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Abstract: Neural Architecture Search (NAS) has emerged as a powerful tool to find the best neural architectures with
minimal manual intervention. However, existing NAS approaches suffer from poor robustness, because the search process
is sensitive to the noise and hyperparameter settings. To this end, we propose a robust Differentiable Architecture Search
with Stability Regularization (SR-DARTS for short). SR-DARTS introduces a new stability regularization term into the
validation loss function to explicitly constrain the architecture parameter. Specifically, the new regularizer drives the mean
of the architecture parameters towards zero during the search process, thereby accelerating the convergence of the search
algorithm. Consequently, SR-DARTS can reduce the variance error during search. Experimental results demonstrate that
SR-DARTS can discover accurate neural network architectures and obtain better performance on benchmark datasets.
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1. Introduction
Neural Architecture Search (NAS) has attracted considerable attention. Early NAS approaches are mainly based

on Reinforcement Learning (RL) [1–3] and Evolutionary Algorithms (EA) [4–6]. Recurrent Neural Network (RNN)
controllers are commonly used to create new network architectures, encoded as strings for the agent to interact with,
while model evaluation accuracy acts as the reward signal for training the agent. EA-based NAS attempts to jointly
optimize network weights and architecture parameters. However, recent studies tend to use EA solely for architecture
optimization. Although RL and EAmethods provide better accuracy thanmanually designed architectures, they are highly
computationally intensive. For instance, discovering NASNet [7] via RL required up to 2,000 Graphics Processing Unit
(GPU)-days. Meanwhile, NAS techniques have also been extended to Graph Neural Networks (GNNs) and heterogeneous
graphs [8–11]. These studies further underline the need for robust and transferable architecture searchmethods on complex
graph data.

To alleviate the excessive computational cost and inefficiency of NASmethods based on RL and EA discussed above,
Differentiable Architecture Search (DARTS) [12] has been proposed that relaxes the discrete selection of operations into
a continuous optimization problem, allowing the architecture parameters to be learned more efficiently. With fewer
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GPU computations, DARTS can achieve a performance comparable to the RL and EA methods. However, despite
the advantages of differentiable methods in terms of simplicity and computational efficiency, these methods still face
challenges in robustness and architecture generalization. Researchers have explored various improvements, such as
restricting skip connections and regularizing parameters, but explicit regularization in architecture parameter optimization
is rarely involved [13]. Furthermore, DARTS has shown good performance on a single dataset but exhibits poor
generalization ability on new datasets. For example, GeNAS [14] achieves excellent performance on Canadian Institute
For Advanced Research (CIFAR)-10, but it underperforms on ImageNet. This indicates that learning an architecture with
generalizability from a single dataset remains an unresolved challenge.

In order to solve the above limitation, prior works introduce several different regularization methods. For example,
fairness reweighting to suppress the dominance of skip connections [15], grouped operation dropout to reduce co-
adaptation [16], and constraints on operation strength or spatial uniformity to curb preference [17, 18]. These strategies
effectively mitigate certain degenerate behaviors in specific settings, but they are often tailored to particular operators or
search spaces and may introduce additional hyperparameters that themselves require careful tuning. Moreover, most of
them act indirectly on the search dynamics by modifying operation weights or local preferences, rather than modeling the
global distribution of architecture parameters. As a result, the architecture optimization process can still be vulnerable to
noisy gradients and biased updates, and may converge to unstable or dataset-specific solutions. However, regularization
aimed at the architecture parametersα typically defaults to applying L2/weight decay toα , rather than imposing an explicit
global constraint.

This paper aims to address the aforementioned challenge efficiently. Inspired by commonly utilized L2 or weight
decay regularization techniques, this paper introduces a new differentiable architecture search by adding a Stability
Regularization term, called SR-DARTS. In this method, we add a stability regularization term to the DARTS validation
loss function to explicitly constrain the architecture parameters, thereby reducing the variance and enhancing the network
architecture with better robustness and generalization. The results of the experiments indicate that SR-DARTS surpasses
other differentiable search methods by achieving higher accuracy and stronger performance with reduced search time.
The main contributions are summarized as follows:

• This paper presents a new neural architecture search algorithm SR-DARTS by introducing a stability regularization
to constrain the architecture parameters. SR-DARTS can alleviate the bias of differential search algorithms and improve
the robustness of DARTS.

• Experiments validate the effectiveness of the proposed method on real-world datasets. The results in the benchmark
datasets show that SR-DARTS not only reduces search time but also improves the accuracy of the model compared to
existing DARTS variants.

2. Related works
Differentiable NAS relaxes the discrete selection of operators into a continuous parameterization, where the

architecture parameters α define softmax weights over candidate operations. At the level of the computation graph,
each edge is instantiated as a mixed operation governed by these weights. The search proceeds as a bilevel optimization:
networkweightsw are updated on the training set, whileα is updated byminimizing the validation loss. After convergence,
the architecture is discretized by selecting the highest-weight operation on each edge, and the resulting network is
retrained from scratch. Compared with reinforcement-learning or evolutionary approaches, this gradient-based framework
substantially reduces search cost while maintaining competitive accuracy.

Regularization in DARTS aims to stabilize the dynamics of bilevel optimization. By constraining the architecture
parameters α , smoothing the validation-loss landscape, and reducing the unfair advantage of parameter-free operators
(e.g., skip connections), it balances competition among candidate operations. Typical mechanisms include penalties on
α , fairness reweighting, stochastic perturbations, progressive or discretized search, and constraints on operation strength
or uniformity.
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Differentiable-NAS Algorithms: Liu et al. [12] pioneered DARTS, which revolutionized the NAS field with a
novel differentiable framework. By relaxing the space into a continuous domain and applying gradient-based optimization,
DARTS substantially cuts the search expense. However, performance collapse issues in practical applications prompted
subsequent improvements. In view of this, Li et al. [19] introduced Progressive Discretization (PD)-DARTS, which
employs a progressive search architecture, gradually increasing network depth and restricting skip connections to narrow
the gap between the supernet and the search network. Similarly, Liang et al. [20] presented DARTS+, directly
limiting the number of skip connections within each cell to prevent performance degradation caused by excessive skip
connections. Furthermore, Zela et al. [21] proposed Robustifying (R)-DARTS, which uses Hessian eigenvalues as a
collapse indicator and employs stronger regularization to reduce this eigenvalue. Xie et al. [22] developed Stochastic
Neural Architecture Search (SNAS), adding perturbations to architecture parameters for implicit regularization to avoid
overfitting of architecture parameters. In a related vein, Chu et al. [15] introduced Fair DARTS, which uses independent
sigmoid functions to weight operations and prevent unfair competition among different operations. Hong et al. [16]
brought forth DropNAS, focusing on co-adaptation problems and the Matthew effect by randomly dropping certain
operations during training, enabling the model to learn the importance of different operations more evenly. In summary,
these differentiable NAS methods, each with unique advantages in improving search efficiency and model performance,
offer diverse and effective strategies for the NAS field.

Regularized Differentiable-NAS Algorithms: Yang et al. [17] proposed Operation Strength (OSTR)-DARTS,
which imposes explicit constraints on operation strength to prevent a single operator (e.g., a skip connection) from
dominating and to mitigate early bias. Further, Huang et al. [18] proposed Uniform (U)-DARTS, which enforces spatial
uniformity/consistency constraints to balance competition among operators and suppress preference at the distribution
level. In contrast to the above deterministic-constraint approach, Bi et al. [23] proposed Stabilizing (S)-DARTS, which
injects adversarial or stochastic perturbations around the validation objective to smooth curvature and suppress drift of the
architecture parameters, thereby reducing the probability of collapse. By comparison, Chen et al. [24] studied Dirichlet
Neural Architecture Search (DrNAS), which models the architecture parameters α as Dirichlet random variables with a
prior and improves stability and exploration through distributional learning. Meanwhile, Chu et al. [25] proposed Noisy
Differentiable Architecture Search (NDAS), which injects unbiased noise into the update of the architecture parameters as
an implicit regularizer to further alleviate instability. In summary, these regularization-based differentiable NAS methods
enhance the robustness of differentiable NAS through dimensions such as strength constraints and uniformity constraints.

Overall, differentiable NAS relaxes the discrete search space into a continuous one and optimizes it with gradients,
typically via bilevel optimization, which updates network weights w on the training set and the architecture parameters α
on the validation loss, together with temperature-controlled soft choices (e.g., Gumbel Softmax). This markedly reduces
search time while maintaining or improving accuracy. Regularized differentiable NAS further introduces regularization
within this framework, aiming tomitigate skip-connection bias, smooth the validation-loss landscape, and balance operator
competition. As a result, it preserves the efficiency of differentiable NAS while enhancing robustness and cross-dataset
performance.

3. Preliminaries
3.1 The DARTS method

First, we introduce the core concepts of the differentiable neural architecture searchmethods. DARTS [12] tackles the
discrete nature of architecture search by relaxing the problem into a continuous space. This allows architecture parameters
to be optimized alongside network weights via gradient descent, enhancing the efficiency of finding optimal network
architectures.

In the formulation of DARTS, each cell is cast as a directed acyclic graph: a vertex x(i) denotes the feature
representation at step i, and a directed link (i, j) applies an operator o(i, j) from O (e.g., 3 × 3 convolutions or a
skip connection). Two inputs are taken from the preceding cells and a single output is formed by concatenating every
intermediate node. The j-th intermediate representation is computed as:
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x( j) = ∑
i< j

g(i, j)(x(i)) (1)

Here, g(i, j)(·) denotes the mixture of candidate operations on edge (i, j). Let α(i, j) denote the operation weight
vector from node x(i) to node x( j), with a dimension of |O|. For simplicity, we denote this as α . The continuous relaxation
of the search space is achieved through the softmax operation over the architecture parametersα , which can be specifically
expressed with the following formula:

g(i, j)(x) = ∑
o∈O

exp(α(i, j)
o )

∑o′∈O exp(α(i, j)
o′ )

o(x) (2)

Under this continuous relaxation, both the network weights and the operation-mixing coefficients of the supernet are
differentiable. Consequently, differentiable NAS is cast as a bilevel optimization problem:

min
α

Lval (w∗(α), α) (3)

s.t. w∗(α) = argmin
w

Ltrain(w, α) (4)

where w denotes the supernet weights, Lval and Ltrain are the validation and training loss, respectively. In DARTS, the
update for α is computed using the following approximation:

∇αLval
(
w′, α

)
− ξ

2ε
(
∇αLtrain

(
w+, α

)
−∇αLtrain

(
w−, α

))
(5)

where ε is a small step size, and w± = w± ε∇w′Lval (w′, α).

3.2 L2 regularizer for DARTS

Popular regularizers are the L2 regularizer and the decay penalty regularizer. Then, the update step of α is denoted
as follows:

α t+1
k ← α t

k−ηα ·∇αkLval (6)

where ηα is the learning rate, and Lval denotes the loss on the validation set.
In the DARTS variant with L2 regularization, Adam optimizer with L2 regularization is utilized for the optimization

of architecture parameters. The L2 regularization gradients are normalized by their cumulative magnitudeN, which results
in relatively uniform penalization for each parameter element. This, in turn, to some extent weakens the effectiveness of
regularization [26]. The update formula is defined as follows:

α t+1
k ← α t

k−ηα ·∇αkLval−ηα λN
(
α t

k
)

(7)
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where ηα denotes the learning rate for the architecture parameters, λ represents the regularization strength, and Lval is
the validation loss function.

In the weight decay regularization method, a portion of the architecture parameters α is directly subtracted during
the optimization steps. At each iteration, we first compute the gradient of the validation loss with respect to α and update
it along the negative gradient direction, and then subtract an additional term proportional to the current parameter value
and the weight decay coefficient. This causes the parameters to gradually decay during updates, thus achieving the effect
of L2 regularization. The update formula is as follows:

α t+1
k ← α t

k−ηα ·∇αLval−ηα · τ ·α t
k (8)

where ηα denotes the learning rate for the architecture parameters, τ represents the weight decay coefficient, and Lval is
the validation loss function.

4. The proposed method
Although DARTS has achieved significant progress in architecture search, some challenges remain in practical

applications. For example, the uncontrolled growth of architecture parameters α often results in an over-preference to
simple operations (e.g., skip connections). To address this issue, we introduce a stability regularization term into the
validation loss function of DARTS by constraining the mean value of architecture parameters, guiding it toward a target
mean µ . Consequently, the validation loss takes the form:

Lval(α) = Lval(w∗(α), α)+λ
(
µ−mean(α)

)2 (9)

Here, µ is the target mean set to 0, λ is the hyperparameter controlling the regularization strength, and mean(α)

represents the mean value of the current architecture parameters, calculated as:

mean(α) =
1
|α|

|α|

∑
k=1

αk (10)

Here, |α| represents the cardinality of the operator set, and αk denotes the kth component of the architecture vector
α . Building on the concept from formula (8), we can expand formula (9) to derive a more concise update formula for α ,
as shown below:

∇αLval(α) =

(
∇αLval(w′, α)− ξ

2ε
(
∇αLtrain(w+, α)−∇αLtrain(w−, α)

))
−λ · 2

|α|

(
µ− 1
|α|

|α|

∑
k=1

αk

)
(11)

where w+ and w− denote the weights obtained after applying a positive and a negative perturbation to the architecture
parameters α , respectively. ξ and ε are hyperparameters that control the update step size.

Algorithm 1 summarizes the overall procedure of SR-DARTS. Given the architecture coefficient vector α , supernet
weights w, and the number of search epochs E, we first instantiate the supernet and initialize α and w. At each epoch,
α is updated by gradient descent on the validation objective augmented with the stability term λ

(
µ −mean(α)

)2 (with
µ = 0 by default), followed by a standard update of w on the training loss. After E epochs, α is discretized to obtain the
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final architecture. This alternating scheme is used in the bilevel optimization while keeping the overall search pipeline
identical to DARTS. Regarding time complexity, Tval and Ttrain denote the time cost of one forward-backward pass of the
supernet on the validation and training sets, respectively. During the search process, in each epoch Algorithm 1 performs
one update of the architecture parameters α (cost Tval) and one update of the supernet weights w (cost Ttrain), and hence
the overall time complexity is O

(
E · (Tval +Ttrain)

)
. The additional stability regularization term only introduces an extra

O(|α|) operation in the α-update, and therefore the time complexity remains of the same order as vanilla DARTS.
We now use an example to explain the main steps of SR-DARTS algorithm. Consider the CIFAR-10 [17] dataset,

which contains 10 classes of 32 × 32 Red Green Blue (RGB) images. The search space adopts a DARTS-style cell and
includes eight candidate operations: 3 × 3 and 5 × 5 standard convolutions, dilated convolutions, depthwise-separable
convolutions, 3 × 3 max/average pooling, the identity (skip) operation, and the zero operation (each followed by Batch
Normalization (BN) and Rectified Linear Unit (ReLU)). Table 1 provides the detailed specifications of these operators.

Algorithm 1 Stability-Regularized Differentiable Architecture Search (SR-DARTS)
Require: Architecture parameters α , Supernet weights w, Total search epochs E
1: Construct the supernet and initialize (α , w).
2: for each e = 1, ..., E do
3: Update α by performing gradient descent on ∇α(Lval+λ (µ−mean(α))2)

4: Update w by performing gradient descent on ∇wLtrain
5: end for
6: Decode the architecture parameters α to a discrete design and output the final architecture.

Table 1. Convolutional Neural Network (CNN) architecture search space (DARTS-style)

Component Values

Input nodes Two inputs ck−1 and ck−2 (outputs of the (k−1)th and (k−2)th).

Operation set (per edge)
Sep_conv_3 × 3, sep_conv_5 × 5, dil_conv_3 × 3, dil_conv_5 × 5,

max_pool_3 × 3, avg_pool_3 × 3, skip_connection (identity), zero.

Cell topology Four intermediate nodes; each node selects two inputs; output is concat of all nodes.

Reduction cell Stride-two counterparts of convolution/pooling operations.

Post-ops Each operation followed by BN and ReLU.

Table 2. SR-DARTS discovered cells on CIFAR-10 in the first epoch

Node
Normal cell Reduction cell

Input 1 (source, op) Input 2 (source, op) Input 1 (source, op) Input 2 (source, op)

0 (ck−2, sep_conv_5 × 5) (ck−1, sep_conv_5 × 5) (ck−1, sep_conv_5 × 5) (ck−2, sep_conv_3 × 3)

1 (0, sep_conv_5 × 5) (ck−1, dil_conv_3 × 3) (0, sep_conv_5 × 5) (ck−2, sep_conv_3 × 3)

2 (1, dil_conv_5 × 5) (identity) (1, dil_conv_5 × 5) (0, dil_conv_3 × 3)

3 (identity) (identity) (0, dil_conv_5 × 5) (1, dil_conv_3 × 3)

With the search space in Table 1 fixed, SR-DARTS performs a bilevel optimization: at each epoch the architecture
parameters α are updated on the validation objective augmented with the stability term λ (µ −mean(α))2, while the
network weights w are updated on the training loss. To visualize the early search behavior, after the first epoch we
temporarily discretize the supernet following the DARTS rule: for each intermediate node we retain the two incoming
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edges with the largest non-zero softmax weights and label each kept edge with the operation attaining the highest weight
(the reduction cell uses the stride-two counterparts). The resulting epoch-1 snapshots of the normal and reduction cells
are summarized in Table 2. After completing E epochs, we discretize the final architecture and retrain it from scratch, and
then report results on CIFAR-10/100.

5. Experimental setup and results
This section presents the detailed information of our experiments. The experiments aim to discover convolutional

network architectures for image classification, using the widely adopted CIFAR-10 [17] and CIFAR-100 [18] benchmarks.
In Section 5.2, we search for and evaluate architectures on the CIFAR-10 and CIFAR-100 datasets. Then, to verify the
generalization ability of the architectures discovered by our method, architectures found on CIFAR-10 are applied to
CIFAR-100, and vice versa. Finally, the ablation study is presented in Section 5.3.

5.1 Experimental setup
We study neural architecture search on the CIFAR-10/100 benchmarks. Both corpora comprise 32×32 RGB images;

CIFAR-10 contains 60 K examples over 10 classes (≈ 6Kper class, split 5K/1K for train/test), and CIFAR-100 spans 100
classes with ≈ 600 images per class (500/100). The candidate cell follows a DARTS-style space with eight operators:
3× 3 and 5× 5 convolutions in standard, dilated, and depthwise-separable forms; 3× 3 max and average pooling; an
identity (skip) connection; and a zero operation. Batch normalization and ReLU are applied after each operation [27, 28].
During the search stage, we train a network with a 16-channel stem for 50 epochs and optimize the architecture parameters
α using Adam (learning rate 6× 10−4, β1 = 0.5, β2 = 0.999, weight decay 10−3) with mini-batches of 256. Following
the common DARTS protocol, the search is carried out on CIFAR-10; the discovered cell is then instantiated as a full
network and trained from scratch, and results are reported on both CIFAR-10 and CIFAR-100.

5.2 Comparative study
As shown in Table 3, we benchmark our approach against representative NAS algorithms. We conduct searches

on CIFAR-10 and CIFAR-100 and evaluate the obtained architectures on both. Our proposed algorithm achieves a test
accuracy of 97.30% on CIFAR-10, showing a slight improvement over DARTS. In CIFAR-100, it also achieves a test
accuracy of 83.05%, showing a significant improvement over DARTS. The search cost of SR-DARTS is reduced to 0.5
GPU-days, notably less than the 4 GPU-days required by DARTS. Compared to the RL-DARTS algorithm, our algorithm
achieves better search results in CIFAR-10 and CIFAR-100 with a comparable search cost. Figure 1 and Figure 2 present
the normal cell and reduction cell searched by SR-DARTS on CIFAR-10 and CIFAR-100, respectively. Additionally,
Figures 3-6 include snapshots of the normal and reduction cells on CIFAR-10 and CIFAR-100 after 15, 30, and 45
search epochs, illustrating the evolution of the discovered architectures during search. In terms of generalization ability,
the architecture found in CIFAR-100 can still achieve an accuracy of 96.89% on CIFAR-10, and the model found in
CIFAR-10 can reach an accuracy of 81.90% on CIFAR-100. SR-DARTS demonstrates excellent performance and strong
generalization ability across different datasets. This is primarily attributed to its stability regularization term, which
effectively constrains the mean of architecture parameters, thereby reducing fluctuations and deviations.
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Figure 1. Cells found on CIFAR-10 by SR-DARTS

Figure 2. Cells found on CIFAR-100 by SR-DARTS

Contemporary Mathematics 1224 | Peng Zhang, et al.



Table 3. Performance comparison of state-of-the-art architectures on CIFAR-10 and CIFAR-100

Architecture
Test accuracy (%)

Params (M) Search cost (GPU-days) Search method
CIFAR-10 CIFAR-100

ResNet-v2 [29] 94.54 75.67 1.7 - Manual-designed
Wide Residual Networks (WRN) [30] 95.83 79.50 36.5 - Manual-designed

DenseNet [29] 96.54 82.82 25.6 - Manual-designed
ResNeXt [31] 96.42 82.69 68.1 - Manual-designed

PyramidNet [32] 96.52 82.99 27.0 - Manual-designed

Broad Neural Architecture Search (BNAS) [33] 97.12 - 4.8 0.19 RL
BNAS-v2 [34] 97.23 - 3.5 0.09 RL

AmoebaNet-A [26] 96.66 - 3.2 3150 Evolution
Progressive Neural Architecture Search (PNAS) [35] 96.59 - 3.2 225 Evolution

AmoebaNet-B [26] 97.45 - 3.2 3150 Evolution

DARTS [12] 97.24 82.52 3.3 4 Gradient-based
R-DARTS [21] 97.05 81.99 - 1.6 Gradient-based
SNAS [22] 97.17 79.91 2.9 1.5 Gradient-based

RL-DARTS [13] 97.26 82.09 3.2 0.18 Gradient-based
SR-DARTS (ours) 97.30 83.05 3.3 0.5 Gradient-based

Figure 3. Normal cells found by SR-DARTS on CIFAR-10 during the iterative search
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Figure 4. Reduce cells found by SR-DARTS on CIFAR-10 during the iterative search
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Figure 5. Normal cells found by SR-DARTS on CIFAR-100 during the iterative search

Figure 6. Reduce cells found by SR-DARTS on CIFAR-100 during the iterative search
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5.3 Ablation study

Table 4 shows the regularization parameter λ of the stability regularization term added to the validation loss function.
It can be observed that on both CIFAR-10 and CIFAR-100, the test accuracy increases with the regularization parameter
λ and reaches its peak when λ is 0.1. Nevertheless, if the regularization parameter λ is either too large or too small, it
may excessively constrain the variation of the architecture parameter, thereby affecting the model’s flexibility and leading
to a decline in performance. Consequently, identifying an appropriate regularization strength in experiments is of great
significance for balancing the model’s stability and adaptability.

Table 4. Influence of different regularization parameter schemes on SR-DARTS

Regularization parameter (λ ) 0.025 0.050 0.075 0.100 0.125

CIFAR-10 valid (%) 97.18 97.20 97.23 97.30 97.25

CIFAR-100 valid (%) 82.87 82.90 82.99 83.05 83.01

6. Conclusion
In this paper, we propose a robust differentiable neural architecture search algorithm based on stability regularization,

named SR-DARTS. By incorporating a stability regularization term into the validation loss function, SR-DARTS explicitly
constrains the mean of architecture parameters. This approach reduces their fluctuations or deviations, thereby enhancing
the generalization ability of the architecture. Our experimental results demonstrate that SR-DARTS can effectively
identify high-performing network architectures and achieve lower error rates on the CIFAR dataset. Future workwill focus
on optimizing the stability regularization term through dynamic adjustment of the regularization strength and exploring
additional regularization strategies to further enhance robustness and generalization.
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