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Abstract: In the theory of shallow water wave equations, the Kawahara equation and modified Kawahara equation are
introduced to represent the solitary-wave propagation. In this paper, we use the residual power series method and Aboodh
transform to provide a new technique, the Aboodh Residual Power Series Method (ARPSM). By this technique and the
Caputo fractional operator, we calculate the coefficients of the power series of the modified Kawahara equation, which
will serve as the approximate solution. For providing approximate analytical and numerical solutions of the modified
Kawahara equation, we first consider the Modified Time Caputo Fractional Kawahara Equation (MTCFKE) and then
use ARPSM in two cases: with the polynomial initial condition and with the perfect condition of MTCFKE. To show
the capability, reliability, and efficiency of ARPSM, we describe ARPSM’s approximate analytical solutions numerically
and graphically and compare these solutions with other solutions obtained by using two methods: the homotopy analysis
technique and the natural transform decomposition technique.
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1. Introduction

Over the last years, the theory of partial fractional differential equations was considered one of the important subjects
in mathematics, as it is considered a perfect representation for many systems and models in several scientific fields such as
medicine, physics, engineering, groundwater problems, fluid mechanics, polymer science, and electrical networks [1, 2].
One of these fields is the theory of shallow water wave equations, which is widely applied to describe shock waves, the
spread of storm floods, and tsunami waves. The Kawahara equation and its modified form are two of these equations [3],
that were introduced in media to characterize solitary-wave propagation [4], which are defined by
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The Kawahara equations have many applications [5-9]. The symmetry laws and generalized conservation of
Kawahara equations were presented by [10].

The fractional calculus subject dates back to 1695. The fractional derivative and integral are the derivative and
integral of arbitrary order. The Riemann-Liouville fractional differential operator and the Caputo fractional differential
operator [11], are considered the oldest operators in this direction. Regarding these operators, some mathematical
researchers introduced other fractional differential operators such as those in [12—14]. The fractional calculus subject
has many applications in scientific fields such as electromagnetism, wave propagation, heat transfer, robotics system
classification, physics, mechanics, and viscoelasticity. One of these applications is the Modified Time Caputo Fractional
Kawahara Equation (MTCFKE) in the theory of shallow water waves, [15], which is defined by
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where @(‘)’f y is the Caputo fractional operator of order ¢, § > 0 and 8’ < 0 are real numbers.

The numerical solutions of Partial Differential Equations (PDEs) play a crucial role in approximating their solutions.
Methods such as the finite difference, finite element, and spectral techniques have been widely developed to discretize
the domain and reduce PDEs into systems of algebraic equations that can be solved computationally. These numerical
schemes provide flexibility in handling complex geometries, nonlinearities, and varying boundary conditions, making
them indispensable in practical applications. Moreover, advancements in computational power and algorithms have
further enhanced the accuracy and efficiency of numerical PDE solvers, enabling the simulation of large-scale and real-
world problems with high precision. There are several mathematical methods and efficient techniques to solve fractional
partial differential equations such as the Sine-Gordon expansion technique in solving Wu-Zhang system models [16], the
fractional Newton method [17], the expansion method [18], the Laplace transform method [1], the monotone iterative
technique in solving reaction-diffusion equations [19], the reproducing kernel Hilbert space method [20], the homotopy
analysis method [21], the homotopy perturbation method with some equations [22], the modified Adams-Bashforth
method [23], the modified expansion function method [24], etc. For the technique of Aboodh Residual Power Series
Method (ARPSM), Liaqat et al. [25] solved the Black-Scholes differential equations, Noor et al. [26] solved some
equations with one-dimensional nonlinear shock waves, Edalatpanah and Abdolmaleki [27] introduced some results of
the N-Wh-S equation, and Yasmin and Almugqrin [28] used ARPSM to obtain some solutions. Several techniques and
methods have been used in solving MTCFKE (3), such as the Homotopy Analysis Method (HAM) [29], an iterative
Laplace transform method [30], the Laplace Adomian decomposition method [31], the residual power series method
[32], the Natural Transform Decomposition Method (NTDM) [15], the septic B-spline collocation method [33], and the
fixed-point theorem and homotopy analysis method [34].

The main motivation behind this study is to explore the effectiveness of the Caputo operator and the Aboodh transform
combined with the residual power series technique in obtaining accurate approximate solutions for the modified Kawahara
equation (1). The reliability of the derived solutions is evaluated by comparing them with those produced through other
existing methods. In this paper, Section 2 reviews key definitions and establishes certain properties related to the Aboodh
transform in combination with the Caputo fractional operator. Section 3 outlines the fundamental steps of the ARPSM
technique. Section 4 highlights the application of ARPSM in deriving approximate analytical and numerical solutions
of the MTCFKE (3) under two scenarios: with polynomial and with exact initial conditions. Furthermore, graphical
representations of the obtained analytical approximations are provided, and these results are compared with approximate
solutions derived using the NTDM method [15] and the HAM approach [29].
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2. On Aboodh transform

Let ¢ be a map on I x [0, o), where [ is an interval in R. The Riemann-Liouville Fractional (R-LF) derivative

operator [35] of ¢(x, y) of order a > 0 is defined by

75,0(x,y) = 2y Iy, 9(x,y) n—1<a<n 4)

where n € N and 7" is the R-LF integral operator [35] of ¢(x, y) of order & defined by

ﬁ/{).y(y—v)“*l(p(x, v)dv, o >0,

jolj[y(p(xv y) = (5)

o(x,y), o =0.

The Caputo fractional derivative [36] of @(x, y) of order « is given by

0,y oy
D9 (x,y) = (6)
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Fory>0andn—1<a <n,by [36] we have 7§ " @(x,y) = @(x,y), 75 y" = r(y7a+2)yy_a’ and

n—1 .k ak
o« o _ Y "o, y)
j()-,y@(),yq)(x’ Y)=0(xy) +kgf) k! oyk =0

where ¥ > —1, ¢ € R is a real number, and n € N.

Let @(x, y) be continuous with exponential order p on I x [0, e). The Aboodh transform <7, [26] of @(x, y) with

respect to y is defined by

C

1 [/~ _
0 (x.p): = hpo(x.) = [ o(r )y pr<p < po ™
The inverse Aboodh transform Jz%y;l of (p;?{ (x, p) with respect to p is defined by

B 1 d+ico !
O(x,y): =, o7 (x, p) = ﬁ/d; pe @7 (x, p)dp. )

Lemma 1 [25] Let ¢, 6: I X [0, ) — R be a function on I X [0, ). Then
L. p[L1@(x,y) +120(x, y)] = 1.p @(x, y) + 12, 0(x, ), where 1; and 1, are constants;
2. ﬂfy;l (19 @(x, y) + 12950 (x, y)] = 119(x, y) +120(x, y), where 1; and 1, are constants;
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3. Fp I 0(x,y) = p 9 (x, p);
4. dyp [-%?fyfp(x, y)} =p%p (x, p) = XiZgp 20 o(x, y) o (n—1<a<n).

From [28], the power series form is defined by
Z ;) (y —x0)"* = @o(x) (v —x0)° + @1 (x) (y —x0)* + P2 (x) (y —x0)** +- - - ©)

where x = (x11, x12, - -+ , x1,) € R", n € N. The MFPS is short for Multiple Fractional Power Series (MFPS), which means
the series about x{, € R with series coefficients ¢;(x), and y € R is a variable.
Lemma 2 Let ¢: I X [0, o) — R be continuous on [ x [0, oo). Then

A [ 785005, 7)] = p* 9 (x, Zpk PG| 0<a<). (10)

Proof. Here, by induction, we will prove the relation (10). Atk =1, since 0 < o < 1 in (10), that is, n = 0 in the
lemma above by part (4). Hence

o [D8,0(x,¥)] = p*0y” (x, p) = p* @ (x, 0). (11)
That is, (10) holds atk = 1. Atk=2,let O(x, y) = @gf),(p(x, y). By (11) above we have
o [78,0(x, )] =p*6,7 (x. p) = p*?6/(x, 0)

=p* 8 ,0(x,y) —p* > D¢ 0(x, y)‘

y=0
(12)
= [0y (x. p) P 20(x, 0)] — p“ 2 7, (. y)‘y:o
=09y (x. p) = P> p(x, 0) —p* > 0w y)| -
Hence (10) holds at k = 2. Let (10) be true at k = m, that is,
o (265 0(x,y)] = "¢ (x, Z pI* 2 Z% o(x, y) o (13)

We show that (10) holds at k = m + 1. Let 8(x, y) = Z('7@(x, y). By (11) and (13)
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A | Z40(x,9)| = [96,0(x, y)]
=p®6,” (x, p) —p*26(x, 0)
=p %y TySP(x,y) — P D5 o(x, y)’yzo
m—1
_p® [p;na¢yd me D=2 e g, y)‘ o]

—p* 7o (x, y)\ L

(14)
p(m+1 o cz% Z P (m+1—j)o— 2@]05(p(x y)
_pa72 -@(?fy(p(xv y)’y:()
pm+1) (Py Zz)pmﬂ fa— 296;"’(’5 y)‘:o
J
=p*o (x, Zp 92 7% o (x, y)‘ Y
Hence the relation (10) is true for all k € N. O

Lemma3 Let ¢: R" x [0, o) — R with an exponential order function. The MFPS notation for the Aboodh transform
is defined by

= filx
o7 (v, p) =Y pj,ijz p>0, (15)
j=0
where x = (x11, x12, -++, x1,) E R, n e N.
Proof. Use the Taylor series
tx y2oc
(x, ¥) = fo(x) + fi(x )m*‘ﬁ(@m*‘"' (16)

Take the Aboodh transform of (15):
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Ay y* o 20
Hp@(x,y) =y folx) + i)t o) 2

[(a+2) T(20+2)
X r 2 I'a+2
Lo A G A e )
- filx)
:;)Pja+2

O
Lemma 4 Let ¢: R" x [0, o) — R be continuous with exponential order. Then lim,_.. pz(p)i‘z“ (x, p) = ¢(x, 0) for
all x € R™.
Proof. From the lemma above, for all x € R",
hmp o5 Y (x, p) = hmp Z p/‘”z
2 (x)
ﬁ}l_r}l}o Z pjoc+2
o2 [ o) AR ) B
_ph_I,I}op p? + po+2 + p2o+2 + plos2 +ee
=fo(x) = @(x, 0).
The proof is completed. U
Theorem 1 Let @: R” x [0, ) — R be a continuous function with exponential order. Then
i o fikx)
oEp=Y S (O<as< (18)
Jj=0
for all x € R" and p > 0, where fj(x) = 8yj(p(x, y)’ K
y=
Proof. The new formula of Taylor’s series is
a2 (o o) o0 p () L _ _ 19
Jilx) =p% 07 (x, p) = p% fo(x) p*afz(x) pTafS(x) 19)

By taking the limit of (19) when p — oo,
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fi(x) = lim |p*"207 (x, p)—p"‘fo(x>]~ (20)

p—reo

By Lemma 2,
f1(x) = lim p*ay [97 @ (x, v)] 1)

By Lemma 4, fi(x) = 8)’7(p(x, 0). Similarly, the new formula of Taylor’s series of f; is

1 1
fo(x) =p* 20 (x, p) — p** folx) — p%fi(x) — p7f3(x) - pﬁﬁ(x) — (22)

By taking the limit of (22) when p — oo,

fx) = lim [ 207 (x, p) ~ P> fo(x) ~ p“f1 (). 23)
By Lemmas 2 and 4, f>(x) = 8y2"(p(x, 0). By continuity, fj(x) = 8yj"(p(x, 0). O

By the theorem above,

oo

1 .
p [25,000)] = X Sram Z0,00ey)| |, (0<as<l)
= -

for all x € R”, p > 0, and the inverse Aboodh transform will be

o T30, y)’ro .
ox,y) =) ————— 0O<a<l
(%) = I(jo+2) ( )
forallx e R"and y > 0.

Theorem 2 Let ¢: R" x [0, o) — R be continuous with exponential order. If

P’ Ap [@éf’j Vo, y)] \ < M for

all 0 < p < gand 0 < o < 1, then the residual Zes, (x, p) of MFPS satisfies | Zesy(x, p)|| < i

Proof. By the new formula of Taylor’s series,

o fix)

= pjoc+2 :

Resy(x, p) = (pff(x, p)+ (24)

By Theorem 1,
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2 7359, 0)
Hesn(x,p) = 9 (0 p) + Y oy —

j=0
Multiply (25) by p(*+De:

n

p I Zes,(x, p) = p %0 (x, p) + Y p T2 G 0(x, 0).

j=0

By Lemma 2,

PV s, (x, p) = | 74 (. )|

Hence

Pl gpes, (x, p) | = | |24 0 (x, )] |

M

That is, |Zes,(x, p)| < piria

3. The steps of the technique ARPSM

Here we will consider the following MTCFKE:

D6 ,0(x,y) = —0(x, Y’ 2:0(x,y) = BZi9(x,y) + B’ Z}p(x,y), 0<a <1

(p(xv 0) = ho(x),

where 9, = %. Take <7, of (28):

"Q{)’P [‘@gy [(p(x, y)]] = _JZ{}’P [‘P(X, y)29x(p(x, y)] _ﬁﬂfyp [QE(P(X, y)]
+B' A | Z30(x,y)] .

By Lemma 1,

%p [‘@(()x}(p(x7 y)] :pa(p;/(-xv P)—Paizho(x)-
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Then, from (29) and (30) we get

0 (1. ) =)~ oz oy [ 5! (0 (5, )P Zucy . )|

pa
€1y
B ety [ 72005 0 v p1)] + Bty [ 2305 (0 (5. p)]
pa yp xTyp (Py p P yp (py .
The analytical solution (p;”y (x, p) for (29) is
o (%)
o
CYIEDY , Aot (32)
j=0
By the initial condition in (28) with Lemma 1, we present the sequence of partial sums <(pf,{ >”€NU (0} of (32) as
" hi(x
o5 (x, p) = ) p,’-fﬁ)z. (33)
The residual function of the Aboodh transform, 4, Zes @y, for (31), is given by
1
yp Res Puy =" (x, ) — H2hol®)
1 _ _
+ oo [951(07 (6 9)? 20t (9 (v )| (34)
B ﬁ'
oo [ 725! (07 (5, p))] = St [0 (957 (5, )
and the n-th Aboodh residual function <7, Zes, @y is
o 1
DrpResn Puy =Py (¥, P) = 3ho(x)
1 _ _
+ e [ (051 )V Tty (95 (5 )] (35)

+pﬁ% [@3 o (P (x, p)ﬂ fa v [95 R CACY))

It is clear that o7 Zes @ry = 0 and limy, e p Resy Pry = FypRes @y forall p > 0. If limp _eo p2.typ Kes Py =0,
then 1impﬁwp2£{yp%es,, ¢ry = 0. In general, if
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lim p"*"2.ot,, RFes @y =0

p—reo

then

lim p"* "oy, Resy oy =0

p—roe

forn e Nand 0 < o < 1. To calculate /,(x), we will use the iterative technique in solving the following:

lim p"**2 oy, Resy vy =0 (36)

p—roo

forn=1,2,3,---. Putthe values h,(x) in (33) to get the n-th solutions (p;jf (x, p) of (31) and then take the inverse Aboodh
transform of the n-th solutions (p}’ff (x, p) to get the n-th solutions ¢} (x, y) of (28).

4. Some applications

In this section, we use ARPSM to obtain some solutions of MTCFKE (3) in two cases: with perfect and approximate
initial conditions, where the approximate initial condition is a seventh-order Taylor approximation of the perfect one for
MTCFKE (3). Consider the following MTCFKE

20(x, 3o(x, So(x,
8, 0(x,y) + 9% (x, y) (p(g);y)Jrﬁ ‘gg;y)_ﬁ/ ‘gg;y):Q

o(x,0) = \/% sech? (;, / 5_[5 x>

where > 0 and B’ < 0 are real numbers. The MTCFKE above arises in describing nonlinear waves in plasma, especially
magneto-acoustic waves, where normal (quadratic) nonlinearity vanishes under certain plasma compositions, so a higher-
order nonlinearity is required. In such cases, the mKE can model wave propagation, wave steepening, and dispersive
effects together [7]. The MTCFKE is also used to model long waves in shallow water when surface tension effects are
non-negligible [6]. By using [29], if a = 1, then the perfect solution of (37) is

3B 1 [-B 25B' —4B2
o(x,y) = \/_7170[3, sech? lz 55 <x— g y)] . (38)

Take the Aboodh transforms on (37)

0<a<l1

(37
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ot | [0 )] et o ) (39)

with the sequence (@) )

o _ 3B 2(1 =B 5 hj(x)
®in (xm)—pz\/wsech <2\/573,x> +j:1pfa+2' (40)

The n-th structure for (39) is

: ___ 3B 1 /=B
%?f(x’ P) —W sech’ (2 5B/ x)
29

ot ot o o] s )] 4

3 l 5
- Lot | st ot e )| + Szt | 1 ot ).

The Aboodh residual function, &/, Zes ¢(x, p) for (39) is given by

_ 3B 1 [—B
dKes ¢(x, p) :(pr/(-x, p)— W sech? (2 57[3’ x)

1 1 20y,
+M%ﬂ%%WmmﬂwMWW@mﬂ @
(93 ! 85 3
+ Bt | St o o - Dt | 160 )

with the n-th structure
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o 3B 1 /-B
%%esn (P(x7 P) _(p;{(x’ p) - W SeChz (2 57[3/ x)

+ et | [ o D] Lot 0t )] (43)

/ 5
|5t et ol - T2t | st ot

+ ek

B }[33

forn=1,2,3,---. The terms of (h,),cn {0} are calculating by the relation

plijn pnoc—t-Z%%esn o(x,p)=0, n=1,2,3,- (44)

Atn =1, by (40) we have (p;,f (x,p) = pz\;flio& sech? (% v/ 57715 x) + zla(ﬁ and (43) becomes

A ctes: 9l p) = + ot | [ o )] 51 o 5 )

83 3 l 85 B
Bt | Sl s 0] - Bt | et i ]

This implies

) 9

3
AR 9. P) =iy |I0) + A0S W) 4B A0~ B )]

3 5
+ # |:%2(x);xhl(x) +2%”(x)h1(x)%%(x) + B%hl(x) - B’ahl(x)}

x>
(45)
1 2I'2a+1 d I'o+1 d
a1 [ e p o M 0 5 0) o e )5 0]
N 1 TQ@a+1) d

where 7 (x) = jlf 7 sech? (%w / ;—ﬁﬁ, x) . By multiplying (45) by p®*? and by (44) we have
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_21B°\/B 1 [-B N
hi(x) = NG sech® (2 Sﬁ’x> tanh (2 Sﬁ’x>
68°vB (1 [-B [ AU B S ]
+25ﬁ/2ﬂsech <2 5‘B,x>tanh<2 5B'x> 5B TIOB’tah (2 SB/x>
1 /|- 1 [—-B
E 5 /)C) tEll'lh3 (2 wx) (46)

Atn =2, by (40)

( 3B 1 /- hi(x)  ha(x
(Pygg(x’ p) = p2\/T0ﬁ’ sech’ (2 57[3/ x) + p]a(-&-; + p§l§+)2

Then we have

R | ) PO

Ay Ress 9lx. p) =

83 . l aS i
+ Lot | St o o0l - Bt | St 0 ]

This implies

A Res> 9(x, p) :# o (x) +%2(x)%h1 () + 2, (x)%”(x)%%(x)

2° 9’
+B5aMm) +ﬁ’$h1(x)] + # [%Z(x)hg(x)

m%@)hl(ﬂihl@ +2h2(x)%(x)%%(x)
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rRoa+1) ,, .0 J°3 93

b O L R 0) 3 0) + B gesha)— B st
D o
ot a1y (07 ) 3
mh% (x)% 1) r(oiE (13)?(;)+ ry/n () (x)%jf ]
e [ o) o) + e i) ()
(rmirg‘)?@% Ty (x)%hl(x)
(e i (f)()xz;(lz)a L) %% ]
bt | T (e (0) )
(F(ZFfl?)jrl(Ll)h%(x);ch 1]+ p7i‘+1 (rr((;o? i 11)))3 %(x)%hzm' “7)

By multiplying (47) by p®*2 and by (44) we have

3 5
ha(x) = —%z(x)%h] (x) —2h (x)jiﬂ(x)%jf(x) - ﬁ%hl (x) + B’%hl (x). (48)

Put the terms of (/) ,enugoy in (32)

= hi(x 1 1
0 (5 p) = ¥ S0 = Do)+ o)+
j=0

3B 2 (1 [-B
_p\/TOﬁlseCh (2 5B )

th(x) +--
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38 VB B B 1 P
" 125[3/3ﬁse°h2 2\ 5p* ) e <2 5B’ ) }- ez (7205 ()
3 5
2 () H0) o AW () + B (1)) +- )

Take the inverse Aboodh transform of (49),

6[33\/3 4 l ;ﬁ 1 ;B —Lan2 1 ;ﬁx
+25ﬁ/2\/§se°h (2 5 /x>tanh<2 SB’X> sﬁ’\/TOth h (2 5[3’>

39B°VB 4
_125[3’3\5560}1

Co iporary Math

444 | Faten H. Damag, ef al.



3p° \f |—B 1 /-B e J
+t— 125B/3\[ ( 58/ >ta h? < 5B > }_ NETEY (%2(x)$h1(x)

pa) 83 5
O3 0) 9 AW () 4 B c(x) + (50)

Now we take MTCFKE (3) with the polynomial initial condition in MTCFKE (3). Consider the following MTCFKE

99(x, y) +ﬁ93fp(x7 y) _5/95<P(x7 Y o

78,0 (x, y)+ ¢ (x,y) I 5.3 55 0<a<l

(5)
ﬁ4 .x6.
BB

2
b +0.0474 P x? +0.0021

ﬁ3
Ve N VA i B/ =B

o (x, 0) = 0.9487 — 403584 ———

Take Aboodh transforms of (51)

B » B 4 B* 6
0:0487B +0.0474 72727 +0.0021 255" 0. 3584Fx ]

()= 1
@ (% p) PENa
—%ﬂ%%ﬂwmﬁi%%%@mﬂ (52)

3 ' >
g e o] 4 ot | ™ 0 )

The sequence (@ ) neNU 10y given by

B, B’ 4 B* 6 ¥~ hi(x)
[0.94878 —|—0.0474Fx +0. 0021Wx +0. 3584Wx ]+ Z Py

(53)

1
o —
(pyn (X, p) - pz\/—iﬁ/
The n-th structure for (52) is

o 1 B> > B’ 4 B*

1 d
s |l (08 v P 5k 0 ) (54)

3. !
Lo | ot o 0| + Bt [ 10 ot ]
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The function @4, Zes @(x, p) for (52) is given by

1 2 3
Ay Res (x, p) =@ (x, p) — ———=[0.9487f +0.0474"x* +0.0021 B

PV p 2

4
03B 014 e | [0 0)] 5l )

3 ! 5
s Bt | St o )| - Lot | Sl 0 )]

with the n-th structure

2 B3
[0.9487B + 0.0474ﬁx2 +0.0021 ﬁxd'

Ay Resy @(x, p) =@ (x, p) —

1
p>/—B

4
#0358 B4t [l ot PP L (0 v )

ﬁ/

+ pi(x y

3
fa% [jﬁ[b@fg,l(w;’f (x, p))@ -

We calculate the terms of (A,),cr {0} by

lim p"‘”zszf;%esn ox,p)=0 n=1,2,3,---

p—reo

Atn=1,by (53)

hl (x)
pOH—2

1 2 3 ﬁ4
of 2 4 6

and (56) will be

A Res 9L, ) =ga + ot | [ ot (5. PP 5l 0 (v )]

This implies

5
| geslet o )]

(35)

(56)

(57)
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3 5
AR 9l ) =iy |10+ 620 560+ B 5360+ B 5 56|

3 5
+ # [52()6);)/11 (x) +2&(x)hy (x)%g(x) + ﬁ%hl (x)— ﬁ’%hl (x)}

(38

1 {21“(205—1—1) ) r2a+1)

plo+2 (T(o+ 1))2 ‘g)(x)hl(x)jxhl (x)+

1 TBa+1) d

* 5 (a1 5xM )

where &(x) = —L[0.94875 + 0.047457:2 +0.0021 %{Zx“ + 0.35845—,1x6]. By multiplying (58) by p®*! and by (57) we
get

() :0.0899ﬁ3\/—ﬁ’+25.80984[34x+ 0.012583/—B’ +43.008ﬁ5x3
1 B2VF BEVF

(39)

2.04068° 5 0.1368° ;, 0.00887 4 0.7718% |,
+ [E x4+ B’s x4+ B,6x+ ﬁ,7x.

Atn =2, by (53)

1 2 3 ﬁ4
o _ 2 4 6

hi(x) | h(x)
+ pai + pratl

and (56) becomes

AR 9L, ) =y + 220 ot [ (0 (v PP 5L )

93
+ ﬁx% {W[dy‘l(%{(x, p))}}

B

85
pa% {axs[%l(wj‘{(x, p))]] :

This implies
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1 J J
HRes: (3. P) =z [hz(x) +267(0) 5 () + 21 (v) 5-6 ()

3 5
+B%h1(w —ﬁ/%hl(x)} T {fz(x)—hz(x)

mé@u)m)ihm 2o ()6 () 26 (x)

3 5
IR0 280+ B o)~ B oo (v)

1 (3o +1) el

+ w7 a1 aa W g ()

2lBa+1) J I(3a+1) d
ot 1) M50+ Gy ) 3 )
I 2T(do+1 P)

p3at? [(Féaaﬁ—l)))zé"(x)hz(x)axhz(x)

C(40+1) P
" (T +1))2T2a+1) %(x)ahg (x)

2r(4a+1) P!
+ Mat 1) TQar 1))2h1 (X)ha (x) 56 ()

2T(4a+1) J
T(at 1) eat " W gm0

I'da+1) d
M C(a+1)(T2a+ 1))2h%(x)$h' (x)}

+

I (50 +1) P
pootl [F((x+ DT Ra 1)z W50

_|_

Ir'So+1) d
T(a+1)(T2a+1))? @5 (x)}

1 T(6a+1 d
plo+l (1“((20‘;64- 1)))3 %(x)ahz(x)]

(60)

448 | Faten H. Damag, ef al.



By multiplying (60) by p®*2 and by (57) we have

P J PE L9

hy(x) = —2&%(x ) =1 () = 201 (x) 5= (x) = B 1 (x) = B < i (x). (61)

Put the terms of (/) ,,enuqoy in (32) to get

o hilx) 1 1 1
Zopjoc+2 7h0( )+Whl(X)+Wh2(x>+

of
C(x,
@ (x, p) = E

Jj=

1 2 3 4
:5{0.9487 P iooara P 200001 P 03584 P 6}

N N B/—P BB

1 {0.0899[33\/—[3’+25.80984ﬁ4 0.0125B3/— [3’+43008ﬁ5

pO!+2 ﬁ/z /_ﬁ/ x+ ﬁ/3 / ﬁ/
(62)
2.04068° 0.136p° 0.008p7 0.77188
n ﬁ/4ﬁ ¥+ ﬁ/sﬁ 7+ ﬁ/Gﬁ © + ﬁ/7ﬁ xll}
1 a d 23
- S 267 ()51 (0) + 21 (1) 56 (1) + B 51 (¥)+
35
B sh(x)] +-
Now take the inverse Aboodh transform of (62)
B B* B 4 Bt 6
@(x, y) =0.9487—— +0.0474 x +0.0021 —————x*+0.3584 —————x
/_ ﬁ /__ B/Z /_B/ B/S /_B/
N Y& {0.0899ﬁ3\/—ﬁf+25.80984ﬁ4 +00125ﬁ /=P’ +43. 008[35
Ia+1) B2\/—B’ * & / —B
2.04068° 0.13683° 0.00837 0.771p8
i [3/4B PR lg/sﬁ R ﬁ/éﬁ O ﬁnﬁ xn} (63)
20 3
R S PO PN J
e 12570 gy @)+ 20 () 7 F()+ B (5)+
&5

B L]+
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5. Numerical discussion

This section illustrates the approximate solutions for MTCFKE (51) corresponding to different fractional orders .
The results are displayed in Tables 1 and 2, while Figures 1-5, obtained through numerical simulations, highlight the
dynamical behavior of these approximate solutions. Specifically, Table (1) reports a comparison of the Absolute Error
(AE) between the exact and approximate solutions of TCFKE (51) when 8 = 0.001, ' = —1, o = 1, and x = 10, together
with some solutions of (51) obtained by the RPSM [32] and HAM [29]. In Table (2), we compare the ARPSM approximate
solution of (51) at § = 0.001, B’ = —1, x = 10, and various values of & and y with solutions obtained by RPSM [32] and
HAM [29]. Figure (1) presents sample curves of the approximate solutions of (51) with § =0.001, /' =—1,y=0,y =2,
y =4, and several values of a. Figure (2) shows surface plots of ARPSM solutions with § = 0.001, 8’ = —1, a = 1.00,
and different values of y. Figure (3) shows surface plots of ARPSM solutions with § = 0.001, 8’ = —1, o = 0.75,
and different values of y. Figure (4) shows surface plots of ARPSM solutions with f = 0.001, 8’ = —1, o = 0.50,
and different values of y. Figure (5) shows surface plots of ARPSM solutions with § = 0.001, 8’ = —1, a = 0.25,
and different values of y. The graphs and tables highlight the accuracy and applicability of ARPSM. In particular, the
tables provide a comparison of the proposed method with existing techniques for different fractional orders, while the
figures illustrate the similarity and symmetry observed in the graphical patterns of the three derivatives. From our results,
we note that ARPSM yields approximate solutions that show excellent agreement with exact and numerical solutions,
demonstrating its reliability. Regarding its systematic and simple procedure, the residual power series method does not
require linearization, discretization, or perturbation techniques, making it straightforward to implement. For convergent
series solutions, ARPSM generates rapidly convergent series, which ensures stable and accurate approximations. In
terms of flexibility, ARPSM can be applied to both linear and nonlinear fractional differential equations with various
fractional orders. Concerning computational cost, compared with many classical numerical methods, the presented
approach requires fewer computations to achieve a comparable level of accuracy. Finally, regarding the capability to
handle fractional operators, ARPSM effectively incorporates fractional derivatives and integral operators, making it
suitable for modern fractional models. Moreover, the obtained series solutions allow the accuracy to be adjusted by
considering more terms, providing a balance between efficiency and precision.

Table 1. ARPSM absolute errors with other techniques in solving (51) at & = 1, = 0.001, 8’ = —1, x = 10 and some values of y

y  AE(ARPSM) AE(NTDM)[I5] AE (RPSM)[32]

0.1 1.41551E15 1.41553E 13 1.41553E~ 13
0.2  4.68058E~ 14 4.68063E~14 4.68063E~14
0.3 3.63906E13 3.63910E~13 3.63910E~13
0.4  1.56880E 12 1.56886E 12 1.56886E 12
0.5 4.89612E~12 4.89617E~12 4.89617E~12
0.6 1.24531E~1 1.24542E~11 1.24542E~11
0.7 2750631 2.75069E 1 2.75069E 11
0.8 5.47822E U 5.47829E 11 5.47829E 11
0.9 1.00801E-10 1.00810E~10 1.00810E~10
1.0 1.74272E°10 1.74280E 10 1.74280E 10
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Table 2. ARPSM solutions of (51) at § = 0.001, B’ = —1, @ = 0.25 and & = 0.5 with some values of x and y

a=025 a =050
y x ARPSM  NTDM[15] HAMI[29] ARPSM  NTDM[I5] HAM [29]
20 02 92994E~* 92996E~*  9299E~* 92992E~*  92996E~*  9.299E*
04 9.2993E~*  9.2996E~*  9.299E~*  9.2992E~*  9.2996E~* = 9.299E*
0.6 9.2995E~*  9.2996E~*  9.299E~*  9.2992E~*  9.2996E~*  9.299E*
0.8 9.2992E~*  9.2996E~*  9.299E~*  9.2992E~*  9.2996E~*  9.299E*
1.0 9.2993E*  9.2996E~*  9299E~*  92992E*  92996E*  9.299E*
10 02 94392E* 94396E~*  9439E~* 94391E~*  94396E~*  9.439E~*
0.4 9.4391E~* 9.4396E~*  9.439E~* 94391E~* 9.4396E~*  9.439E~*
0.6 9.4393E~* 94396E~*  9.439E~* 9.4391E~* 9.4396E~*  9.439E~*
0.8 9.4392E~* 94396E~*  9.439E~* 94391E~* 9.4396E~*  9.439E*
1.0 9.4394E~* 94396E~*  9439E~* 94391E~* 94396E~*  9.439E~*
0 0.2 9.4863E~* 94868E~*  9486E~* 9.4862E* 9.4868E~*  9.486E*
04 9.4865E~* 9.4868E~*  9.486E~* 9.4862E* 9.4868E~*  9.486E~*
0.6 9.4866E~* 9.4868E~*  9.486E~* 9.4862E* 9.4868E~*  9.486E*
0.8 9.4866E~* 9.4868E~*  9.486E~* 9.4862E* 9.4868E~*  9.486E~*
1.0 9.4867E~* 9.4868E~*  9486E~* 9.4862E* 9.4868E*  9.486E*
—10 0.2 94392E* 94396E~*  9439E~* 94391E~* 9.4396E~* = 9.439E~*
04 9.4393E~* 94396E~*  9.439E~* 9.4391E* 9.4396E~*  9.439E*
0.6 9.4861E~* 9.4868E~*  9486E~* 9.4862E~*  9.4868E~*  9.486E*
0.8 9.4394E~* 94396E~*  9.439E~* 9.4391E* 9.4396E~*  9.439E*
1.0 9.4393E~*  94396E~*  9439E~* 94391E~* 94396E~*  9.439E—*
—20 0.2 92992E* 9.2996E*  9299E~* 92991E~*  92996E~*  9.299E~*
04 9.2991E~* 9.2996E~*  9.299E~* 9.2991E~* 9.2996E~*  9.299E*
0.6 9.2994E~*  9.2996E~*  9.299E~* 9.2991E~*  9.2996E~*  9.299E*
0.8 9.2993E~* 9.2996E~*  9.299E~* 9.2991E~* 9.2996E~*  9.299E*
1.0 9.2995E~*  9.2996E~*  9299E~* 92991E~*  92996E~*  9.299E~*

Figure 1
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Figure 2. Some plots of ARPSM solutions with § = 0.001, 8’ = —1, o = 1.00 and some values of y
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Figure 3. Some plots of ARPSM solutions with § = 0.001, 8’ = —1, & = 0.75 and values of y
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Figure 4. Some plots of ARPSM solutions with § = 0.001, 8’ = —1, & = 0.50 and values of y
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6. Conclusions

The limitations of this study are primarily linked to its scope, underlying assumptions, and chosen methodology.
Our focus was restricted to solving fractional partial differential equations, particularly the MTCFKE, by employing the
residual power series method in conjunction with the Aboodh transform. While the combination of these techniques
has demonstrated effectiveness in deriving both approximate and exact solutions of time-modified fractional Kawahara
equations, the results are constrained by the specific class of equations considered and the methodological framework
adopted. The ARPSM generated approximate solutions in the form of a convergent series, which showed strong agreement
with numerical simulations. Owing to its systematic and efficient structure, the method provided reliable approximations
that were validated through comprehensive comparisons presented in the tables and figures. These analyses confirmed the
accuracy and robustness of the approach. Moreover, the results highlighted the suitability of ARPSM for solving problems
in mathematical physics, biological models, and related scientific fields. An additional contribution of this study is the
demonstration of ARPSM as a valuable tool for future investigations of water-wave equations, as well as for advancing
research in fractional calculus and fractional differential equations.
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