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Abstract: In the theory of shallow water wave equations, the Kawahara equation and modified Kawahara equation are
introduced to represent the solitary-wave propagation. In this paper, we use the residual power series method and Aboodh
transform to provide a new technique, the Aboodh Residual Power Series Method (ARPSM). By this technique and the
Caputo fractional operator, we calculate the coefficients of the power series of the modified Kawahara equation, which
will serve as the approximate solution. For providing approximate analytical and numerical solutions of the modified
Kawahara equation, we first consider the Modified Time Caputo Fractional Kawahara Equation (MTCFKE) and then
use ARPSM in two cases: with the polynomial initial condition and with the perfect condition of MTCFKE. To show
the capability, reliability, and efficiency of ARPSM, we describe ARPSM’s approximate analytical solutions numerically
and graphically and compare these solutions with other solutions obtained by using two methods: the homotopy analysis
technique and the natural transform decomposition technique.
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1. Introduction
Over the last years, the theory of partial fractional differential equations was considered one of the important subjects

in mathematics, as it is considered a perfect representation for many systems and models in several scientific fields such as
medicine, physics, engineering, groundwater problems, fluid mechanics, polymer science, and electrical networks [1, 2].
One of these fields is the theory of shallow water wave equations, which is widely applied to describe shock waves, the
spread of storm floods, and tsunami waves. The Kawahara equation and its modified form are two of these equations [3],
that were introduced in media to characterize solitary-wave propagation [4], which are defined by

∂φ(x, y)
∂y

+φ(x, y)
∂φ(x, y)

∂x
+

∂ 3φ(x, y)
∂x3 − ∂ 5φ(x, y)

∂x5 = 0, (1)
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and

∂φ(x, y)
∂y

+φ2(x, y)
∂φ(x, y)

∂x
+β

∂ 3φ(x, y)
∂x3 −β ′ ∂ 5φ(x, y)

∂x5 = 0. (2)

The Kawahara equations have many applications [5–9]. The symmetry laws and generalized conservation of
Kawahara equations were presented by [10].

The fractional calculus subject dates back to 1695. The fractional derivative and integral are the derivative and
integral of arbitrary order. The Riemann-Liouville fractional differential operator and the Caputo fractional differential
operator [11], are considered the oldest operators in this direction. Regarding these operators, some mathematical
researchers introduced other fractional differential operators such as those in [12–14]. The fractional calculus subject
has many applications in scientific fields such as electromagnetism, wave propagation, heat transfer, robotics system
classification, physics, mechanics, and viscoelasticity. One of these applications is the Modified Time Caputo Fractional
Kawahara Equation (MTCFKE) in the theory of shallow water waves, [15], which is defined by

Dα
0, yφ(x, y)+φ2(x, y)

∂φ(x, y)
∂x

+β
∂ 3φ(x, y)

∂x3 −β ′ ∂ 5φ(x, y)
∂x5 = 0, 0 < α ≤ 1 (3)

where Dα
0, y is the Caputo fractional operator of order α , β > 0 and β ′ < 0 are real numbers.

The numerical solutions of Partial Differential Equations (PDEs) play a crucial role in approximating their solutions.
Methods such as the finite difference, finite element, and spectral techniques have been widely developed to discretize
the domain and reduce PDEs into systems of algebraic equations that can be solved computationally. These numerical
schemes provide flexibility in handling complex geometries, nonlinearities, and varying boundary conditions, making
them indispensable in practical applications. Moreover, advancements in computational power and algorithms have
further enhanced the accuracy and efficiency of numerical PDE solvers, enabling the simulation of large-scale and real-
world problems with high precision. There are several mathematical methods and efficient techniques to solve fractional
partial differential equations such as the Sine-Gordon expansion technique in solving Wu-Zhang system models [16], the
fractional Newton method [17], the expansion method [18], the Laplace transform method [1], the monotone iterative
technique in solving reaction-diffusion equations [19], the reproducing kernel Hilbert space method [20], the homotopy
analysis method [21], the homotopy perturbation method with some equations [22], the modified Adams-Bashforth
method [23], the modified expansion function method [24], etc. For the technique of Aboodh Residual Power Series
Method (ARPSM), Liaqat et al. [25] solved the Black-Scholes differential equations, Noor et al. [26] solved some
equations with one-dimensional nonlinear shock waves, Edalatpanah and Abdolmaleki [27] introduced some results of
the N-Wh-S equation, and Yasmin and Almuqrin [28] used ARPSM to obtain some solutions. Several techniques and
methods have been used in solving MTCFKE (3), such as the Homotopy Analysis Method (HAM) [29], an iterative
Laplace transform method [30], the Laplace Adomian decomposition method [31], the residual power series method
[32], the Natural Transform Decomposition Method (NTDM) [15], the septic B-spline collocation method [33], and the
fixed-point theorem and homotopy analysis method [34].

Themainmotivation behind this study is to explore the effectiveness of the Caputo operator and theAboodh transform
combined with the residual power series technique in obtaining accurate approximate solutions for the modified Kawahara
equation (1). The reliability of the derived solutions is evaluated by comparing them with those produced through other
existing methods. In this paper, Section 2 reviews key definitions and establishes certain properties related to the Aboodh
transform in combination with the Caputo fractional operator. Section 3 outlines the fundamental steps of the ARPSM
technique. Section 4 highlights the application of ARPSM in deriving approximate analytical and numerical solutions
of the MTCFKE (3) under two scenarios: with polynomial and with exact initial conditions. Furthermore, graphical
representations of the obtained analytical approximations are provided, and these results are compared with approximate
solutions derived using the NTDM method [15] and the HAM approach [29].
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2. On Aboodh transform
Let φ be a map on I × [0, ∞), where I is an interval in R. The Riemann-Liouville Fractional (R-LF) derivative

operator [35] of φ(x, y) of order α > 0 is defined by

Dα
0, yφ(x, y) = Dn

y I α
0, yφ(x, y) n−1 < α < n (4)

where n ∈ N and I α
0, y is the R-LF integral operator [35] of φ(x, y) of order α defined by

I α
0, yφ(x, y) =


1

Γ(α)

∫ y

0
(y−ν)α−1φ(x, ν)dν , α > 0,

φ(x, y), α = 0.

(5)

The Caputo fractional derivative [36] of φ(x, y) of order α is given by

Dα
0, yφ(x, y) =


I n−α

0, y

[
∂ nφ(x, y)

∂yn

]
, n−1 < α < n

∂ nφ(x, y)
∂yn , α ∈ N.

(6)

For y ≥ 0 and n−1 < α < n, by [36] we have Dα
0, yI

α
0, yφ(x, y) = φ(x, y), Dα

0, yyγ = Γ(α+2)
Γ(γ−α+2)yγ−α , and

I α
0, yD

α
0, yφ(x, y) = φ(x, y)+

n−1

∑
k=0

yk

k!
∂ kφ(x, y)

∂yk

∣∣∣
y=0

,

where γ >−1, c ∈ R is a real number, and n ∈ N.
Let φ(x, y) be continuous with exponential order ρ on I × [0, ∞). The Aboodh transform Ayρ [26] of φ(x, y) with

respect to y is defined by

φA
y (x, ρ): = Ayρ φ(x, y) =

1
ρ

∫ ∞

0
e−yρ φ(x, y)dy ρ1 ≤ ρ ≤ ρ2. (7)

The inverse Aboodh transform A −1
yρ of φA

y (x, ρ) with respect to ρ is defined by

φ(x, y): = A −1
yρ φA

y (x, ρ) =
1

2πi

∫ d+i∞

d−i∞
ρeyρ φA

y (x, ρ)dρ. (8)

Lemma 1 [25] Let φ, θ : I × [0, ∞)→ R be a function on I × [0, ∞). Then
1. Ayρ [ι1φ(x, y)+ ι2θ(x, y)] = ι1Ayρ φ(x, y)+ ι2Ayρ θ(x, y), where ι1 and ι2 are constants;
2. A −1

yρ [ι1Ayρ φ(x, y)+ ι2Ayρ θ(x, y)] = ι1φ(x, y)+ ι2θ(x, y), where ι1 and ι2 are constants;
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3. AyρI α
0, yφ(x, y) = ρ−α φA

y (x, ρ);

4. Ayρ

[
Dα

0, yφ(x, y)
]
= ρα φA

y (x, ρ)−∑n−1
j=0 ρα− j−2∂ j

y φ(x, y)
∣∣∣
y=0

(n−1 < α < n).

From [28], the power series form is defined by

∞

∑
j=0

φ j(x)(y− x′0)
jα = φ0(x)(y− x′0)

0 +φ1(x)(y− x′0)
α +φ2(x)(y− x′0)

2α + · · · (9)

where x = (x11, x12, · · · , x1n)∈Rn, n ∈N. The MFPS is short for Multiple Fractional Power Series (MFPS), which means
the series about x′0 ∈ R with series coefficients φ j(x), and y ∈ R is a variable.

Lemma 2 Let φ: I × [0, ∞)→ R be continuous on I × [0, ∞). Then

Ayρ

[
Dkα

0, yφ(x, y)
]
= ρkα φA

y (x, ρ)−
k−1

∑
j=0

ρ(k− j)α−2 D jα
0, yφ(x, y)

∣∣∣
y=0

(0 < α ≤ 1). (10)

Proof. Here, by induction, we will prove the relation (10). At k = 1, since 0 < α ≤ 1 in (10), that is, n = 0 in the
lemma above by part (4). Hence

Ayρ
[
Dα

0, yφ(x, y)
]
= ρα φA

y (x, ρ)−ρα−2φ(x, 0). (11)

That is, (10) holds at k = 1. At k = 2, let θ(x, y) = Dα
0, yφ(x, y). By (11) above we have

Ayρ
[
Dα

0, yθ(x, y)
]
=ρα θA

y (x, ρ)−ρα−2θ(x, 0)

=ραAyρDα
0, yφ(x, y)−ρα−2 Dα

0, yφ(x, y)
∣∣∣
y=0

=ρα
[
ρα φA

y (x, ρ)−ρα−2φ(x, 0)
]
−ρα−2 Dα

0, yφ(x, y)
∣∣∣
y=0

=ρ2α φA
y (x, ρ)−ρ2α−2φ(x, 0)−ρα−2 Dα

0, yφ(x, y)
∣∣∣
y=0

.

(12)

Hence (10) holds at k = 2. Let (10) be true at k = m, that is,

Ayρ
[
Dmα

0, y φ(x, y)
]
= ρmα φA

y (x, ρ)−
m−1

∑
j=0

ρ(m− j)α−2 D jα
0, yφ(x, y)

∣∣∣
y=0

. (13)

We show that (10) holds at k = m+1. Let θ(x, y) = Dmα
0, y φ(x, y). By (11) and (13)

Volume 7 Issue 1|2026| 433 Contemporary Mathematics



Ayρ

[
Dkα

0, yθ(x, y)
]
=Ayρ

[
Dα

0, yθ(x, y)
]

=ρα θA
y (x, ρ)−ρα−2θ(x, 0)

=ραAyρDmα
0, y φ(x, y)−ρα−2 Dmα

0, y φ(x, y)
∣∣∣
y=0

=ρα

[
ρmα φA

y (x, ρ)−
m−1

∑
j=0

ρ(m− j)α−2 D jα
0, yφ(x, y)

∣∣∣
y=0

]

−ρα−2 Dmα
0, y φ(x, y)

∣∣∣
y=0

=ρ(m+1)α φA
y (x, ρ)−

m−1

∑
j=0

ρ(m+1− j)α−2 D jα
0, yφ(x, y)

∣∣∣
y=0

−ρα−2 Dα
0, yφ(x, y)

∣∣∣
y=0

=ρ(m+1)α φA
y (x, ρ)−

m

∑
j=0

ρ(m+1− j)α−2 D jα
0, yφ(x, y)

∣∣∣
y=0

=ρkα φA
y (x, ρ)−

k−1

∑
j=0

ρ(k− j)α−2 D jα
0, yφ(x, y)

∣∣∣
y=0

.

(14)

Hence the relation (10) is true for all k ∈ N.
Lemma 3 Let φ: Rn× [0, ∞)→Rwith an exponential order function. TheMFPS notation for the Aboodh transform

is defined by

φA
y (x, ρ) =

∞

∑
j=0

f j(x)
ρ jα+2 ρ > 0, (15)

where x = (x11, x12, · · · , x1n) ∈ Rn, n ∈ N.
Proof. Use the Taylor series

φ(x, y) = f0(x)+ f1(x)
yα

Γ(α +2)
+ f2(x)

y2α

Γ(2α +2)
+ · · · (16)

Take the Aboodh transform of (15):
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Ayρ φ(x, y) =Ayρ f0(x)+ f1(x)
Ayρ yα

Γ(α +2)
+ f2(x)

Ayρ y2α

Γ(2α +2)
+ · · ·

=
f0(x)
ρ2 + f1(x)

Γ(α +2)
ρα+2Γ(α +2)

+ f2(x)
Γ(2α +2)

ρ2α+2Γ(2α +2)
+ · · ·

=
∞

∑
j=0

f j(x)
ρ jα+2 .

(17)

Lemma 4 Let φ: Rn × [0, ∞)→ R be continuous with exponential order. Then limρ→∞ ρ2φA
y (x, ρ) = φ(x, 0) for

all x ∈ Rn.
Proof. From the lemma above, for all x ∈ Rn,

lim
ρ→∞

ρ2φA
y (x, ρ) = lim

ρ→∞
ρ2

∞

∑
j=0

f j(x)
ρ jα+2

= lim
ρ→∞

ρ2
∞

∑
j=0

f j(x)
ρ jα+2

= lim
ρ→∞

ρ2
[

f0(x)
ρ2 +

f1(x)
ρα+2 +

f2(x)
ρ2α+2 +

f3(x)
ρ3α+2 + · · ·

]

= f0(x) = φ(x, 0).

The proof is completed.
Theorem 1 Let φ: Rn × [0, ∞)→ R be a continuous function with exponential order. Then

φA
y (x, ρ) =

∞

∑
j=0

f j(x)
ρ jα+2 (0 < α ≤ 1) (18)

for all x ∈ Rn and ρ > 0, where f j(x) = ∂ j
y φ(x, y)

∣∣∣
y=0

.

Proof. The new formula of Taylor’s series is

f1(x) = ρα+2φA
y (x, ρ)−ρα f0(x)−

1
ρα f2(x)−

1
ρ2α f3(x)−·· · (19)

By taking the limit of (19) when ρ → ∞,
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f1(x) = lim
ρ→∞

[
ρα+2φA

y (x, ρ)−ρα f0(x)
]
. (20)

By Lemma 2,

f1(x) = lim
ρ→∞

ρ2Ayρ
[
∂ α

y φ(x, y)
]
. (21)

By Lemma 4, f1(x) = ∂ n
y φ(x, 0). Similarly, the new formula of Taylor’s series of f2 is

f2(x) = ρ2α+2φA
y (x, ρ)−ρ2α f0(x)−ρα f1(x)−

1
ρα f3(x)−

1
ρ2α f4(x)−·· · (22)

By taking the limit of (22) when ρ → ∞,

f2(x) = lim
ρ→∞

[
ρ2α+2φA

y (x, ρ)−ρ2α f0(x)−ρα f1(x)
]
. (23)

By Lemmas 2 and 4, f2(x) = ∂ 2n
y φ(x, 0). By continuity, f j(x) = ∂ jn

y φ(x, 0).
By the theorem above,

Ayρ
[
Dα

0, yφ(x, y)
]
=

∞

∑
j=0

1
ρ jα+2 D jα

0, yφ(x, y)
∣∣∣
y=0

(0 < α ≤ 1)

for all x ∈ Rn, ρ > 0, and the inverse Aboodh transform will be

φ(x, y) =
∞

∑
j=0

D jα
0, yφ(x, y)

∣∣∣
y=0

Γ( jα +2)
y jα (0 < α ≤ 1)

for all x ∈ Rn and y > 0.
Theorem 2 Let φ: Rn × [0, ∞)→ R be continuous with exponential order. If

∣∣∣ρrAyρ

[
D

(n+1)α
0, y φ(x, y)

]∣∣∣ ≤ M for

all 0 < ρ ≤ q and 0 < α ≤ 1, then the residual Resn(x, ρ) of MFPS satisfies ∥Resn(x, ρ)∥ ≤ M
ρ(n+1)α .

Proof. By the new formula of Taylor’s series,

Resn(x, ρ) = φA
y (x, ρ)+

n

∑
j=0

f j(x)
ρ jα+2 . (24)

By Theorem 1,
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Resn(x, ρ) = φA
y (x, ρ)+

n

∑
j=0

D jα
0, yφ(x, 0)

ρ jα+2 . (25)

Multiply (25) by ρ(n+1)α :

ρ(n+1)αResn(x, ρ) = ρ(n+1)α φA
y (x, ρ)+

n

∑
j=0

ρ(n+1− j)α−2D jα
0, yφ(x, 0). (26)

By Lemma 2,

ρ(n+1)αResn(x, ρ) = Ayρ

[
D

(n+1)α
0, y φ(x, y)

]
. (27)

Hence

∣∣∣ρ(n+1)αResn(x, ρ)
∣∣∣= ∣∣∣Ayρ

[
D

(n+1)α
0, y φ(x, y)

]∣∣∣.
That is, |Resn(x, ρ)| ≤ M

ρ(n+1)α .

3. The steps of the technique ARPSM
Here we will consider the following MTCFKE:


Dα

0, yφ(x, y) =−φ(x, y)2Dxφ(x, y)−βD3
x φ(x, y)+β ′D5

x φ(x, y), 0 < α ≤ 1

φ(x, 0) = h0(x),

(28)

where Dx =
∂
∂x . Take Ayρ of (28):

Ayρ
[
Dα

0, y [φ(x, y)]
]
=−Ayρ

[
φ(x, y)2Dxφ(x, y)

]
−βAyρ

[
D3

x φ(x, y)
]

+β ′Ayρ

[
D5

x φ(x, y)
]
.

(29)

By Lemma 1,

Ayρ
[
Dα

0, yφ(x, y)
]
= ρα φA

y (x, ρ)−ρα−2h0(x). (30)
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Then, from (29) and (30) we get

φA
y (x, ρ) =

1
ρ2 h0(x)−

1
ρα Ayρ

[
A −1

yρ (φA
y (x, ρ))2DxA

−1
yρ (φA

y (x, ρ))
]

− β
ρα Ayρ

[
D3

x A −1
yρ (φA

y (x, ρ))
]
+

β ′

ρα Ayρ

[
D5

x A −1
yρ (φA

y (x, ρ))
]
.

(31)

The analytical solution φA
y (x, ρ) for (29) is

φA
y (x, ρ) =

∞

∑
j=0

h j(x)
ρ jα+2 . (32)

By the initial condition in (28) with Lemma 1, we present the sequence of partial sums
〈
φA

yn
〉

n∈N∪{0} of (32) as

φA
yn (x, ρ) =

n

∑
j=0

h j(x)
ρ jα+2 . (33)

The residual function of the Aboodh transform, AyρRes φxy for (31), is given by

AyρRes φxy =φA
y (x, ρ)− 1

ρ2 h0(x)

+
1

ρα Ayρ

[
A −1

yρ (φA
y (x, ρ))2DxA

−1
yρ (φA

y (x, ρ))
]

+
β

ρα Ayρ

[
D3

x A −1
yρ (φA

y (x, ρ))
]
− β ′

ρα Ayρ

[
D5

x A −1
yρ (φA

y (x, ρ))
]

(34)

and the n-th Aboodh residual function AyρResn φxy is

AyρResn φxy =φA
yn (x, ρ)− 1

ρ2 h0(x)

+
1

ρα Ayρ

[
A −1

yρ (φA
yn (x, ρ))2DxA

−1
yρ (φA

yn (x, ρ))
]

+
β

ρα Ayρ

[
D3

x A −1
yρ (φA

yn (x, ρ))
]
− β ′

ρα Ayρ

[
D5

x A −1
yρ (φA

yn (x, ρ))
]

(35)

It is clear thatAyρRes φxy = 0 and limn→∞ AyρResn φxy =AyρRes φxy for all ρ > 0. If limρ→∞ ρ2AyρRes φxy = 0,
then limρ→∞ ρ2AyρResn φxy = 0. In general, if
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lim
ρ→∞

ρnα+2AyρRes φxy = 0

then

lim
ρ→∞

ρnα+2AyρResn φxy = 0

for n ∈ N and 0 < α ≤ 1. To calculate hn(x), we will use the iterative technique in solving the following:

lim
ρ→∞

ρnα+2AyρResn φxy = 0 (36)

for n = 1, 2, 3, · · · . Put the values hn(x) in (33) to get the n-th solutions φA
yn (x, ρ) of (31) and then take the inverse Aboodh

transform of the n-th solutions φA
yn (x, ρ) to get the n-th solutions φn

y (x, y) of (28).

4. Some applications
In this section, we use ARPSM to obtain some solutions of MTCFKE (3) in two cases: with perfect and approximate

initial conditions, where the approximate initial condition is a seventh-order Taylor approximation of the perfect one for
MTCFKE (3). Consider the following MTCFKE



Dα
0, yφ(x, y)+φ2(x, y)

∂φ(x, y)
∂x

+β
∂ 3φ(x, y)

∂x3 −β ′ ∂ 5φ(x, y)
∂x5 = 0, 0 < α ≤ 1

φ(x, 0) =
3β√
−10β ′

sech2

(
1
2

√
−β
5β ′ x

) (37)

where β > 0 and β ′ < 0 are real numbers. The MTCFKE above arises in describing nonlinear waves in plasma, especially
magneto-acoustic waves, where normal (quadratic) nonlinearity vanishes under certain plasma compositions, so a higher-
order nonlinearity is required. In such cases, the mKE can model wave propagation, wave steepening, and dispersive
effects together [7]. The MTCFKE is also used to model long waves in shallow water when surface tension effects are
non-negligible [6]. By using [29], if α = 1, then the perfect solution of (37) is

φ(x, y) =
3β√
−10β ′

sech2

[
1
2

√
−β
5β ′

(
x− 25β ′−4β 2

25β ′ y
)]

. (38)

Take the Aboodh transforms on (37)
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φA
y (x, ρ) =

3β
ρ2
√

−10β ′
sech2

(
1
2

√
−β
5β ′ x

)

− 1
ρα Ay

[[
A −1

y (φA
y (x, ρ))

]2 ∂
∂x

[A −1
y (φA

y (x, ρ))]
]

− β
ρα Ay

[
∂ 3

∂x3 [A
−1

y (φA
y (x, ρ))]

]
+

β ′

ρα Ay

[
∂ 5

∂x5 [A
−1

y (φA
y (x, ρ))]

]
(39)

with the sequence
〈
φA

yn
〉

n∈N∪{0}

φA
yn (x, ρ) =

3β
ρ2
√

−10β ′
sech2

(
1
2

√
−β
5β ′ x

)
+

n

∑
j=1

h j(x)
ρ jα+2 . (40)

The n-th structure for (39) is

φA
yn (x, ρ) =

3β
ρ2
√
−10β ′

sech2

(
1
2

√
−β
5β ′ x

)

− 1
ρα Ay

[[
A −1

y (φA
yn (x, ρ))

]2 ∂
∂x

[A −1
y (φA

yn (x, ρ))]
]

− β
ρα Ay

[
∂ 3

∂x3 [A
−1

y (φA
yn (x, ρ))]

]
+

β ′

ρα Ay

[
∂ 5

∂x5 [A
−1

y (φA
yn (x, ρ))]

]
.

(41)

The Aboodh residual function, AyRes φ(x, ρ) for (39) is given by

AyRes φ(x, ρ) =φA
y (x, ρ)− 3β

ρ2
√
−10β ′

sech2

(
1
2

√
−β
5β ′ x

)

+
1

ρα Ay

[[
A −1

y (φA
y (x, ρ))

]2 ∂
∂x

[A −1
y (φA

y (x, ρ))]
]

+
β

ρα Ay

[
∂ 3

∂x3 [A
−1

y (φA
y (x, ρ))]

]
− β ′

ρα Ay

[
∂ 5

∂x5 [A
−1

y (φA
y (x, ρ))]

]
(42)

with the n-th structure
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AyResn φ(x, ρ) =φA
yn (x, ρ)− 3β

ρ2
√
−10β ′

sech2

(
1
2

√
−β
5β ′ x

)

+
1

ρα Ay

[[
A −1

y (φA
yn (x, ρ))

]2 ∂
∂x

[A −1
y (φA

yn (x, ρ))]
]

+
β

ρα Ay

[
∂ 3

∂x3 [A
−1

y (φA
yn (x, ρ))]

]
− β ′

ρα Ay

[
∂ 5

∂x5 [A
−1

y (φA
yn (x, ρ))]

]
(43)

for n = 1, 2, 3, · · · . The terms of ⟨hn⟩n∈N∪{0} are calculating by the relation

lim
ρ→∞

ρnα+2AyResn φ(x, ρ) = 0, n = 1, 2, 3, · · · (44)

At n = 1, by (40) we have φA
y1 (x, ρ) = 3β

ρ2
√

−10β ′ sech
2
(

1
2

√
−β
5β ′ x

)
+

h1(x)
ρα+2 and (43) becomes

AyRes1 φ(x, ρ) =
h1(x)
ρα+2 +

1
ρα Ay

[[
A −1

y (φA
y1 (x, ρ))

]2 ∂
∂x

[A −1
y (φA

y1 (x, ρ))]
]

+
β

ρα Ay

[
∂ 3

∂x3 [A
−1

y (φA
y1 (x, ρ))]

]
− β ′

ρα Ay

[
∂ 5

∂x5 [A
−1

y (φA
y1 (x, ρ))]

]
.

This implies

AyRes1 φ(x, ρ) =
1

ρα+2

[
h1(x)+H 2(x)

∂
∂x

H (x)+β
∂ 3

∂x3 H (x)−β ′ ∂ 5

∂x5 H (x)
]

+
1

ρ2α+2

[
H 2(x)

∂
∂x

h1(x)+2H (x)h1(x)
∂
∂x

H (x)+β
∂ 3

∂x3 h1(x)−β ′ ∂ 5

∂x5 h1(x)
]

+
1

ρ3α+1

[ 2Γ(2α +1)
(Γ(α +1))2 H (x)h1(x)

∂
∂x

h1(x)+
Γ(2α +1)
(Γ(α +1))2 h2

1(x)
∂
∂x

H (x)
]

+
1

ρ4α+1
Γ(3α +1)
(Γ(α +1))3 h2

1(x)
∂
∂x

h1(x)

(45)

where H (x) = 3β√
−10β ′ sech

2
(

1
2

√
−β
5β ′ x

)
. By multiplying (45) by ρα+2 and by (44) we have
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h1(x) =
27β 3

√
β

5β ′
√

2
sech6

(
1
2

√
−β
5β ′ x

)
tanh

(
1
2

√
−β
5β ′ x

)

+
6β 3

√
β

25β ′2
√

2
sech4

(
1
2

√
−β
5β ′ x

)
tanh

(
1
2

√
−β
5β ′ x

)
− β

5β ′
√

−10β ′
tanh2

(
1
2

√
−β
5β ′ x

)

−
39β 3

√
β

125β ′3
√

2
sech4

(
1
2

√
−β
5β ′ x

)
tanh3

(
1
2

√
−β
5β ′ x

)

+
51β 3

√
β

250β ′3
√

2
sech6

(
1
2

√
−β
5β ′ x

)
tanh

(
1
2

√
−β
5β ′ x

)

+
3β 3

√
β

125β ′3
√

2
sech2

(
1
2

√
−β
5β ′ x

)
tanh5

(
1
2

√
−β
5β ′ x

)
.

(46)

At n = 2, by (40)

φA
y2 (x, ρ) =

3β
ρ2
√
−10β ′

sech2

(
1
2

√
−β
5β ′ x

)
+

h1(x)
ρα+2 +

h2(x)
ρ2α+2 .

Then we have

AyRes2 φ(x, ρ) =
h1(x)
ρα+2 +

h2(x)
ρ2α+2 +

1
ρα Ay

[[
A −1

y (φA
y2 (x, ρ))

]2 ∂
∂x

[A −1
y (φA

y2 (x, ρ))]
]

+
β

ρα Ay

[
∂ 3

∂x3 [A
−1

y (φA
y2 (x, ρ))]

]
− β ′

ρα Ay

[
∂ 5

∂x5 [A
−1

y (φA
y2 (x, ρ))]

]
.

This implies

AyRes2 φ(x, ρ) =
1

ρ2α+2

[
h2(x)+H 2(x)

∂
∂x

h1(x)+2h1(x)H (x)
∂
∂x

H (x)

+β
∂ 3

∂x3 h1(x)+β ′ ∂ 5

∂x5 h1(x)
]
+

1
ρ3α+2

[
H 2(x)h2

2(x)

+
2Γ(2α +1)
(Γ(α +1))2 H (x)h1(x)

∂
∂x

h1(x)+2h2(x)H (x)
∂
∂x

H (x)
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+
Γ(2α +1)
(Γ(α +1))2 h2

1(x)
∂
∂x

H (x)+β
∂ 3

∂x3 h2(x)−β ′ ∂ 5

∂x5 h2(x)
]

+
1

ρ4α+1

[ 2Γ(3α +1)
(Γ(2α +1))2 H (x)h1(x)

∂
∂x

h1(x)

+
2Γ(3α +1)

Γ(α +1)Γ(2α +1)
h2(x)H (x)

∂
∂x

h1(x)

+
Γ(3α +1)
(Γ(α +1))3 h2

1(x)
∂
∂x

h1(x)+
2Γ(3α +1)

Γ(α +1)Γ(2α +1)
h1(x)h2(x)

∂
∂x

H (x)
]

+
1

ρ5α+2

[ 2Γ(4α +1)
(Γ(α +1))2 H (x)h2(x)

∂
∂x

h2(x)+
Γ(4α +1)

Γ(α +1)Γ(2α +1)
h2

1(x)
∂
∂x

h2(x)

+
2Γ(4α +1)

(Γ(α +1))2Γ(2α +1)
h1(x)h2(x)

∂
∂x

h1(x)

+
Γ(4α +1)

(Γ(α +1))2Γ(2α +1)
h2

2(x)
∂
∂x

H (x)
]

+
1

ρ6α+2

[ 2Γ(5α +1)
(Γ(2α +1))2Γ(α +1)

h1(x)h2(x)
∂
∂x

h2(x)

+
Γ(5α +1)

(Γ(2+1))2Γ(+1)
h2

2(x)
∂
∂x

h1(x)
]
+

1
ρ7α+1

Γ(6α +1)
(Γ(2α +1))3 h2

2(x)
∂
∂x

h2(x). (47)

By multiplying (47) by ρα+2 and by (44) we have

h2(x) =−H 2(x)
∂
∂x

h1(x)−2h1(x)H (x)
∂
∂x

H (x)−β
∂ 3

∂x3 h1(x)+β ′ ∂ 5

∂x5 h1(x). (48)

Put the terms of ⟨hn⟩n∈N∪{0} in (32)

φA
y (x, ρ) =

∞

∑
j=0

h j(x)
ρ jα+2 =

1
ρ

h0(x)+
1

ρα+2 h1(x)+
1

ρ2α+2 h2(x)+ · · ·

=
3β

ρ
√

−10β ′
sech2

(
1
2

√
−β
5β ′ x

)
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+
1

ρα+2

{27β 3
√

β
5β ′

√
2

sech6

(
1
2

√
−β
5β ′ x

)
tanh

(
1
2

√
−β
5β ′ x

)

+
6β 3

√
β

25β ′2
√

2
sech4

(
1
2

√
−β
5β ′ x

)
tanh

(
1
2

√
−β
5β ′ x

)
− β

5β ′
√
−10β ′

tanh2

(
1
2

√
−β
5β ′ x

)

−
39β 3

√
β

125β ′3
√

2
sech4

(
1
2

√
−β
5β ′ x

)
tanh3

(
1
2

√
−β
5β ′ x

)

+
51β 3

√
β

250β ′3
√

2
sech6

(
1
2

√
−β
5β ′ x

)
tanh

(
1
2

√
−β
5β ′ x

)

+
3β 3

√
β

125β ′3
√

2
sech2

(
1
2

√
−β
5β ′ x

)
tanh5

(
1
2

√
−β
5β ′ x

)}
− 1

ρ2α+2

(
H 2(x)

∂
∂x

h1(x)

+2h1(x)H (x)
∂
∂x

H (x)β
∂ 3

∂x3 h1(x)+β ′ ∂ 5

∂x5 h1(x))
)
+ · · · (49)

Take the inverse Aboodh transform of (49),

φ(x, y) =
3β√
−10β ′

sech2

(
1
2

√
−β
5β ′ x

)

+
yα

Γ(α +1)

{27β 3
√

β
5β ′

√
2

sech6

(
1
2

√
−β
5β ′ x

)
tanh

(
1
2

√
−β
5β ′ x

)

+
6β 3

√
β

25β ′2
√

2
sech4

(
1
2

√
−β
5β ′ x

)
tanh

(
1
2

√
−β
5β ′ x

)
− β

5β ′
√
−10β ′

tanh2

(
1
2

√
−β
5β ′ x

)

−
39β 3

√
β

125β ′3
√

2
sech4

(
1
2

√
−β
5β ′ x

)
tanh3

(
1
2

√
−β
5β ′ x

)

+
51β 3

√
β

250β ′3
√

2
sech6

(
1
2

√
−β
5β ′ x

)
tanh

(
1
2

√
−β
5β ′ x

)
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+
3β 3

√
β

125β ′3
√

2
sech2

(
1
2

√
−β
5β ′ x

)
tanh5

(
1
2

√
−β
5β ′ x

)}
− y2α

Γ(2α +1)

(
H 2(x)

∂
∂x

h1(x)

+2h1(x)H (x)
∂
∂x

H (x)β
∂ 3

∂x3 h1(x)+β ′ ∂ 5

∂x5 h1(x))
)
+ · · · (50)

Now we take MTCFKE (3) with the polynomial initial condition in MTCFKE (3). Consider the following MTCFKE


Dα

0, yφ(x, y)+φ2(x, y)
∂φ(x, y)

∂x
+β

∂ 3φ(x, y)
∂x3 −β ′ ∂ 5φ(x, y)

∂x5 = 0, 0 < α ≤ 1

φ(x, 0) = 0.9487
β√
−β ′

+0.0474
β 2

β ′
√
−β ′

x2 +0.0021
β 3

β ′2
√

−β ′
x4 +0.3584

β 4

β ′3
√
−β ′

x6.

(51)

Take Aboodh transforms of (51)

φA
y (x, ρ) =

1

ρ2
√
−β ′

[0.9487β +0.0474
β 2

β ′ x2 +0.0021
β 3

β ′2 x4 +0.3584
β 4

β ′3 x6]

− 1
ρα Ay

[[
A −1

y (φA
y (x, ρ))

]2 ∂
∂x

[A −1
y (φA

y (x, ρ))]
]

− β
ρα Ay

[
∂ 3

∂x3 [A
−1

y (φA
y (x, ρ))]

]
+

β ′

ρα Ay

[
∂ 5

∂x5 [A
−1

y (φA
y (x, ρ))]

]
.

(52)

The sequence
〈
φA

yn
〉

n∈N∪{0} given by

φA
yn (x, ρ) =

1

ρ2
√
−β ′

[0.9487β +0.0474
β 2

β ′ x2 +0.0021
β 3

β ′2 x4 +0.3584
β 4

β ′3 x6]+
n

∑
j=1

h j(x)
ρ jα+2 . (53)

The n-th structure for (52) is

φA
yn (x, ρ) =

1

ρ2
√
−β ′

[0.9487β +0.0474
β 2

β ′ x2 +0.0021
β 3

β ′2 x4 +0.3584
β 4

β ′3 x6]

− 1
ρα Ay

[
[A −1

y (φA
yn (x, ρ))]2

∂
∂x

[A −1
y (φA

yn (x, ρ))]
]

− β
ρα Ay

[
∂ 3

∂x3 [A
−1

y (φA
yn (x, ρ))]

]
+

β ′

ρα Ay

[
∂ 5

∂x5 [A
−1

y (φA
yn (x, ρ))]

]
.

(54)
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The function AyRes φ(x, ρ) for (52) is given by

AyRes φ(x, ρ) =φA
y (x, ρ)− 1

ρ2
√

−β ′
[0.9487β +0.0474

β 2

β ′ x2 +0.0021
β 3

β ′2 x4

+0.3584
β 4

β ′3 x6]+
1

ρα Ay

[[
A −1

y (φA
y (x, ρ))

]2 ∂
∂x

[A −1
y (φA

y (x, ρ))]
]

+
β

ρα Ay

[
∂ 3

∂x3 [A
−1

y (φA
y (x, ρ))]

]
− β ′

ρα Ay

[
∂ 5

∂x5 [A
−1

y (φA
y (x, ρ))]

]
(55)

with the n-th structure

AyResn φ(x, ρ) =φA
yn (x, ρ)− 1

ρ2
√
−β ′

[0.9487β +0.0474
β 2

β ′ x2 +0.0021
β 3

β ′2 x4

+0.3584
β 4

β ′3 x6]+
1

ρα Ay

[
[A −1

y (φA
yn (x, ρ))]2

∂
∂x

[A −1
y (φA

yn (x, ρ))]
]

+
β

ρα Ay

[
∂ 3

∂x3 [A
−1

y (φA
yn (x, ρ))]

]
− β ′

ρα Ay

[
∂ 5

∂x5 [A
−1

y (φA
yn (x, ρ))]

]
.

(56)

We calculate the terms of ⟨hn⟩n∈N∪{0} by

lim
ρ→∞

ρnα+2AyResn φ(x, ρ) = 0 n = 1, 2, 3, · · · (57)

At n = 1, by (53)

φA
y1 (x, ρ) =

1

ρ
√
−β ′

[0.9487β +0.0474
β 2

β ′ x2 +0.0021
β 3

β ′2 x4 +0.3584
β 4

β ′3 x6]+
h1(x)
ρα+2

and (56) will be

AyRes1 φ(x, ρ) =
h1(x)
ρα+2 +

1
ρα Ay

[
[A −1

y (φA
y1 (x, ρ))]2

∂
∂x

[A −1
y (φA

y1 (x, ρ))]
]

+
β

ρα Ay

[
∂ 3

∂x3 [A
−1

y (φA
y1 (x, ρ))]

]
− β ′

ρα Ay

[
∂ 5

∂x5 [A
−1

y (φA
y1 (x, ρ))]

]
.

This implies
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AyRes1 φ(x, ρ) =
1

ρα+2

[
h1(x)+E 2(x)

∂
∂x

E (x)+β
∂ 3

∂x3 E (x)+β ′ ∂ 5

∂x5 E (x)
]

+
1

ρ2α+2

[
E 2(x)

∂
∂x

h1(x)+2E (x)h1(x)
∂
∂x

E (x)+β
∂ 3

∂x3 h1(x)−β ′ ∂ 5

∂x5 h1(x)
]

+
1

ρ3α+2

[ 2Γ(2α +1)
(Γ(α +1))2 E (x)h1(x)

∂
∂x

h1(x)+
Γ(2α +1)
(Γ(α +1))2 h2

1(x)
∂
∂x

E (x)
]

+
1

ρ4α+2
Γ(3α +1)
(Γ(α +1))3 h2

1(x)
∂
∂x

h1(x)

(58)

where E (x) = 1√
−β ′ [0.9487β +0.0474 β 2

β ′ x2 +0.0021 β 3

β ′2 x4 +0.3584 β 4

β ′3 x6]. By multiplying (58) by ρα+1 and by (57) we
get

h1(x) =
0.0899β 3

√
−β ′+25.80984β 4

β ′2
√
−β ′

x+
0.0125β 3

√
−β ′+43.008β 5

β ′3
√
−β ′

x3

+
2.0406β 5

β ′4 x5 +
0.136β 6

β ′5 x7 +
0.008β 7

β ′6 x9 +
0.771β 8

β ′7 x11.

(59)

At n = 2, by (53)

φA
y2 (x, ρ) =

1

ρ
√
−β ′

[
0.9487β +0.0474

β 2

β ′ x2 +0.0021
β 3

β ′2 x4 +0.3584
β 4

β ′3 x6
]

+
h1(x)
ρα+2 +

h2(x)
ρ2α+2

and (56) becomes

AyRes2 φ(x, ρ) =
h1(x)
ρα+2 +

h2(x)
ρ2α+2 +

1
ρα Ay

[
[A −1

y (φA
y2 (x, ρ))]2

∂
∂x

[A −1
y (φA

y2 (x, ρ))]
]

+
β

ρα Ay

[
∂ 3

∂x3 [A
−1

y (φA
y2 (x, ρ))]

]
− β ′

ρα Ay

[
∂ 5

∂x5 [A
−1

y (φA
y2 (x, ρ))]

]
.

This implies
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AyRes2 φ(x, ρ) =
1

ρ2α+2

[
h2(x)+2E 2(x)

∂
∂x

h1(x)+2h1(x)
∂
∂x

E (x)

+β
∂ 3

∂x3 h1(x)−β ′ ∂ 5

∂x5 h1(x)
]
+

1
ρ3α+2

[
E 2(x)

∂
∂x

h2(x)

+
2Γ(2α +1)
(Γ(α +1))2 E (x)h1(x)

∂
∂x

h1(x)+2h2(x)E (x)
∂
∂x

E (x)

+h2
1(x)

∂
∂x

E (x)+β
∂ 3

∂x3 h2(x)−β ′ ∂ 5

∂x5 h2(x)
]

+
1

ρ4α+2

[ 2Γ(3α +1)
Γ(α +1)Γ(2α +1)

E (x)h2(x)
∂
∂x

h1(x)

+
2Γ(3α +1)
Γ(2α +1)

E (x)h1(x)
∂
∂x

h2(x)+
Γ(3α +1)
(Γ(α +1))3 h2

1(x)
∂
∂x

h1(x)
]

+
1

ρ5α+2

[ 2Γ(4α +1)
(Γ(2α +1))2 E (x)h2(x)

∂
∂x

h2(x)

+
Γ(4α +1)

(Γ(α +1))2Γ(2α +1)
h2

1(x)
∂
∂x

h2(x)

+
2Γ(4α +1)

Γ(α +1)(Γ(2α +1))2 h1(x)h2(x)
∂
∂x

E (x)

+
2Γ(4α +1)

(Γ(α +1))2Γ(2α +1)
h1(x)h2(x)

∂
∂x

h1(x)

+
Γ(4α +1)

Γ(α +1)(Γ(2α +1))2 h2
2(x)

∂
∂x

h1(x)
]

+
1

ρ6α+1

[ 2Γ(5α +1)
Γ(α +1)(Γ(2α +1))2 h1(x)h2(x)

∂
∂x

h2(x)

+
Γ(5α +1)

Γ(α +1)(Γ(2α +1))2 h2
2(x)

∂
∂x

h1(x)
]

+
1

ρ7α+1
Γ(6α +1)

(Γ(2α +1))3 h2
2(x)

∂
∂x

h2(x)
]
. (60)
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By multiplying (60) by ρα+2 and by (57) we have

h2(x) =−2E 2(x)
∂
∂x

h1(x)−2h1(x)
∂
∂x

E (x)−β
∂ 3

∂x3 h1(x)−β ′ ∂ 5

∂x5 h1(x). (61)

Put the terms of ⟨hn⟩n∈N∪{0} in (32) to get

φA
y (x, ρ) =

∞

∑
j=0

h j(x)
ρ jα+2 =

1
ρ

h0(x)+
1

ρα+2 h1(x)+
1

ρ2α+2 h2(x)+ · · ·

=
1
ρ

[
0.9487

β√
−β ′

+0.0474
β 2

β ′
√
−β ′

x2 +0.0021
β 3

β ′2
√
−β ′

x4 +0.3584
β 4

β ′3
√
−β ′

x6
]

+
1

ρα+2

{0.0899β 3
√
−β ′+25.80984β 4

β ′2
√

−β ′
x+

0.0125β 3
√

−β ′+43.008β 5

β ′3
√
−β ′

x3

+
2.0406β 5

β ′4 x5 +
0.136β 6

β ′5 x7 +
0.008β 7

β ′6 x9 +
0.771β 8

β ′7 x11
}

− 1
ρ2α+2

[
2E 2(x)

∂
∂x

h1(x)+2h1(x)
∂
∂x

E (x)+β
∂ 3

∂x3 h1(x)+

β ′ ∂ 5

∂x5 h1(x)
]
+ · · ·

(62)

Now take the inverse Aboodh transform of (62)

φ(x, y) =0.9487
β√
−β ′

+0.0474
β 2

β ′
√
−β ′

x2 +0.0021
β 3

β ′2
√
−β ′

x4 +0.3584
β 4

β ′3
√
−β ′

x6

+
yα

Γ(α +1)

{0.0899β 3
√

−β ′+25.80984β 4

β ′2
√
−β ′

x+
0.0125β 3

√
−β ′+43.008β 5

β ′3
√

−β ′
x3

+
2.0406β 5

β ′4 x5 +
0.136β 6

β ′5 x7 +
0.008β 7

β ′6 x9 +
0.771β 8

β ′7 x11
}

− y2α

Γ(2α +1)

[
2E 2(x)

∂
∂x

h1(x)+2h1(x)
∂
∂x

E (x)+β
∂ 3

∂x3 h1(x)+

β ′ ∂ 5

∂x5 h1(x)
]
+ · · ·

(63)
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5. Numerical discussion
This section illustrates the approximate solutions for MTCFKE (51) corresponding to different fractional orders α .

The results are displayed in Tables 1 and 2, while Figures 1-5, obtained through numerical simulations, highlight the
dynamical behavior of these approximate solutions. Specifically, Table (1) reports a comparison of the Absolute Error
(AE) between the exact and approximate solutions of TCFKE (51) when β = 0.001, β ′ =−1, α = 1, and x = 10, together
with some solutions of (51) obtained by the RPSM [32] and HAM [29]. In Table (2), we compare the ARPSM approximate
solution of (51) at β = 0.001, β ′ =−1, x = 10, and various values of α and y with solutions obtained by RPSM [32] and
HAM [29]. Figure (1) presents sample curves of the approximate solutions of (51) with β = 0.001, β ′ =−1, y = 0, y = 2,
y = 4, and several values of α . Figure (2) shows surface plots of ARPSM solutions with β = 0.001, β ′ =−1, α = 1.00,
and different values of y. Figure (3) shows surface plots of ARPSM solutions with β = 0.001, β ′ = −1, α = 0.75,
and different values of y. Figure (4) shows surface plots of ARPSM solutions with β = 0.001, β ′ = −1, α = 0.50,
and different values of y. Figure (5) shows surface plots of ARPSM solutions with β = 0.001, β ′ = −1, α = 0.25,
and different values of y. The graphs and tables highlight the accuracy and applicability of ARPSM. In particular, the
tables provide a comparison of the proposed method with existing techniques for different fractional orders, while the
figures illustrate the similarity and symmetry observed in the graphical patterns of the three derivatives. From our results,
we note that ARPSM yields approximate solutions that show excellent agreement with exact and numerical solutions,
demonstrating its reliability. Regarding its systematic and simple procedure, the residual power series method does not
require linearization, discretization, or perturbation techniques, making it straightforward to implement. For convergent
series solutions, ARPSM generates rapidly convergent series, which ensures stable and accurate approximations. In
terms of flexibility, ARPSM can be applied to both linear and nonlinear fractional differential equations with various
fractional orders. Concerning computational cost, compared with many classical numerical methods, the presented
approach requires fewer computations to achieve a comparable level of accuracy. Finally, regarding the capability to
handle fractional operators, ARPSM effectively incorporates fractional derivatives and integral operators, making it
suitable for modern fractional models. Moreover, the obtained series solutions allow the accuracy to be adjusted by
considering more terms, providing a balance between efficiency and precision.

Table 1. ARPSM absolute errors with other techniques in solving (51) at α = 1, β = 0.001, β ′ =−1, x = 10 and some values of y

y AE (ARPSM) AE (NTDM) [15] AE (RPSM) [32]

0.1 1.41551E−15 1.41553E−15 1.41553E−15

0.2 4.68058E−14 4.68063E−14 4.68063E−14

0.3 3.63906E−13 3.63910E−13 3.63910E−13

0.4 1.56880E−12 1.56886E−12 1.56886E−12

0.5 4.89612E−12 4.89617E−12 4.89617E−12

0.6 1.24531E−11 1.24542E−11 1.24542E−11

0.7 2.75063E−11 2.75069E−11 2.75069E−11

0.8 5.47822E−11 5.47829E−11 5.47829E−11

0.9 1.00801E−10 1.00810E−10 1.00810E−10

1.0 1.74272E−10 1.74280E−10 1.74280E−10
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Table 2. ARPSM solutions of (51) at β = 0.001, β ′ =−1, α = 0.25 and α = 0.5 with some values of x and y

α = 0.25 α = 0.50

y x ARPSM NTDM [15] HAM [29] ARPSM NTDM [15] HAM [29]

20 0.2 9.2994E−4 9.2996E−4 9.299E−4 9.2992E−4 9.2996E−4 9.299E−4

0.4 9.2993E−4 9.2996E−4 9.299E−4 9.2992E−4 9.2996E−4 9.299E−4

0.6 9.2995E−4 9.2996E−4 9.299E−4 9.2992E−4 9.2996E−4 9.299E−4

0.8 9.2992E−4 9.2996E−4 9.299E−4 9.2992E−4 9.2996E−4 9.299E−4

1.0 9.2993E−4 9.2996E−4 9.299E−4 9.2992E−4 9.2996E−4 9.299E−4

10 0.2 9.4392E−4 9.4396E−4 9.439E−4 9.4391E−4 9.4396E−4 9.439E−4

0.4 9.4391E−4 9.4396E−4 9.439E−4 9.4391E−4 9.4396E−4 9.439E−4

0.6 9.4393E−4 9.4396E−4 9.439E−4 9.4391E−4 9.4396E−4 9.439E−4

0.8 9.4392E−4 9.4396E−4 9.439E−4 9.4391E−4 9.4396E−4 9.439E−4

1.0 9.4394E−4 9.4396E−4 9.439E−4 9.4391E−4 9.4396E−4 9.439E−4

0 0.2 9.4863E−4 9.4868E−4 9.486E−4 9.4862E−4 9.4868E−4 9.486E−4

0.4 9.4865E−4 9.4868E−4 9.486E−4 9.4862E−4 9.4868E−4 9.486E−4

0.6 9.4866E−4 9.4868E−4 9.486E−4 9.4862E−4 9.4868E−4 9.486E−4

0.8 9.4866E−4 9.4868E−4 9.486E−4 9.4862E−4 9.4868E−4 9.486E−4

1.0 9.4867E−4 9.4868E−4 9.486E−4 9.4862E−4 9.4868E−4 9.486E−4

−10 0.2 9.4392E−4 9.4396E−4 9.439E−4 9.4391E−4 9.4396E−4 9.439E−4

0.4 9.4393E−4 9.4396E−4 9.439E−4 9.4391E−4 9.4396E−4 9.439E−4

0.6 9.4861E−4 9.4868E−4 9.486E−4 9.4862E−4 9.4868E−4 9.486E−4

0.8 9.4394E−4 9.4396E−4 9.439E−4 9.4391E−4 9.4396E−4 9.439E−4

1.0 9.4393E−4 9.4396E−4 9.439E−4 9.4391E−4 9.4396E−4 9.439E−4

−20 0.2 9.2992E−4 9.2996E−4 9.299E−4 9.2991E−4 9.2996E−4 9.299E−4

0.4 9.2991E−4 9.2996E−4 9.299E−4 9.2991E−4 9.2996E−4 9.299E−4

0.6 9.2994E−4 9.2996E−4 9.299E−4 9.2991E−4 9.2996E−4 9.299E−4

0.8 9.2993E−4 9.2996E−4 9.299E−4 9.2991E−4 9.2996E−4 9.299E−4

1.0 9.2995E−4 9.2996E−4 9.299E−4 9.2991E−4 9.2996E−4 9.299E−4

Figure 1. ARPSM solutions of (51) with β = 0.001, β ′ =−1, y = 0, y = 2, y = 4 and some values of α
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Figure 2. Some plots of ARPSM solutions with β = 0.001, β ′ =−1, α = 1.00 and some values of y

Figure 3. Some plots of ARPSM solutions with β = 0.001, β ′ =−1, α = 0.75 and values of y

Figure 4. Some plots of ARPSM solutions with β = 0.001, β ′ =−1, α = 0.50 and values of y
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Figure 5. Some plots of ARPSM solutions with β = 0.001, β ′ =−1, α = 0.25 and values of y

6. Conclusions
The limitations of this study are primarily linked to its scope, underlying assumptions, and chosen methodology.

Our focus was restricted to solving fractional partial differential equations, particularly the MTCFKE, by employing the
residual power series method in conjunction with the Aboodh transform. While the combination of these techniques
has demonstrated effectiveness in deriving both approximate and exact solutions of time-modified fractional Kawahara
equations, the results are constrained by the specific class of equations considered and the methodological framework
adopted. TheARPSMgenerated approximate solutions in the form of a convergent series, which showed strong agreement
with numerical simulations. Owing to its systematic and efficient structure, the method provided reliable approximations
that were validated through comprehensive comparisons presented in the tables and figures. These analyses confirmed the
accuracy and robustness of the approach. Moreover, the results highlighted the suitability of ARPSM for solving problems
in mathematical physics, biological models, and related scientific fields. An additional contribution of this study is the
demonstration of ARPSM as a valuable tool for future investigations of water-wave equations, as well as for advancing
research in fractional calculus and fractional differential equations.

Conflict of interest
The authors declare no competing financial interest.

References
[1] Shah K, Seadawy AR, Arfan M. Evaluation of one dimensional fuzzy fractional partial differential equations.

Alexandria Engineering Journal. 2020; 59: 3347-3353.
[2] Damag FH, Saif A, Kiliçman A. ϕ -Hilfer fractional Cauchy problems with almost sectorial and Lie bracket

operators in Banach algebras. Fractal and Fractional. 2024; 8(12): 741. Available from: https://doi.org/10.3390/
fractalfract8120741.

[3] Kawahara T. Oscillatory solitary waves in dispersive media. Journal of the Physical Society of Japan. 1972; 1:
260-264.

[4] Kaya D, Al-Khaled K. A numerical comparison of a Kawahara equation. Physics Letters A. 2007; 363(5-6): 433-439.
Available from: https://doi.org/10.1016/j.physleta.2006.11.055.

Volume 7 Issue 1|2026| 453 Contemporary Mathematics

https://doi.org/10.3390/fractalfract8120741
https://doi.org/10.3390/fractalfract8120741
https://doi.org/10.1016/j.physleta.2006.11.055


[5] Jin L. Application of variational iteration method and homotopy perturbation method to the modified Kawahara
equation. Mathematical and Computer Modelling of Dynamical Systems. 2009; 49(3-4): 573-578. Available from:
https://doi.org/10.1016/j.mcm.2008.06.017.

[6] Damag FH, Saif A. On solving modified time Caputo fractional Kawahara equations in the framework of Hilbert
algebras using the Laplace residual power series method. Fractal and Fractional. 2025; 9: 301. Available from:
https://doi.org/10.3390/fractalfract9050301.

[7] Jabbari A, Kheiri H. New exact traveling wave solutions for the Kawahara and modified Kawahara equations by
using modified tanh–coth method. Acta Universitatis Apulensis: Mathematics and Informatics. 2010; 23: 21-38.

[8] Wazwaz AM. New solitary wave solutions to the modified Kawahara equation. Physics Letters A. 2010; 360(4-5):
588-592.

[9] Kurulay M. Approximate analytic solutions of the modified Kawahara equation with homotopy analysis method.
Advances in Difference Equations. 2012; 2012: 178.

[10] Jakub V. Symmetries and conservation laws for a generalization of Kawahara equation. Journal of Geometry and
Physics. 2020; 150: 103579.

[11] Caputo M. Linear models of dissipation whose Q is almost frequency independent. Geophysical Journal Royal
Astronomical Society. 1967; 13: 529-539. Available from: https://doi.org/10.1111/j.1365-246X.1967.tb02303.x.

[12] Miller KS, Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations. New York:
Wiley; 1993.

[13] Jafari H, Seifi S. Homotopy analysis method for solving linear and nonlinear fractional diffusion-wave equation.
Communications in Nonlinear Science and Numerical Simulation. 2009; 14: 2006-2012. Available from: https:
//doi.org/10.1016/j.cnsns.2008.05.008.

[14] Kemple S, Beyer H. Global and causal solutions of fractional differential equations. Transform Methods & Special
Functions Varna. 1997; 96: 210-216.

[15] Pavani K, Raghavendar K. An efficient technique to solve time-fractional Kawahara and modified Kawahara
equations. Symmetry. 2022; 14: 1777. Available from: https://doi.org/10.3390/sym14091777.

[16] Yazgan T, Ilhan E, Çelik E, Bulut H. On the new hyperbolic wave solutions to Wu-Zhang system models. Optical
and Quantum Electronics. 2022; 54: 298.

[17] Akgul A, Cordero A, Torregrosa JR. A fractional Newton method with 2α-order of convergence and its stability.
Applied Mathematics Letters. 2019; 98: 344-351.

[18] Kilic S, Celik E. Complex solutions to the higher-order nonlinear Boussinesq type wave equation transform.
Research in Mathematics. 2022; 73: 1793-1800. Available from: https://doi.org/10.1007/s11587-022-00698-1.

[19] Dhaigude DB, Kiwne SB, Dhaigude RM. Monotone iterative scheme for weakly coupled system of finite difference
reaction diffusion equations. Communications in Applied Analysis. 2008; 2: 161.

[20] Inc M, Akgul A, Kilicman A. Explicit solution of telegraph equation based on reproducing kernel method. Journal
of Function Spaces and Applications. 2012; 2012: 984682.

[21] He JH. Variational iteration method a kind of non-linear analytical technique: Some examples. International Journal
of Non-Linear Mechanics. 1999; 4: 699-708.

[22] He JH. Homotopy perturbation technique. Computer Methods in Applied Mechanics and Engineering. 1999; 178(3-
4): 257-262. Available from: https://doi.org/10.1016/S0045-7825(99)00018-3.

[23] Rahman MU, Arfan M, Shah Z, Alzahrani E. Evolution of fractional mathematical model for drinking under
Atangana-Baleanu Caputo derivatives. Physica Scripta. 2021; 96: 115203.

[24] Tazgan Y, Çelik E, Gulnur YEL, Bulut H. On survey of the some wave solutions of the non-linear Schrödinger
equation (NLSE) in infinite water depth. Gazi University Journal of Science. 2022; 36(2): 819-843.

[25] Liaqat MI, Akgül A, Abu-Zinadah H. Analytical investigation of some time-fractional Black-Scholes models by
the Aboodh residual power series method. Mathematics. 2023; 11: 276. Available from: https://doi.org/10.3390/
math11020276.

[26] Noor S, Albalawi W, Shah R, Al-Sawalha MM, Ismaeel SM, El-Tantawy SA. On the approximations to fractional
nonlinear damped Burger’s-type equations that arise in fluids and plasmas using Aboodh residual power series and
Aboodh transform iteration methods. Frontiers in Physics. 2024; 12: 1374481.

[27] Edalatpanah SA, Abdolmaleki E. An innovative analytical method utilizing Aboodh residual power series for solving
the time-fractional Newell-Whitehead-Segel equation. Computational Algorithms and Numerical Dimensions. 2024;
3: 115-131.

Contemporary Mathematics 454 | Faten H. Damag, et al.

https://doi.org/10.1016/j.mcm
https://doi.org/10.3390/fractalfract9050301
https://doi.org/10.1111/j.1365-246X.1967.tb02303.x
https://doi.org/10.1016/j.cnsns.2008.05.008
https://doi.org/10.1016/j.cnsns.2008.05.008
https://doi.org/10.3390/sym14091777
https://doi.org/10.1007/s11587-022-00698-1
https://doi.org/10.1016/S0045-7825(99)00018-3
https://doi.org/10.3390/math11020276
https://doi.org/10.3390/math11020276


[28] Yasmin H, Almuqrin AH. Analytical study of time-fractional heat, diffusion, and Burger’s equations using Aboodh
residual power series and transform iterative methodologies. AIMS Mathematics. 2024; 9: 16721-16752.

[29] Zafar H, Ali A, Khan K, Sadiq MN. Analytical solution of time fractional Kawahara and modified Kawahara
equations by homotopy analysis method. International Journal of Applied Mathematics and Computer Science.
2022; 8: 94.

[30] Dhaigude DB, Bhadgaonkar VN. A novel approach for fractional Kawahara and modified Kawahara equations using
Atangana-Baleanu derivative operator. Journal of Mathematics and Computer Science. 2021; 3: 2792-2813.

[31] RahmanMU, ArfanM, Deebani W, Kumam P, Shah Z. Analysis of time-fractional Kawahara equation under Mittag-
Leffler power law. Fractals. 2022; 30: 2240021.

[32] Culha Unal S. Approximate solutions of time fractional Kawahara equation by utilizing the residual power series
method. International Journal of Applied Mathematics and Computer Science. 2022; 8: 78.

[33] Ak T, Karakoc SB. A numerical technique based on collocation method for solving modified Kawahara equation.
Journal of Ocean Engineering and Science. 2018; 3: 67-75.

[34] Bhatter S, Mathur A, Kumar D, Nisar KS, Singh J. Fractional modified Kawahara equation with Mittag-Leffler law.
Chaos, Solitons and Fractals. 2020; 131: 109508.

[35] Damag FH, Kilicman A, Al-Arioi TA. On hybrid type nonlinear fractional integrodifferential equations.
Mathematics. 2020; 8: 984. Available from: https://doi.org/10.3390/math8060984.

[36] Oqielat MA, Eriqat T, Ogilat O, El-Ajou A, Alhazmi SE, Al-Omari S. Laplace-residual power series method for
solving time-fractional reaction-diffusion model. Fractal and Fractional. 2023; 309: 1-16.

Volume 7 Issue 1|2026| 455 Contemporary Mathematics

https://doi.org/10.3390/math8060984

	Introduction
	On Aboodh transform 
	The steps of the technique ARPSM
	Some applications
	Numerical discussion
	Conclusions

