10 and
d ≤ 20

3 n+2− 10
3n .

Without loss of generality, we may assume that the largest total weight among the non-core vertex is WT (u1) or
WT (v1). Now,

WT (c)−WT (u1)≥ [1+2+ · · ·+(4n−1)]− [(7n+1)+7n+(7n−1)] = n(8n−23), (13)

WT (c)−WT (v1)≥ [1+2+ · · ·+(4n−2)]− [(7n+1)+7n] = 4n(2n−5)> n(8n−23). (14)

Therefore, WT (c) is the largest total weight for n ≥ 3, and hence WT (c) = a+3nd.
From (13) and (14), we get that d ≥ n(8n−23). Now n(8n−23) ≤ d ≤ 20n

3 +2− 10
3n < 20n

3 +2. It is equivalent to
24n2 −89n−6 < 0 or (24n+7)(n−4)<−22. Hence n ≤ 3. Thus n = 3.

Observe that the sum of the total weights is
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5(2a+9d) = 6 f (c)+2
3

∑
i=1

[ f (ui)+ f (vi)+ f (wi)+ f (cui)+ f (uivi)+ f (viwi)+ f (cwi)]

= 4 f (c)+2 ∑
x∈V (B3)∪E(B3)

f (x) = 4 f (c)+2
22

∑
j=1

j = 4 f (c)+506.

Thus,

4 f (c)+506 = 10a+45d. (15)

So d is even and f (c)≡ 1 (mod 5).
Suppose WT (v1) is the second large weight. From (14), we have d ≥ 12. But a+ 96 ≤ a+ 8d = WT (v1) ≤ 22+

21+20+19 = 82 which is impossible. Thus WT (u1) is the second large weight.
Now a+ 8d = WT (u1) ≤ 22+ 21+ 20+ f (c) = f (c)+ 63, we have 4 f (c)+506−45d

10 + 8d ≤ f (c)+ 63. This implies
that

35d −124 ≤ 6 f (c)≤ 126. (16)

Hence d < 8.
Substituting (15) inWT (c), we haveWT (c) = 4 f (c)+506+45d

10 . Then 78=
12
∑

i=1
i≤WT (c) = 4 f (c)+506+45d

10 . This implies

that d > 4. Consequently, d = 6 only.
From (16) we have f (c)> 14. Thus f (c) = 16, 21.
1) f (c) = 16. From (15), we have a = 30. Let M be the maximum label that gives to WT (c). Since 84 =WT (c)≥

1+2+ · · ·+11+M, M ≤ 18.
So, 78 =WT (u1) = 16+ f (v1)+ f (u1v1)+ f (cu1). Hence f (v1)+ f (u1v1)+ f (cu1) = 62. Thus, { f (v1), f (u1v1),

f (cu1)}= {22, 21, 19}. Thus f (cu1)≥ 19, which contradicts M ≤ 18.
2) f (c) = 21. From (15), we have a = 32. Let M be the maximum label contribute to WT (c). Since 86 =WT (c)≥

1+2+ · · ·+11+M, M ≤ 20.
So, 80 =WT (u1) = 21+ f (v1)+ f (u1v1)+ f (cu1). Hence f (v1)+ f (u1v1)+ f (cu1) = 59. Thus, { f (v1), f (u1v1),

f (cu1)}= {22, 20, 17} or {22, 19, 18}. Since M ≤ 20, 20 ≥ f (cu1)≥ 17.
2-1) Suppose f (cu1) = 20. Then WT (c)− f (cu1) = 66. That means { f (u j), f (w j), f (cu j), f (cw j) | 1 ≤ j ≤

3}\{ f (cu1)}= [1, 11]. Now

WT (v j) = f (u j)+ f (w j)+ f (w jv j)+ f (u jv j)≤ 11+10+22+19 = 62, j = 1, 2, 3,

WT (w j) = f (c)+ f (v j)+ f (w jv j)+ f (cw j)≤ 21+22+19+11 = 73, j = 1, 2, 3,

WT (ui) = f (c)+ f (vi)+ f (uivi)+ f (cui)≤ 21+22+19+11 = 73, i = 2, 3.

No total weight is 74, the third largest total weight, a contradiction.
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2-2) Suppose f (cu1) = 19, i.e., { f (v1), f (u1v1)}= {22, 18}. So, WT (c)− f (cu1) = 67. That means
{ f (u j), f (w j), f (cu j), f (cw j) | 1 ≤ j ≤ 3}\{ f (cu1)}= [1, 12]\{11}. Now

WT (v j) = f (u j)+ f (w j)+ f (w jv j)+ f (u jv j)≤ 12+10+20+22 = 64, j = 1, 2, 3,

WT (w1) = f (c)+ f (v1)+ f (w1v1)+ f (cw1)≤ 21+22+17+12 = 72,

WT (wi) = f (c)+ f (vi)+ f (wivi)+ f (cwi)≤ 21+20+17+12 = 70, i = 2, 3,

WT (ui) = f (c)+ f (vi)+ f (uivi)+ f (cui)≤ 21+20+17+12 = 70, i = 2, 3.

Similarly, it is impossible.
2-3) Suppose f (cu1) = 17, i.e., { f (v1), f (u1v1)} = {22, 20}. So, WT (c)− f (cu1) = 69. We may see that

{ f (u j), f (w j), f (cu j), f (cw j) | 1 ≤ j ≤ 3}\{ f (cu1)} is (i) [1, 10]∪{14}, (ii) [1, 9]∪{11, 13} or (iii) [1, 8]∪{10, 11, 12}.
Thus f (ui)+ f (wi)≤ 24. Now

WT (v j) = [ f (u j)+ f (w j)]+ f (w jv j)+ f (u jv j)≤ 24+19+22 = 65, j = 1, 2, 3,

WT (wi) = f (c)+ f (vi)+ f (wivi)+ f (cwi)≤ 21+19+18+14 = 72, i = 2, 3,

WT (ui) = f (c)+ f (vi)+ f (uivi)+ f (cui)≤ 21+19+18+14 = 72, i = 2, 3.

Thus, WT (w1) is the third largest total weight and WT (vi) is not the fourth largest total weight for each i. By
symmetry, we may assume the fourth largest total weight is WT (u2). Now 53 = 74− 21 = WT (w1)− f (c) = f (v1)+

f (w1v1)+ f (cw1)≤ 22+19+ f (cw1) = 41+ f (cw1). So f (cw1)≥ 12. We consider the following three cases.
(i) f (cw1) = 14. ThusWT (w1) = 21+20+19+14 so thatWT (u2) = f (c)+ f (v2)+ f (u2v2)+ f (cu2)≤ 21+18+

16+10 = 65.
(ii) f (cw1) = 13. ThusWT (w1) = 21+22+18+13 so thatWT (u2) = f (c)+ f (v2)+ f (u2v2)+ f (cu2)≤ 21+19+

16+11 = 67.
(iii) f (cw1) = 12. Thus WT (w1) = 21+ 22+ 19+ 12 so that WT (u2) = f (c)+ f (v2)+ f (u2v2)+ f (cu2) ≤ 21+

18+16+11 = 66.
We get a contraction for each case.
2-4) Suppose f (cu1) = 18, i.e., { f (v1), f (u1v1)} = {22, 19}. So WT (c)− f (cu1) = 68. We may see that

{ f (u j), f (w j), f (cu j), f (cw j) | 1 ≤ j ≤ 3}\{ f (cu1)} is (i) [1, 10]∪{13}, (ii) [1, 9]∪{11, 12}. Thus f (ui)+ f (wi)≤ 23.
Now

WT (v j) = [ f (u j)+ f (w j)]+ f (w jv j)+ f (u jv j)≤ 23+20+22 = 65, j = 1, 2, 3,

WT (wi) = f (c)+ f (vi)+ f (wivi)+ f (cwi)≤ 21+20+18+14 = 73, i = 2, 3,

WT (ui) = f (c)+ f (vi)+ f (uivi)+ f (cui)≤ 21+20+18+14 = 73, i = 2, 3.
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Thus, WT (w1) is the third largest total weight and WT (vi) is not the fourth largest total weight for each i. By
symmetry, we may assume the fourth largest total weight is WT (u2). Now 53 = 74− 21 = WT (w1)− f (c) = f (v1)+

f (w1v1)+ f (cw1)≤ 22+20+ f (cw1) = 42+ f (cw1). So f (cw1)≥ 11.
(i) In this case, f (cw1)must be 13. So, f (v1)+ f (w1v1) = 40. There is no solution since f (cu1) = 18 and f (c) = 21.

(ii) In this case, f (cw1) is 11 or 12.
If f (cw1) = 11, then f (v1)+ f (w1v1) = 42. Since f (w1v1) ≤ 20, f (v1) = 22 and f (w1v1) = 20. Then WT (u2) =

f (c)+ f (v2)+ f (u2v2)+ f (cu2)≤ 21+17+16+12 = 66.
If f (cw1) = 12, then f (v1)+ f (w1v1) = 41. Since f (w1v1)≤ 20 and f (c) ∈ {22, 19}, there is no solution.
This completes the proof.
Theorem 13 B2 is (a, d)-total neighborhood-antimagic if and only if

(a, d) ∈ {(33, 1), (30, 2), (27, 3), (24, 4), (21, 5), (18, 6), (15, 7),

(35, 1), (32, 2), (29, 3), (26, 4), (23, 5), (20, 6), (17, 7).}

Proof. From the labelings in Figures 8 and 9, we get the sufficiency.

Figure 8. From left to right, and top to bottom: (a, d) = (33, 1), (30, 2), (27, 3), (24, 4), (21, 5), (18, 6), (15, 7)
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Figure 9. From left to right, and top to bottom: (a, d) = (35, 1), (32, 2), (29, 3), (26, 4), (23, 5), (20, 6), (17, 7)

We now prove the necessity. Similar to the proof of Theorem 12, calculating the sum of the total weights gives
2 f (c)+2[1+2+ · · ·+15] = 7(a+3d). Thus, 7a = 2 f (c)+240−21d so that f (c) ∈ {6, 13}. Moreover, a ≥ 10.

When f (c) = 6, we get a = 36− 3d ≥ 10 so that d ≤ 8. Hence (a, d) = (33, 1), (30, 2), (27, 3), (24, 4), (21, 5),
(18, 6), (15, 7), (12, 8). Thus, it suffices to show that the case (a, d) = (12, 8) does not exists.

When (a, d) = (12, 8), the total weights are 12, 20, 28, 36, 44, 52, 60. Observe that for i = 1, 2,WT (ui),WT (wi)≤
6 + 13 + 14 + 15 = 48 and WT (vi) ≤ 12 + 13 + 14 + 15 = 54. Therefore, WT (c) = 60. Without loss of generality,
WT (v1) = 52 = 15 + 14 + 12 + 11 or 15 + 14 + 13 + 10. Now, the corresponding remaining vertex and edge labels
set must be [1, 5]∪ [7, 10]∪ {13} or [1, 5]∪ [7, 9]∪ {11, 12}. Moreover, WT (u1) ≥ 10+ 6+ 2+ 1 = 19. Similarly,
WT (w1)≥ 19. Thus the smallest weight, a = 12, is WT (u2), WT (w2) or WT (v2). By symmetry, we always assume that
WT (ui)>WT (wi) for i = 1, 2. Thus, 12 ∈ {WT (w2), WT (v2)}. We have the following two cases.

If the smallest total weight is the sum of 1, 2, 3, 6, then only WT (w2) = a. We get

WT (v2)≤


3+13+10+9 = 35,

3+12+11+9 = 35,

and WT (u2)≤


6+13+10+3 = 32,

6+12+11+3 = 32.

Thus {WT (v2), WT (u2)}= {20, 28}.
If the smallest total weight is the sum of 1, 2, 4, 5, then only WT (v2) = a. We get

WT (u2), WT (w2)≤


6+13+10+5 = 34,

6+12+11+5 = 34.
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Thus {WT (u2), WT (w2)}= {20, 28}.
From the above cases, we obtain that WT (u1) = 44 and WT (w1) = 36.
(a) Suppose WT (w2) = 1+2+3+6, i.e., { f (cw2), f (v2w2), f (v2)}= {1, 2, 3}.
a.1) SupposeWT (v1) = 15+14+12+11. Since there is only the term f (u1v1) ofWT (u1) andWT (v1) in common,

WT (u1) = 15 + 6 + 13 + 10. Hence f (u1v1) = 15. Now, { f (v1), f (cu1)} = {13, 10}, { f (v1w1), f (u1), f (w1)} =

{14, 12, 11} and f (cw1) ∈ {9, 8, 7, 5, 4}. So, WT (w1) = f (c)+ f (v1)+ f (v1w1)+ f (cw1), where ( f (v1), f (v1w1),

f (cw1)) = (10, 11, 9), (10, 12, 8) or (13, 12, 5). Thus, { f (cu2), f (u2v2), f (u2), f (w2)} = {8, 7, 5, 4}, {9, 7, 5, 4} or
{9, 8, 7, 4}, respectively.

Therefore, WT (v2)≤ 9+8+7+3 = 27 and WT (u2)≤ 6+9+8+3 = 26, a contraction.
a.2) Suppose WT (v1) = 15+ 14+ 13+ 10. Similarly, we have WT (u1) = 15+ 6+ 12+ 11. Hence f (u1v1) = 15.

Now, { f (v1), f (cu1)}= {12, 11}, { f (v1w1), f (u1), f (w1)}= {14, 13, 10} and f (cw1) ∈ {9, 8, 7, 5, 4}. Similarly, we
have ( f (v1), f (v1w1), f (cw1)) = (12, 10, 8), (12, 13, 5), (12, 14, 4), (11, 10, 9) or (11, 14, 5). Similar to case (a.1), we
have WT (v2)≤ 9+8+7+3 = 27 and WT (u2)≤ 6+9+8+3 = 26, a contraction.

(b) Suppose WT (v2) = 1+2+4+5, i.e., { f (u2), f (w2), f (u2v2), f (v2w2)}= {1, 2, 4, 5}.
b.1) Suppose WT (v1) = 15+14+12+11. By the same argument in case (a), we have WT (u1) = 15+6+13+10

and f (u1v1) = 15. Now, { f (v1), f (cu1)}= {13, 10}, { f (v1w1), f (u1), f (w1)}= {14, 12, 11} and f (cw1) ∈ {9, 8, 7, 3}.
So, ( f (v1), f (v1w1), f (cw1)) = (10, 11, 9), (10, 12, 8) or (13, 14, 3). Therefore, { f (cu2), f (cw2), f (v2)} = {8, 7, 3},
{9, 7, 3} or {9, 8, 7}, respectively.

When { f (cu2), f (cw2), f (v2)}= {8, 7, 3} or {9, 7, 3}, we haveWT (u2),WT (w2)≤ 6+8+7+5= 27, a contraction.
When { f (cu2), f (cw2), f (v2)}= {9, 8, 7}, we have WT (u2), WT (w2)≤ 6+9+8+5 = 28. Thus, 28 =WT (u2).

Hence { f (cu2), f (v2)} = {9, 8} and f (u2v2) = 5 so that f (cw2) = 7. However, WT (w2) ≥ 6 + 7 + 8 + 1 = 22, a
contradiction.

b.2) Suppose WT (v1) = 15+ 14+ 13+ 10. Similarly, we have WT (u1) = 6+ 15+ 12+ 11. Hence f (u1v1) =

15. Now, { f (v1), f (cu1)} = {12, 11}, { f (v1w1), f (u1), f (w1)} = {14, 13, 10} and f (cw1) ∈ {9, 8, 7, 3}. So,
( f (v1), f (v1w1), f (cw1))= (12, 10, 8) or (11, 10, 9). Similar to the above case, we getWT (u2),WT (w2)≤ 6+9+7+5=
27, a contradiction.

When f (c)= 13, we get a= 38−3d ≥ 10. So that d ≤ 9. Therefore, (a, d)∈{(35, 1), (32, 2), (29, 3), (26, 4), (23, 5),
(20, 6), (17, 7), (14, 8), (11, 9)}. It suffices to show that the cases (a, d) = (14, 8) and (a, d) = (11, 9) do not exist.

Consider (a, d) = (11, 9). We must have a = 1+ 2+ 3+ 5. Since f (c) = 13, WT (ui), WT (wi) ≥ 19 for i = 1, 2.
Without loss of generality, letWT (v1) = f (u1)+ f (w1)+ f (u1v1)+ f (v1w1) = 11. Thus, f (u1v1)≥ 1, f (v1)+ f (cu1)≥
4+6 so that WT (u1)≥ 1+4+6+13 = 24 > 20. Similarly, WT (u2), WT (w1), WT (w2), WT (c)> 20. Therefore, total
weight 20 does not exist, a contradiction.

Consider (a, d) = (14, 8). The total weights are 14, 22, 30, 38, 46, 54, 62. NowWT (vi)≤ 15+14+12+11= 52 and
WT (ui),WT (wi)≤ 12+13+14+15 = 54, for i = 1, 2. ThusWT (c) = 62. Without loss of generality, letWT (u1) = 54.
Thus, each remaining total weight is at most 15+11+10+9 = 45. So that total weight 46 does not exist, a contradiction.

5. Conclusion and open problems
In this paper, we have obtained necessary and / or sufficient condition for 1-regular graphs, 2-regular graphs nC3, nC4,

and one point union of n ≥ 2 copies of P2, C3, C4 respectively, to admit an (a, d)-total neighborhood-antimagic labeling.
Particularly, (1) fromLemma 4, we know that if nC3 is (a, d)-total neighborhood-antimagic, then d ≤ 7; (2) fromLemma 5,
we know that if n is even and nC3 is (a, d)-total neighborhood-antimagic, then d ≡ 0 (mod 4). We have completely studied
the cases when d = 2, 4, 6 from Theorem 3.5 to Theorem 3.7. The remaining cases is d = 1, 3, 5, 7. The following question
and problems arise naturally.

Question 1 Do there exist odd n, d such that nC3 is (a, d)-total neighborhood-antimagic?
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Problem 1 For d = 1, 2, determine all the possible a such that nP2 admits an (a, d)-total neighborhood-antimagic
labeling.

Problem 2 Study the (a, d)-total neighborhood-antimagic labelings of regular graphs.
We end this paper with the following conjecture.
Conjecture 1 The one point union of cycles with order at least 5 is not (a, d)-total neighborhood-antimagic for all

a, d ≥ 1.
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