Contemporary Mathematics

https://ojs.wiserpub.com/index.php/CM/ UNIVERSAL WISER
PUBLISHER

Research Article

Majorization-Based Conticrete Inequalities Involving the Caputo-
Fabrizio Fractional Operators with Applications to Modified Bessel
Functions and Special Means

Tareq Saeed

Financial Mathematics and Actuarial Science (FMAS)-Research Group, Department of Mathematics, Faculty of Science, King
Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
E-mail: tsalmalki@kau.edu.sa

Received: 24 August 2025; Revised: 17 October 2025; Accepted: 24 October 2025

Abstract: The Hermite-Hadamard inequality is universally recognized as a highly influential inequality in mathematics.
Nowadays, researchers are actively engaged in exploring its various improvements, generalizations and refinements. This
article focuses on determining the results of Hermite-Hadamard-Mercer type in conticrete settings within a fractional
framework. The approach combines the ideas of majorization, convexity, and Caputo-Fabrizio fractional operators. New
weighted versions are also presented by employing certain monotonic tuples together with weighted majorized Jensen-
Mercer inequalities. In addition, an integral identity is established for a differentiable function. This identity is further
applied to obtain estimates for the discrepancy in terms related to the major result. The obtained bounds rely on the convex
nature of |f’|, | /'], (1 < q), along with power mean, Holder, and Young’s inequalities. The paper further demonstrates
applications of the main findings to modified Bessel functions and special means. Several existing results are recovered
as special cases, while new inequalities are also established.
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1. Introduction

The theory of convexity has stood as one of the fundamental pillars of mathematical analysis for more than a century,
shaping the study of extremal problems and influencing diverse areas of pure and applied mathematics [1, 2]. Its elegant
structure and wide-ranging adaptability have made it a powerful analytical framework, equally valuable in theoretical
explorations and in addressing problems across engineering [3], economics [4], and the physical sciences [5]. Over the
years, mathematicians have explored numerous generalizations of convexity, each enriching the theory and expanding its
applicability. For example, classical convex functions and their practical implications can be found in detail in [6], while
Ostrowski type results have been extended to s-convex functions [7] and p-convex settings [8] . Further refinements
include Geometric-Arithmetic means convexity [9] and broader generalized convexity frameworks, for which modified
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integral inequalities have been established [10]. Convexity theory has also been adapted to hyperbolic geometry, leading
to Hermite-Hadamard (H-H) inequalities for hyperbolic p-convex functions [11], and has been linked to higher-order
expansions such as Steffensen’s inequality and generalized Taylor’s formula [12]. Developments in modern analysis
have connected convexity with quantum calculus, producing quantum H-H inequalities via Green’s functions [13], while
coordinate-wise convexity has been employed to derive Hadamard-type inequalities for products of s-convex functions
[14].

The strength of convexity lies not only in its own intrinsic properties but also in the way it seamlessly leads to
inequality theory. Convex functions possess geometric and analytic features such as those reflected in Jensen’s inequality
that make them a natural tool for deriving sharp bounds, estimating functional values, and establishing stability results.
This deep and inherent relationship ensures that many classical inequalities are, in essence, manifestations of convexity
principles, while newer inequalities often arise from its modern generalizations. In this sense, convexity acts as a
conceptual bridge, connecting pure mathematical structures with a vast array of applied problems.

From this foundation, inequalities emerge as a direct extension of convexity theory, growing into one of the versatile
and broadly applicable branches of analysis. Integral inequalities, in particular, have far-reaching applications: they
are instrumental in optimization theory for designing reliable algorithms, in probability and statistics for determining
expectations and bounds, in information theory and economics for modeling uncertainty, and in mathematical finance for
quantifying risk. Their relevance extends into engineering, data science, and physics, making them indispensable across
disciplines.

Among the wide range of inequalities influenced by convexity, several occupy a central place in both theoretical
development and practical application. Notably, Jensen’s inequality [15, 16], Fejer inequality [17], Slater’s inequality [18,
19], the H-H inequality [20], Ostrowski inequality [21], and majorization inequality [22], have each inspired substantial
research activity, and lead to further refinements and extensions.

Fractional calculus is a well-established branch of mathematical analysis that extends the classical notions of
differentiation and integration to arbitrary, non-integer orders [23, 24]. The concept was first introduced in 1695 by
Leibniz and L’Hopital. It sparked curiosity among mathematicians for more than three centuries. Since then, it has
evolved through the contributions of many prominent scholars. It experienced significant theoretical advancements in
the nineteenth century and attracted renewed interest in recent decades. Its remarkable versatility has led to applications
across numerous scientific and engineering domains, including geophysics [25],biology [26], mathematical analysis [27],
engineering [28], control theory [29] and medicine [30]. Fractional calculus, unlike integer-order calculus, naturally
considers memory effects and long-range dependencies. This property makes it a powerful tool for modeling processes
influenced by their past states. Furthermore, it plays a pivotal role in signal processing, particularly in the study of self-
similar and scale-invariant signals [31, 32].

One of the earliest and most influential developments in this area was the introduction of the Riemann-Liouville
fractional integrals [33], which formed the basis for subsequent extensions and generalizations. In the present day,
researchers frequently employ a variety of fractional operators, such as the Caputo [34], Hadamard [35], k-Caputo [36],
Caputo-Fabrizio [37, 38], Katugampola [39], and Atangana-Baleanu [40] formulations. These operators offer distinct
properties that aid in resolving diverse mathematical problems with greater precision and versatility.

Within this framework, the relationship between fractional calculus and convexity theory forms an active and
compelling research direction. By bridging ideas from classical calculus and modern fractional analysis, this connection
enables the formulation of models that incorporate non-local effects, thereby enriching both optimization theory and
mathematical modeling [41—44]. Fractional operators have the capacity to modify the geometric properties of functions.
As a result, they can produce generalized notions of convexity and concavity that extend beyond classical definitions
[45, 46]. The past few years have witnessed significant progress in extending the classical Hermite-Hadamard inequality
to the domian of fractional calculus, particularly through the use of fractional operators. Researchers have introduced
a variety of generalized forms, applying them to both fractional integrals and derivatives. These contributions not only
deepen the understanding of convex functions in fractional contexts but also offer directions for theoretical exploration
and practical implementation.

Researchers commonly employ generalized convexity, generalized integrals, or a combination of both to establish
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inequalities in either the continuous or discrete setting, which are recognized as the two primary categories of inequalities.
At this point, there is a growing need for concepts capable of producing inequalities that bridge the gap between these two
settings. The theory of majorization satisfies this requirement. To fulfill this requirement, Faisal et al. [47—49] recently
formulated generalized inequalities by means of the notions of convexity and majorization that unifies continuous and
discrete versions.

Majorization represents a partial order structure involving two tuples. It measures how one tuple differs from another,
or how closely the entries of one tuple approximate those of the other. This concept is useful for transforming complex
optimization problems into simpler ones that can be solved more readily [50, 51]. Modern applications of majorization
theory can be found in areas such as signal processing and communication [52, 53].

The primary aim of this work is to establish conticrete Hermite-Hadamard-Mercer inequalities by combining the
concepts of convexity, Caputo-Fabrizio fractional integral operators, and majorization theory. For specific parameter
choices, the proposed inequalities reduce to known results in the literature. In addition, the paper presents weighted
extensions of the main results, formulates integral identities, and derives further consequences of these identities using
Holder, power mean, and Young’s inequalities. Applications of the principal findings are also provided, including those
related to Bessel functions and various special means.

The paper is structured as follows. Section 2 reviews the fundamental concepts and preliminary definitions. Section
3 establishes the two main results by employing fractional integrals, convexity, and majorization theory. In Section
4, weighted extensions of the principal findings are derived for certain monotonic tuples with the aid of majorized
weighted Jensen-Mercer results presented in Lemma 1 and Lemma 2. Section 5 introduces an integral identity for
a differentiable function, from which additional results are obtained by applying Holder, power mean, and Young’s
inequalities. Applications of the main results to modified Bessel functions and special means are discussed in Section
6. The paper is finalized in Section 7, where conclusions are given and directions for future research are proposed.

2. Preliminaries

This section is devoted to recalling the fundamental concepts, definitions, and preliminary results required for
establishing our main findings. We begin with a discussion of the classical Jensen-Mercer inequality and the Hermite-
Hadamard inequality. The notion of majorization is then introduced, followed by the majorized form of the Jensen-
Mercer inequality. Weighted versions of the majorized Jensen-Mercer inequality for different tuples are also presented
and formulated as Lemma 1 and Lemma 2. Finally, we provide the definition of the Caputo-Fabrizio fractional integral
operator, which plays a central role in the subsequent analysis.

Jensen-Mercer Inequality ([54, 55]):

Let f represents a convex function throughout the interval [, 9] C R. Also, let y.. € [¢%, 1], and non-negative

o
weights o¢. forg'=1,2, ..., ¢ such that Zl oc. = 1. Then
¢=
o o
P01t 02 ¥ ovrs ) < so0 50 - ¥ 05 706
¢=l1 ¢=l1

Hermite-Hadamard Inequality ([56]):
Let f: [, ¥2] — R represents a convex function. Then

1+ O 1 % (1) + /(D)
S PN )

Majorization ([57]):
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Consider two real tuples & = (81, 02, ..., 8¢-) and Y = (y1, Y2, ..., Y ), both arranged in decreasing order. Then
$ is said to majorize y, written as y < 8, if the following requirements are satisfied:

Y o= Y vy (=129 -1), and Zag = Zyg
¢ =l g=l1

Within the setting of majorization, the Jensen-Mercer inequality admits the following extended formulation.
Theorem 1 ([58]) Let f: I — R denotes a function throughout the interval I, where f is assumed to be convex.
Consider an n X ¢ matrix Y with entries y;.. € I foralli=1,2,...,nand ¢ =1,2,..., ¢. Also, let
catuple @ = (@, 0y, ..., Wp.) Wwhere g =1,2, ..., .
n
« a tuple of non-negative weights (o1, 02, ..., 0,) such that ¥ c; = 1.
i=1
Suppose further that @ majorizes every row of the matrix Y. Then

o—1 n

9 [
(£ o-T Lo )< £ ro-E farve
¢= =

-1 n
c=1i=1

¢=1i

The following lemmas are employed as fundamental tools in establishing our new results [47].

Lemma 1 Let f: I — R denotes a function throughout the interval I, where f is assumed to be convex. Consider an
n X ¢ matrix with entries y;.. € I forallg-=1,2,..., ¢, i=1,2,..., n. Also, let

catuple @ = (@i, ..., @), whereg-=1,2, ..., ¢.
* a tuple of weights p = (p1, ..., pp) With pc. >0, pp. #0forallg =1, ..., ¢. Definen = pi(p'.
» a tuple of non-negative scalars o = (01, 02, ..., 0,) with } 6; = 1.

i=1
Suppose that the tuple (yj1, yi2, -- -, Yig-) is decreasing for each i = {1, 2, ..., n} and satisfies

s s [ 9
Z D¢ Yig < Z pe o, (1<s<¢ —1)and Z Pg@g = Z Dg-Yig--
¢=1 ¢=1 ¢=1 ¢ =1

Then,

o—1 n -1 n

[ ¢
f < Y npco - Z ZTIG:Pg y,g> <Y npeflog)- Z chlpgf Yic)
¢ =1 ¢=l

¢=1i= ¢ =li=

Lemma 2 Let f: I — R denotes a function throughout the interval I, where f is assumed to be convex. Consider an
n X ¢ matrix with entries y;c. € I forallg-=1,2,..., ¢, i=1,2,..., n. Also, let

catuple @ = (@i, ..., @), whereg-=1,2, ..., ¢.
* a tuple of weights p = (p1, ..., pp-) With pc. >0, pp. #0forallg =1, ..., ¢. Definen = p%,,.'
» a tuple of non-negative scalars o = (01, 02, ..., 0,) with } 6; = 1.

i=1

P
Suppose that both y;c. and (.. — yjc.) exhibit identical monotonic behavior foreachi=1,2,...,n,and Y pc o, =
¢=1

P
Y. pcyic holds. Then,
¢ =1
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"
f ( Z Npe O
¢

(p._l n —1 n
S

@ )
Z ZnGin»yig) < Zlﬂpg‘f(wg’)— Z Zﬂcipg‘f(yw)
¢= S

=li=1 =li=1

Now, we recall the definition of fractional operator which will be utilized to present the results of this paper.

Definition 1 ([37, 38]) If f € H({;, §) where {; < § and 0 < « < 1, the corresponding left and right Caputo-
Fabrizio fractional integrals take the form:

17 1(0) = o )+ g [ £(0)ds

and

_ g8
IS = g f0)+ 5o [ 75,

where 0 < B(a) denotes a normalization function such that B(0) = B(1) = 1.

3. Main results

We formulate our new findings in the setting of Caputo-Fabrizio fractional operators, as presented below.

Theorem 2 Let f: I — R denote a function throughout the interval I, where f is assumed to be convex. Let the
tuples @, p, o € I? be defined by @ = (@1, @2, ..., 0y.), p=(p1, p2, ..., pe.) and 0 = (01, 02, - .-, 0¢) With pp. > 0¢-
and @, pc., 0¢- € forallg-=1,2, ..., ¢. Suppose further that p < @ and p < @ and let 0 < « < 1, while B(«x) denotes
normalization mapping. Then

¢ K= ¢ p—1
P+ 0¢ B(o) o
f<'zlwg_ gl ( : 2 : )) = o1 CFI% a)A_q"Zl(f’Q'ﬂ’?)f( Z::l(l)g-— ;1 le)
S S (xgg (gg. —pg,) 2T 2 S S
+CF “f( i (PZ—I )
: 1 O —
()P: wg.f’ (p.; +oc ) = 9 g‘:]Pg
(1)
e B £
- (0) )+ - —
B(x) = S = Pg = S = (Y

Proof. Let 0 < < 1. The proof of the desired result is carried out in the following manner:
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C

(BT Eo B

+Y o - <;(::Z;’jgg,+2g§lpg>>}.

=

The convexity of f ensures that (2) results in the below inequality.

(£ (5)
<3 {f(ﬁ o - <;j§;p€ * 22_“:;1 Q""))

t ¢ —1 _t(p‘fl

(Lo - (3T T 0)}

¢ =1 ¢=1

By integrating over ¢ € [0, 1], we obtain

(LoT(53%))
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¢ ¢ —1 o —1
The fact that p < @ and o < @, leads to ), o, — Z O¢c- = 0¢-, Z a)g Y. pc = py-. Also, taking py. > 04 and
g =1 ¢ =1

(P'il Pe+0¢ ot 4 O petoc
doing simple calculation, we can prove that Z 0. — Y (%) > Z 0. — Y ocand ¥ o, — ¥ (%) <
c=1 c=1 ¢=1 ¢=1 ¢=1 ¢=l
(P‘ (p l . o, . . . . .
Y, @, — Y pg . This enables us to apply the definition of Caputo-Fabrizio fractional integral operator.
=1 c=1
o1
x ¥ (eg—p¢)

) o1 .
Now, by multiplying both sides of (3) by HT and then adding - Bla f < Y o — ):1 pg.> + % f < Zl ;.
= ¢ =

¢ —1
- Y gg,) , we have

¢=1
o —1
o ¥ ( Pg) [oX %)
¢= B Pg +0¢ >
B(e) f(czl ” gzl( 2 )
l—o [ & ot l—o (2 ot
"B’ (;1 ° ‘“’“) "B’ (;1 ° ‘g.f“)
(4 ¢ -1
I
L Eeme
<= - 4+ — d
~ B 0‘)f<gzz’1wg g.=19g> +B(°‘) /w : flu)du

¢’ ¢ -1 ¢ ¢ -1
_CF _ CF —
- [:%lwg,_(pz (pg tog >f( Z’ e Z,: Qg.) T _wtl(pg~§@g'>laf< Z @ Z ,Og-)

¢ =1

Re-arrangement of the above inequality yields

(Eo T (5))
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@

Bl g )

This ends the first part of (1). By employing Theorem 1 with the substitutions o1 = 5, 02 = %, and n =2, we

establish the second part of inequality (1) as outlined below:

o ;0o 5 0=l
f( Y o - (2 )y pe+—— ) 99))
g1 = =
(%)
0 P -1 el
S WICSEIED WIS RS WitS)
¢ =1 ¢ =1 ¢ =1
and
¢ ;o] 5 0ol
f(ng—<229g~+2 ZPQ>>
¢=1 ¢=1 ¢=
(6)

Adding (5) and (6), we get

[ o —1 ¢ —1
<Y flog)- ( Y floe)+ Zlf@g.)).
¢ =

g=1 ¢=1

Integrating over ¢ € [0, 1], and adopting the above mentioned procedure, we get
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9 o1
+ CF (Xf( - — p )
‘)p: a)g*(P l(pg +0€) g;l E gX:: c
¢ =1 ¢ =1
7
¢ —1 o —1 o—1 -1 ( )
o« X (0 —rc) o « L (e =re) [ X floc)+ X Floc)
¢ = G = ¢ = =
<= Y fleg)-
B(w) gg’l e B(x) 2
-« 9 - ¢ o1
+ o f(ng- Y Pg->+f(2wg- Y Qg-) ,
B(oc) ¢=l1 ¢ =1 ¢ =1 =
Now, by re-arranging (7) and then joining with (4), we get complete result of (1). O

Remark 1
(1) If we substitute ¢ = 2 in (1), then we get the following inequality of [59].

(o ("5"))

B(x
<# |:CFIO( o1+ey f(w1+a)2—Q1)+ CF

I*f(o -
_(Qlipl) W1+~ 2 a)l+a)2_% f( 1+CO2 pl)

_J[f(wl + @ —p1) + f(or+ @ —o1)]

Sf(a)l)—kf(a)z)—f(pl);f(gl).

(i) If we substitute ¢ =2, p; = @, 01 = @, in (1), then we get the following inequality of [60].

0+
(*5%)

2

) F01) (1% 02) 1o«
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(@) + f(e)
— 2 .
We present another version of our result by employing a procedure similar to that used in the previous theorem.
Theorem 3 Let f: I — R denote a function throughout the interval /, where f is assumed to be convex. Let the
tuples @, p, ¢ € I? be defined by @ = (@1, @, ..., ®p. ), p=(p1, p2, .., pp-) and 0 = (01, 02, - .-, 0p-) With pp. > 0¢.
and ., p., oc- €I forallg'=1,2,..., ¢. Suppose further that p < @ and o < @ and let 0 < & < 1, while B() denotes
a normalization mapping. Then

[
20(9):_ (Qg 7p€') (gzzlwg_;-)ilgg' ¢=l =1
CF 1 o —1
+ [‘er i f(ng'Zgg)
) ¢ =1 ¢ =

®)

Proof. It can be written as:
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(Fo- ) ron(F e )l 0

< {f{t( Y o _¢leg.) +<1_t)< i o _(pi gg)} (10)

¢ —1
a ¥ (eg—pc)

On multiplying (10) with ——=————— and subsequently integrating with respect to ¢ on [0, 1], we obtain

B(x)
S (o —pe)
& Qg — Pg: 0 o —
¢= _ Pg + O¢-
Bo (;l %=L ( 2 >)
-1
O‘QZ: (¢ =pe) 1| 9 o 91
S ZB((X) [ f<t(gzlwg _gzlpg>+(1—t)<gzlwg _g‘lgg)>dt

By making a suitable substitution, we have
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C

@ ¢ —1 [ ¢ —1
¢ -1 Y og— ¥ pg Y og— ¥ pg
x Y (Qg—Pg-) =1 ¢=1 4 =1 =1 J
¢= u u
< O [
1 — D~ -] — D¢
o e E (0c —rs) ¢ o 't X (0c —p¢)
¢ =1 =1 ¢ =1 =1
(11)
T (e —05)
200 Y. (0¢ — pc .
¢=1 f i o, *(PZ (pg-+99>
B(w) o] = 2
? oI ® o1
Y og— ¥ pg Y og— ¥ pg
¢ =1 ¢ =1 ¢ =1 ¢ =1
X X
<— du+ —— d
S ] Swar g [ fw
¢ o1 ? [
Y o.— Y oc Y og— Y o¢
= S e
. @ ¢ -1 . @ ¢ -1 _
By adding ﬁf Yy o — ¥ pe —|—ﬁf Y o. — Y o | tobothsides of (11), we get
¢=1 ¢= ¢ =1 c=1
T (e —0s)
200 ¥ (06 —pg . . .
P o —1 ¢ o —1
¢= Pg + g l -«
f (S ( ) f g P
B ( (X) ggl g;] 2 B (CX) g-Zl g;]
l-a [ & o]
(e 50
B(O() ggl g;l
| ¢ oo S (12)
— X
Sf( ;. — p.>+ / Flu)du
B 0() g;l ° g;] ¢ B(OC) 0 o1
Y wo— Y oc
¢ =1 ¢ =1
[ e -1
g.Zi] wg.—ggl Pe
l-a, [ & ot x B
f( o, g->+ / f(u)du
B(a) Gz—:l ; G; : Ble) 9 o1
Y oc— Y oc
¢=1 ¢=l
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To proceed with the application of Caputo-Fabrizio fractional operators in (12), first we show that

o o1 o o1
Yog— Y oo <Y o) pe
¢=1 ¢=1 ¢=1 ¢=1
o1 o1
Since p < @ and o < @. Therefore ), oc.. — Y pc. = pyp- — 0. By using the assumption py. > 0¢- = pp- — 0¢- >0,
¢=1 ¢=1

¢ —1 (4

o1 A
weget— ) oo <— Y pc.Now, adding . to both sides, we get
¢ =1 ¢ =1 =1

0

p—1 9 9—1
Y oo — Y oo <Y oo - Y pe.
1 ¢l ol o

¢=

Now, (12) implies

B(x) . o1
S (p—l C(‘F% ® 7(/’2?1 )Iocf( Zl wg Zl p(.;>
200 ¥ (0g —pg) [\emiFTEE o o

(13)

Hence, the first part of the inequality (8) is established. The derivation of the remaining part of this inequality is an
outcome ensured whenever f exhibits convexity as given below:

kg ()

= =

(14)
N o o o
Stf(leg- )y Ps‘-) +(1I)f<z o — Y 99)
= : ;

and
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C

(g5 (55

o{fn g (En )

=

(15)

By adding (14) and (15) and by setting oy = 1 and n = 1 in Theorem 1, it follows that

(BT ) v (w )

Integrating over ¢ € [0, 1], and adopting the above mentioned procedure, we get

CF o a = CF yox ‘- K=
, ol )1 f( Zl g — Zl pg.> + e, oo )f( Y o. - ) g;)
¢= ¢= ¢

(gglws"*g_zzleg- (g‘ZZIwg-—g.ZZng =1 =1
¢ —1
“gZ: (‘QG'_pG) 1) o —1 ¢
: ((Eo-Tr)es(Eo-Te))
B((X) ¢=1 ¢= g=1
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0

1« ! -, [ & !
*wf(il“’@‘?ﬁ)ﬂmf(z o:~ L os )

¢= = o=

Re-arrangement of the above inequality, gives

B(x) ¢ 91
o1 EFw -1 )Iocf( Y o.- ) Pg)
2 Z (QG' — pc ) gzzla)g _g-Z:l Qg ¢ =1 c=1
¢=

_m{f<ilwg—j§1pg> +f<géwg,_(:ggg)ﬂ (16)
AT r(E B

¢ 1 /¢! o1
= WICREEI® WITSES Wirs))
¢ =1 ¢=1 ¢=1

Now, by combining (13) and (16), we get complete result of the inequality (8). O
Remark 2

(i) For ¢- = 2, in (8), we get the following inequality, which is a new addition to the literature.

_|_
f<w1+wz—M>

2
B o o
= ‘P‘—1<OC) |:?21+@P|)1 f(CO]+a)2—p1)+cpl<wl+a)2_pl)f(a)1+602—91)
2ocg§1 (01 —p1)

_ﬁ{f(a)l—s—wz—m)+f(w1+a’2_91)}

<3 [F(@+ o)+ f(0r+ 0 - 01)]
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< (@) + F(02) 3 (Flpn) + Flen).

(ii) For ¢- =2, p; = oy, and 9 = @, in (8), we get the following inequality which is also a new addition to the

literature.

O] +

5%
< [ () 4T I () - 5 () + f(02))
2ocg§l(w2—a)1)

[un—y

<5 [f (@) + f(an)].

4. Weighted extentions of the principal results

Theorem 4 Let f: I — R denote a function throughout the interval I, where f is assumed to be convex. Let the tuples

o, p, 0, p €17 bedefinedby @ = (1, @2, ..., 0p.), p= (p1, 2, .-, pg ), 0= (01, 02, -+, 0 ), and p= (p1, p2..., Py’)
with py. > 0¢- and @, pc., 0c., p¢- €1, pg- >0, pp.- #Oforallg=1,2,..., ¢, n= p%p_. Suppose further that 0 < a < 1,
B(ot) denotes normalization mapping, and the tuples p, ¢ are decreasing which satisfy

s N s N
Z P Pg < Z JLA O Z Pe0g- < Z pec, (1<s<@ —1),
¢=1 g=1 ¢=1 3

and
¢ ¢ ¢ ¢
Z Dg g = Z D¢ Pg: Z Dg g = Z D¢ Qg
g =1 g=1 ¢ =1 g =1
Then,

¢ ¢ -1
Pc-Pc + Pc Oc
f<anngg-—n y (M))
¢ =1

c=1

) B(«) CFpo f< Y npeoe— ¥ )
= ¢ 91 oo+ o Pg Wg — Pg Q¢
g-):zlnpg'wg'_ngE(w) o o

o1
“gZ_l (Npg-0c —Mpepe.)
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¢ -1
+CF . ]OCf< Z Npc O — Z npg.pg)
¢=1 ¢ =1

): T’ﬂg o —1 ): (M)
-« 2 o1 @ o =1
B f< Y npeo.— Y, npg.pg.) +f< Y npeo.— Y, 77Pg~Qg-)
¢=1 ¢=1 ¢=1 =1

<angf o) [Z npg-fpe)+ Z npg-f( Qg)] (17)

Proof. Let 0 < < 1. The establishment of the desired outcome is carried out in the following manner:

.
f< $ npeo.—n Z (W))
g=I

¢ -1 L ¢l
_f{ ( Z npg @g- — Z Npg pg + Z Nnpg g — Z TIPg»Qg-)}
¢ =1 ¢ =1 ¢=1
(18)

0=

1/ & 2
=15 Y npso - Z Npepe +—— nPgQg-
2 ¢=1 2 ¢ =1

& ¢t 9! 219!
+ Z Npg Og — (2 Z Np¢ Oc +72 Z nPng')) .
=1 = =

The convexity of f ensures that (18) results in the below inequality

.
f<z P Z (W))
g1
(e | -
<3 {f< Zl npg O _< Z Npepg+—— Z Npg Qg))
¢ =

+f<génpg-wg- —( Z Npe-0c +2 Z npe- Pg))}

By integrating over ¢ € [0, 1], we obtain
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[ [
f< ¥ npear—n'Y (W>>
¢ =1

¢= 2
1
<
S
Y (nPgQg npg Pg)
&= (19)
-1 o1
Z: Npg- Wg-—1 )::1 (M) Z: Npg- Og-— Z [11Ps s
x / Flu)du+ / F(u)du
¢ p—1

o1 N
):lnpg-wg Z TIP; oc- ): ﬂPg (O] ): (M)
¢ = =1

¢ ¢ ok -1 o —1
The fact that leg,wg. = leg.pg. , leg e = Z pg 0¢-, leads to Z pg O¢ — leg,pg. = Po-Po- — P O
&= &= ¢= =
.
Also, taking into account py. # 0 and py. > 0o and doing simple calculation, we can prove that ) 7pc ¢
¢ =
N P ¢ -1 ¢ N ¢ ¢ -1
n Z <M> > Z]Tlpgwg-_ Zlnpg-gg and Zlnpg-wg n Z (M) < X Npe®g— Y Mpgpg
&= &= &= =
ThlS enables us to apply the definition of Caputo-Fabrizio fractional 1ntegra1 operator.

¢ —1
x ¥ (Tng‘Qg—TIPg'Pg')

Now, by multiplying (19) with = Bl and then addlng f ( Y Npc o — ): Npc pg>
@1
(f( Y Npg o — erlpg-Qg->,WC have
¢ —1
‘ngl (nPgQg —MNpg Pg) P Dep +p 0
— S s s &¢

11—

[ o —1 1—«x [} -1
+ B((x)f<g§1npgwg - ggl npgpg) + B(oc)f<g§1npg’wg' Z npg Qg)

(Pg g +1’c o¢ )
¢l

o @ « !
<—F M. — . Oc- —_
<) f(gzlnpg o g; npe o ) +3 /(P

Z Tll’g wg* Z Npg Q¢

f(u)du
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¢ -1
); Npg- - — Z TIPg Pg

l—a [ & o1 o
—— O — e — du.
+ f<g§] npg wg g;l npg pg > + B(OC) / f(u) "

B(w)
¥ npeoz-n ): (7”g P trses )
¢ =1

¢ ¢ -1
_CFjx
Iy ( Y npeog— Y ”Pg‘é’g)
Z [Pg 0= Z (7“ b 1 0% ) g=1 ¢=1
cr £ %
+ “f( Npg O — nPg-P€'>
Z [P @z =11 Z (7“ S g=1 g=1

Re-arrangement of the above inequality yields

)
f< $ oo o, -1 Z <Pgﬂg+1’g9g)>
g=1

B(x) CF ja 4 =
<—— I% Z Npg Og- — Z Npg O¢

o Z R Z (7” per b e ) ¢=1

‘ng_l (Mpgog —Mpgpe)
(20)

cF i (Pil

+ (xf( Npg Wg- — npg-Pg->
Z [pe g1 Z (7”; S g=1 g=1

|-« 9 o1 9 91
N {f( Z Npg Og — Z npg-/)g-> Jrf( Z Npg 0Og- — Z 77Pg-9€'> }] :
¢=1 ¢=1 &=l ¢=1

B(w)

This ends the first part of (17). Next, by using Lemma 1 with the choices o7 = %, 2, and 0, = 2 , we derive

the second portion of the inequality (17) in the subsequent way:
& 0! 21 %!
LY mpeoc —(5 X Mpepe+—5— Y npcoc
= 2 = 2 &~
c=1 c=1 =
2y

<Zn17gf o) ( Zrlpgfpg +7 Zrlpgf Qg))

and
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& t 0! 2—1 92!
f( Y npe o — (2 Y npos T ) 771’9%))
¢ =1 ¢ =l ¢=l

(22)
<angfwg < anngg +Z77ngpg)>
Adding (21) and (22), we get
¢ 2_
f(Z”%%‘( an’gf’g+ an’gé’g)>
=)
+f( Y Npe o - <2 Y Mpeost 5 L 771’9%))
¢ =1 ¢ =1 ¢ =l
<2ZTIng(Dg (an’gfpg +angf9g)>
Integrating over ¢ € [0, 1], and adopting the above mentioned procedure, we get
cr i “’il
ch ( Npc O — np,g.>
Z [pg- 0= Z (7”; Lyt g;) ST &
CF I i (pil
+ f( Npg Og- — npg’pg‘>
Z pg05n Zl(w> = =
¢ —1
@ _;l (Mpg-0c —npgp) ¢
— (23)

<

B(o) g;1 Tlpg-f(wg-)

-1 p-1 -1

08 21 (nPg-Qg- - nPg-Pg-) Zl npe f(pg) + g):l npe f(og)
¢= [ =

2

B(«)

o o ¢ —1 [ ¢ -1
f< Y npeoe— Y, an'p€‘> +f( Y npeoe— Y, nl’g-é’g) :
= = = =
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Now, by re-arranging (23) and then joining with (20), we get complete result of (17). O

Using Lemma 2, we deduce the following result.

Theorem 5 Let f: I — R denote a function throughout the interval /, where f is assumed to be convex. Let the tuples
®,p, 0, p €19 be definedby @ = (01, w2, ..., 0p.), p=(p1,p2,---,Pg ), 0= (01,02, ---, 09 ),and p= (p1, p2..., Py)
with py. > 0¢- and @., pc., 0c-, p¢- €1, pg. >0, pp.- #Oforallg=1,2,..., ¢, n= p%pr Suppose further that 0 < o < 1,
B(o) represents normalization mapping, and the tuples p, @ — p, o and @ — o exhibit identical monotonic behavior and
satisfying

o 0 o 9
Z DPg Wg- = Z PgPg Z Pg Wg- = Z Pg0g:-
=) = =) =

Then, inequality (17) holds.
Proof. Lemma 2, when applied with the procedure utilized in Theorem 4, one can establishes (17). O
Remark 3 We can also obtain weighted extensions of Theorem 3 by utilizing Lemma 1 and Lemma 2.

5. Key integral identity and bounds for the gap of the major results
5.1 Formulation of the core integral identity

Lemma3 Let f: I — R represents a differentiable function whose domain is in the interval /. Let the tuples @, p, o €

I? be definedby @ = (w1, 2, ..., 0. ), p= (1,02, .-, po-)and 0= (01, 02, ..., 0p-) With py. > 0. and @, p¢., 0¢c. €1
forallg-=1,2, ..., @. Suppose further that 0 < & < 1, B( ) represents normalization mapping and f’ € L(I). Then

= ‘ e ¢ -1 5 0]
C(wg-apg-aggwf):% l/o tf ( Y o - (; Y QQ-JFTI Y Ps‘-))dt

= = =1
24

1 ¢ P 7 0l
_/Otf/<2wg.—(22pg.+2Zgg))dt],
. o= o=

=1 ¢ =1

where

. . o
Cl@e 3 06 ) =gy |1 (Pl_l(ﬂng;')f( Lo X 99)
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Proof. With the goal of achieving the desired outcome, we begin by assuming that

Lo P 9 _ 01
0 =1 2 c=1 2 ¢=

1 , [ 7t<P*1
—/Off(ng-—( ZPng Zgg
¢ol
=K —-K;

By using Integration by parts, we determine K; and K> as follows:

L PR _tfp—l
K1=/0 tf (gzlwg-_(zgzl Og + Z PG))

And

iporary Math tics
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L P 2 91
KZ:/ tf(Z“’s‘(Z.Pc* ZQG')>dt
0 g=1 2 g=1 2 Z
¢ , ! 5 P!
fl Xo.—(5 X pe+5 ¥ o 1
. ¢ =l ¢ =l ¢ =l 2
= = el
7 X (Qg-Pg-> 0 ¥ (¢ —rg)
g=1 o=l
/1 < i 1 0! 217!
0 c=1 2 c=1 2 ¢=l1
2 ¢ o —1 -+ oc
K2—¢_7l f(zw€2(pg2 G))
L (o —ps) o 5
¢=l1
@ 91 .
Lok (55)
4
- . / F(u)du @7)
— D - —1
(T es=0) 4y
¢ =1 ¢ =1
By subtracting (27) from (26), we have
[ P pe e e !
4 G'Zzlwg' 9':1( ’ ) 9)::1% g-zzlpg
Ki—Ke=—— , / Flw)du+ / Flw)du
— D . -1 . -1
(QEI S )) %, “’?*(PZ, o %, @ (P, (#3%)
¢=1 ¢=l ¢=1 ¢=l 28)
4 il ¢! J
ol f(g-zl T ¢=1 ( 2 ))
L (g —pc)
¢=l1
¢ —1
L (es—ps)
On multiplying (28) with %, we deduce
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ggl (0¢ —p¢)
K| — K
y) (K1 —K>)
¢ ¢ —1
gElwg = (”€ 7 )
1 n
- / Flu)du+
. —1
QEI (Qg PQ) ‘)P:: wg_(pz o

¢ —1
x ;1 (gg—pg‘) ¢
By multiplying (29) with “T and then adding ;(—O‘S f < Y o, —
¢=1
we get

0‘( L (@g-l’g-)>

¢=l1

¢=1
cF i =
= . ( e — 0 )

[ el petoc- S S

oo X (F5) NS oS

CF ¢ ¢ —1
+ Pl o tog fo( Z @ Z Pg)

L o ( ) ) ¢=1 ¢=

¢ =1 ¢ =1

¢—1

x ) «Qg'_Pg) -
A (B ()

B((X) c= ¢ ¢=1 2
Through multiplication of (30) with M#‘X)’ we achieve

x ¥ log—p¢
¢=1

Co iporary Math tics

fu)du (29)

-« ¢ 91 ¢ 91
4B() (K —KZ)‘FW {f< Y o _g;l Pg-) +f< Y o - Z QG‘)}

(30)
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cF ¢ o1 (31
(24
RS 1 petoc 1 f( Z . — Z pG‘)
g_);lwg *gzl( ) ) ¢=1 ¢=1

¢ o1
Pc —+ Oc-
(Lo L (*5%))
¢=l1 ¢=l1
Now, by inserting (31) in (25), we acquire (24). O

Remark 4 (i) If we substitute ¢ = 2 in (24), then we get the following equality of [59].

B(x) |:CFch

CF o
W + + I
(o1 —p1) Mf( : or) piter flor+a—p1)

0+ —— D+ ———

_%[f(wl—i‘wz—m)‘f‘f(wl +wz—@1)}] —f(wl +wz—p'+g'>

2
1
_oi—pi ' (2t
- Uo tf (w1+wz (291+ 5 m))dt
1 t 2—t
—/tf o+ — (5o +——o1 ) |dt
Jo 2 2

(ii) If we substitute ¢ = 2, p; = @1, o1 = @ in (24), then we get the following equality of [60].

Be) % & I—a ®1 +
(X(wz_wl)[cFlwl;%f(w])Jr %%wzl f(wz)B((x)[f(wZ)Jrf(wl)]} f( : >

- L, t 2—t _/‘ (1 2—t
== [/0 tf <2w1+2 coz)dt Otf 2a)2+—2 w; |dt
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5.2 Estimates based on the integral identity

Now, employing Lemma 3, we obtain the subsequent findings:

Theorem 6 Let f: I — R represents a differentiable function whose domain is in the interval /. Let the tuples
o, p, 0 € I? be defined by @ = (@1, @2, ..., 0p.), p=(p1, P2, ---, pe-) and 0 = (01, 02, - .., 0p-) With py. > 0p. and
O, pe, 0c €l forallg =1,2,..., ¢. Suppose further that p < @ and ¢ < @, |f'| is convex function, 0 < « < 1, and
B(«) denotes normalization mapping. Then

8@, pg, 06 f)| < ——F—— lZ f(wg)] —2{ 21 fpe)l+ Zl If'(@g-)H ~ (32)
= ¢= ¢=

GZ: (‘QQ _pg) 1 o 9 49 1 t(P7]
|C(w§ap§agg7f)’ 4 [/ tf’(ng_ ( 2 ZIO§+ZZQ§)>dt
c=1 =1 —
(33)
1 , _ttp'fl o —1
_/tf ng—< Y oo+ Zpg> dt
0 =1 2 ¢ =1 2 —
By employing property of modulus in (33), we get
—1
L loe=pel | ¢ 24950 0!
’C(wg,l)nggaf)’_ f/ ng'_ 7Zpg'+7zgg' dt
4 o 2 & 25
(34)

*

Using Theorem 1 for the choices 0] =

P(E (et

Lt n=2and 0, = £ in (34), we get

1

’C(a)g‘v Pg‘a ngf)|

<(:Z;Q:pgl/01z<§f(wg - (3 Z|f pe)l+5 Z|f 0 ))

L fe 2195 =
Lo B (2 B o5 L))o
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o —1
Y log —pgl
_s=!

4
x [(/O.]tdt> gi I (@.)| - (/O] <t_2t2>dt> (:X:‘,ll 1f'(pe )| — (/01 idt> (:Z: | (og )]
+</01tdt> :g I (o) — (/01 <t_2t2>dt> (:;1 |f"(0g)| — (/01 idt> (:;1 If’(pg-)I] (33)

Since,

Therefore, (35) implies

o —1
Y |Qg~ — Pg ‘
g =1

¢ o —1 ¢ —1
|C((Og-,pg-, anf)| < 4 lz |f’((0g-)—;{ Z |f’(ﬂg-)|+ Z |f’(@g-)H .
¢ =l ¢=l1

This finishes the proof. O]

Remark 5

(1) If we substitute ¢ = 2 in (32), then we get Theorem 4.1 of [59].

(i1) If we substitute ¢ = 2, p; = @y, 0] = @ in (32), then we get Theorem 5 of [60].

Theorem 7 Let f: I — R represents a differentiable function whose domain is in the interval /. Let the tuples
@, p, 0 € I? be defined by @ = (@1, w2, ..., ©p.), p=(p1, p2, ---, pep-) and 0 = (01, 02, - .-, 0p-) With py. > 0o and
., pc, 0c- €1forallg-=1,2,..., ¢ . Suppose further that p < @ and o < @, g > 1 such that % +$ =1,]|f’|9 is convex
function, 0 < « < 1, and B(«) represents normalization mapping. Then

|C(a)§'7p§‘7 anf)‘

1

[(f e )I"—1<3(pil|f’(p 1+ Y 1 )’
< 4 = s = s (36)

¢=1

¢ —1

Y log —pgl
¢=1
<

==

4(p+1)
2 / 1 ! / ! / %
(L ir@r- (3 X reor+ X iree))' |
¢=1 ¢=1
Proof. Lemma 3, when used together with the modulus property, gives
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C

o -1

L log —pel [ .

|C(w€'7p§'agg'7f)|§f dl

, [ 2_[ (PAil t (PAil
! O — TZPQ'+§ZQg-
= = =

4

t
0

1
[
Jo

By employing Holder inequality, we get

/ l p t 9!
f(z a)g,—<2 Z Qg,—i—i Z Pg*)
g=1 9 ¢=l

=1

‘g(wg’pg'v ngf)‘

o 991 P 4 \g
( Y o - (2 L re +5g; @g)) df) (37)

Utilizing Theorem 1 for the case n = 2 with 61 = 2% and 6, = £ in (37) in light of the convexity of |f'|%, we achieve

’C(wg"a Pgs Qg'vf)’

¢ —1
QEI |Qg _Pg-| | !
<
- 4 p+1
I (38)

¢ _; 91 o —1 q
« ( (L@ Eear—3 L I.f’(gg-)lq>dt>

=

1

1 [ , 2_t¢'—1 , t(P'—l ) q
+ ( / (g_zl =5 L e =5 B b (ool dt>

Since,
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Therefore, (38) implies

|C(a)§'7p§'7 @§7f)‘

o1
L los=psl il ¢ -1 o —1 1
= " .. q_l 3 oY TR g
< ! [(gzlf(wg)l 4< g; 1f(pg)] +g; If (02| ))

(£ o5 (g e g s '>>]

Thus, the desired result has been proven. O
Remark 6

(1) If we substitute ¢ = 2 in (36), then we get Theorem 4.2 of [59].

(i) If we substitute ¢ = 2, p; = @, 01 = @ in (36), then we get Theorem 6 of [60].

Theorem 8 Let f: I — R represents a differentiable function whose domain is in the interval /. Let the tuples

®, p, 0 € I? be defined by @ = (@1, w2, ..., ©yp.), p = (p1, p2, ---, pe-) and 0 = (01, 02, ..., 0p) With py. > 0¢.
and ¢, pc., oc €1 forall g =1,2, ..., ¢. Suppose further that p < @ and ¢ < @, |f'|%, (1 < g) is convex function,
0 < a < 1, and B(o) denotes normalization mapping. Then

|C((Dg-, Pg-: anf)|

¢ -1
21|Qg- —Pg~| 1

gm(;)l_; [(;ﬁ (g~ (Z (e |q+22 7))’ (9)

( Z|f 0,))7 (2|f (vs. |q+2z|f o) ))]

Proof. Lemma 3, when used together with the modulus property, gives

¢ -1
g_);]|:9g-_Pg~| .
|C((Dg-, Pg-a Qg'v f)| Sf [

f’(gi%( _I(PZ pet 5 Z 9g>>

4

1
i [
Jo

By employing power mean inequality in the above integral, we get

& 210 oS!
f Z(Dg,—<22£)g,+22pg,>
¢=1 g=1 ¢=1
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C

|C(wg‘a Pg‘a anf)|

p-1
;1 log — pe-|

<= [(/Oltdty;(/olt

, (P 2_t(P71 t(Pil
Il Y o (2 Y etz ) é’g-)
¢=1 ¢=1 ¢=1
-1

() (4 )]

Utilizing Theorem 1 for the case n = 2 with o1 = % and 6 = £ in (40) in light of the convexity of | /|7, we achieve

1

7 \g
dt) (40)

[ 5 91 P
FlYoe—(Z5 Xo+z X re
¢=I ¢=I c=I1

|C(wg‘7 Pgw anf)|

g1
Y log —pgl
¢=I

1\
<= |z
<= (3)
1

v _ o1 91 q
x ( [e(x f’(wg)l”—zzt;] 75 =5 X, If’(gg-)q)dt>

1 o L o—1 ¢ —1 é
+< [e(Lireor-23 Flesl'=5 L If’(pg-)l">dt>

¢=1 ¢=1

(41)

lli ¢ , 1 1/ 9y o —1 /
K ¥ If o) e~ | (%)f”gzl £ (oo )1

g=

1
Ly

2 ¢-—1 . . q 1 [0} . .
-], 5 X Irtes) dr) +</0 @ Y. 15 (o)

Since,
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Therefore, (41) implies

|C(w§'7pg‘7 ngf)‘

o —1
-Zﬂ ‘Qg- —Pg-|

1\~
q
D (e
<)
1

1 &, L% 25 1))
» l(2 Y 11 (0] —6(;1 42 L 1) )

1 & e o1 i
(3 L@ L ueare2 L irter)) ]

¢ =l

Thus, the desired result has been proven. O

Remark 7

(i) If we substitute ¢ = 2 in (39), then we get Theorem 4.3 of [59].

(i1) If we substitute ¢ = 2, p; = @1, 01 = @ in (39), then we get Theorem 7 of [60].

Theorem 9 Let f: I — R represents a differentiable function whose domain is in the interval /. Let the tuples
o, p, 0 € I? be defined by @ = (@1, 12, ..., Wp.), p=(p1, P2, ---, pe-) and 0 = (01, 02, -- ., 0p-) With py. > 0p. and
¢, pe, 0 €Iforallg=1,2,..., ¢ . Suppose further that p < @ and 0 < @, ¢ > 1 such that % —&—é =1, |7 is convex
function, 0 < « < 1, and B(«) denotes normalization mapping. Then

o —1
;1 log- — pg-|
‘C(wg'a Pg-v Q§‘7 f)’ S%
_ _ _ (42)
o o1 o1
) 2% [fflog)lr X 1f (ec)lf+ X |f (e )l
g=I o=l g=1
pp+1) q q

Proof. Employing Lemma 3, and property of modulus, we obtain
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C

o -1

L log —pel [ .
t

|C(w€'7 Pg-a ngf)| Sf

y 2 2—1 %! t 92!
! Za’g-(zng-+229g-> di
1 ¢ =1 ¢ =1

1

1
+/
JO

By employing Young’s inequality in the above integral, we get

(Lo - u i Ew))

¢ -1
-2—1 ‘Qg- —Pg|

’g(wgwpgw&)g-yfﬂgg 4

|G
(o h

Utilizing Theorem 1 for the case n =2 with 07 =

(Ea (gl @
f/(gf'ilwg_( F sy T ) )[a)

=+ and 0y = § in (43) in light of the convexity of | f'|7, we achieve

2—

o —1

):1 log — pg-|
G =

’C(w§'> Pgw ng f)| S

(44)

[T reon) )+ (ot (S o
o 29 &V p(p+1) g\ 2"

LG - [ g o))

Since,
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Therefore, (44) implies

’g(wg-, p§'7 anf)’

¢ —1 ¢ , ¢ —1 , ¢ —1 ,
Y [og —pg | 2% [flog)? X |f'(eg)?+ X |f (pg)I?
¢ =1 2 ¢ =1 _ ¢=1 ¢=l1
- 4 p(p+1) q q
The desired result has been successfully proved. O

Remark 8
(1) If we substitute ¢ = 2 in (42), then we get Theorem 4.4 of [59].
(i) If we substitute ¢ = 2, p; = @, 01 = @ in (42), then we get Theorem 8 of [60].

6. Applications of the main results
6.1 Modified bessel functions

Modified Bessel functions arise naturally in various physical and engineering contexts, especially in solving
differential equations involving cylindrical or spherical symmetry. These functions, known for their smooth behavior
and exponential growth, serve as essential tools in applied mathematics, including problems related to heat conduction,
wave propagation, and statistical distributions. Their intrinsic connection with convexity properties makes them a fertile
ground for analytical investigations through inequalities. Motivated by this, we now demonstrate the applicability of
our newly established results, which are derived through the connection between convex functions and the concept of
majorization. These results provide broader and more refined inequalities that yield meaningful estimates for special
functions. In particular, we illustrate how our generalized framework can be applied to the modified Bessel functions,
demonstrating both the versatility and analytical power of our approach.

Watson [61] defined the function J,: R — oo as

Jy(x) =2T(v+1)x VI, (x), xeR,
and the modified Bessel function of the first kind as

= (x/2)vHH
Z JT(v+j+1)

Employing the above two functions, one can obtain the following:

Jy(x) :mhﬂ (x),

2
" 1 X

v(x):4(v+1) V—|—ZJV+2( xX)+ 2011 (x)| .
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In what follows, the derivatives of first and second order obtained earlier will be applied to deduce the results:
Example 1 By choosing f(x) = Ji, (x) and substituting the two preceding identities into Theorem 6 while using the
assumptions & = 1, and B(«) = 1, we establish the following outcome.

s
=i

1 {*”‘Z‘
2\ &
g1

>

c=1

2

1 wg-
m <v_|_2]v+2(a)g‘) + 2Jv+1 (wg‘)) ‘

4v+1)\v+2

2
1 (pgjv+2(pg.)+2fv+1(pg.)>‘

2
4(V1+ ) (ijzJH—Z(Qg) +2Jv+l(£)g)) ‘ }‘| .

Example 2 By choosing f(x) = J, (x) and substituting the two preceding identities into Theorem 7 while using the
assumptions o = 1, and B(«) = 1, we obtain the subsequent result.
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where,

[ 1 (D2 g
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= 4v+l)

1t

391
+

4¢3

q

2
4(v1+ 1) (vp+ v lvealpe) + 2 (pe ))
)

The presented examples illustrate how the inequalities established in Theorem 6 and Theorem 7 can be specialized
to yield concrete bounds for the Bessel function of the first kind. In particular, by selecting f(x) = J'v(x), the imposed
differentiability and convexity conditions are satisfied, thereby enabling a direct application of the general results. The

1 %
aveD) <v+21v+2(9g )+ 20y 1 (oc ))

derived inequalities furnish explicit upper bounds for differences of Bessel functions in terms of their higher-order
counterparts Jy11 and Jy42. These findings demonstrate the applicability of our theoretical framework to special functions
that arise frequently in applied mathematics, especially in contexts such as wave propagation and signal analysis.

6.2 Applications to special means

Arithmetic mean:

A L)=18 gner
Logarithmic mean:
L-G
L&, &)= G =G| G, & e R\ {0}
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Generalized log-mean:

n+l1 _ #n+l

Ly(81, &) = (W) ; neR\{-1,0}, & < &.

Proposition 1 Suppose that the requirements of Theorem 6, are met then

An( i O :”i‘ Ps:s i O *(pil 99')

g=1 ¢= g=1 g=1

n Z |Q§ | : o —1 (03 ¢ —1
s(zwnl meﬁzmw*zmwﬁ
= B =

Proof. The result follows immediately from Theorem 6 by choosing o« = 1, B(«) = 1, and considering f(x) = x" for
xeR. O
Proposition 2 Suppose that the requirements of Theorem 7, are met then

A(Z meng il )

= =

(e T b )

g7

91
nyY log—
¢=I

<

pg'l [0}
(£
=

(5 e g} © ()
S CO W PRI DR O T
g=1

=1 ¢=l1

==

4(p+1)

91 91 q
n n— n— 4
SAOWHEEY WD) 1
g=I ¢=1

Proof. The result follows immediately from Theorem 7 by choosing « = 1, B(o) = 1, and considering f(x) = x" for
xeR. O
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Proposition 3 Suppose that the requirements of Theorem 8, are met then
¢ 91 ¢ ¢ -1 ¢ ¢ -1 ¢ 91
n n
A (Z o= ) per ) 0 — Y Qc-) _Ln< Yo=Y per Y 0p— ) 99')
1 ¢ =1 ¢ =l ¢ =l ¢ =l ¢ =l ¢ =l ¢ =l

¢=

-1
ny \Qg-_Pg~| -1 . 1 1 1
¢ =1 1 q n a n— n A n— K n— 1
<— | = x| = Z |a)g.|( Da_ZA(2 Z |p€.|( 1)", Z |g€.|( g

4 2 2g}:1 3 fonl o=

R ST R Y A ST IV U AR
+ §Z|wg-| —34 Z,|ﬂg-| 72;@;\
¢ =1 ¢ =1 ¢ =1
Proof. The result follows immediately from Theorem 8 by choosing « = 1, B(«) = 1, and considering f(x) = x" for
xeR. O
Proposition 4 Suppose that the requirements of Theorem 6, are met then

. ¢ ¢ —1 ¢ ¢ —1
A <Z%ZP9’ ng-Z@g-)
1 ¢ =1 ¢ =1 ¢ =1

¢=

¢ -1
g§1|9g-*,0g-\ 0 o —1 ¢ o1
<4A( Z ‘a)g'rz_ Z |Pg‘|727 Z ‘wg"iz_ Z |Qg‘|2>
= &=l ¢=1 ¢=1
Proof. The result follows immediately from Theorem 6 by choosing o = 1, B(ex) = 1, and considering f(x) = 1,
O

x#0, xeR.
Proposition 5 Suppose that the requirements of Theorem 7, are met then

.
ZI|Q§'_p€" 0% 1 o —1 o —1 %
[( Y fos | 2 34(3 L Ins |20 L lesl ) )

= = =

4(p+1)%

¢ I T e e RN N
H(Ltosl - 3a( X o3 L lesl ) ).
¢=1 ¢=l1 ¢=l
Proof. The result follows immediately from Theorem 7 by choosing o« = 1, B(o) = 1, and considering f(x) = _,
O

x#0, xeR.
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Proposition 6 Suppose that the requirements of Theorem 8, are met then
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Proof. The result follows immediately from Theorem 8 by choosing o = 1, B(ex) = 1, and considering f(x) = 1,

x#0, xeR. O

7. Conclusion

The Hermite-Hadamard inequality has become a key focus in recent mathematical studies. It ensures integrability and
provides approximations for convex functions. Over time, it has been extended to the functions belonging to s-convexity,
n-convexity, coordinate convexity, and strong convexity. These extensions, together with related integral identities, have
produced many refined inequalities.

This study has advanced the theory of Hermite-Hadamard type inequalities by formulating Mercer-type versions in
conticrete fractional settings. The methodology relied on the joining of majorization, convexity, and Caputo-Fabrizio
fractional operators, which allowed the derivation of several new and generalized results. Weighted forms were also
obtained by employing certain monotonic tuples together with weighted majorized Jensen-Mercer inequalities. An
integral identity for differentiable functions was developed, which served as a foundation for establishing sharp bounds
for the discrepancy of terms in the main inequalities. These estimates were derived by employing the convexity of
|/'19, (1 < g) and |f’|, alongside classical inequalities such as the power mean, Holder, and Young’s. The applications
presented to modified Bessel functions and special means further highlighted the versatility of the findings. The outcomes
not only produce several existing results as special cases but also generate entirely new inequalities. Thus, this work
contributes both to the theoretical enrichment of fractional inequalities and to their potential applications in broader areas
of mathematical analysis.
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