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Abstract: This paper presents a unified pseudo-spectral framework for solving both finite-time and infinite-time
synchronization problems in nonlinear dynamical systems. The core of our approach is the formulation of two novel
optimal control problems, where the achievement of synchronization is established as the optimal solution. We
rigorously prove that the solution to these optimal control problems guarantees synchronization. The proposed method
leverages a Legendre pseudo-spectral technique to transcribe the continuous-time optimal control problems into nonlinear
programming problems. The unknown coefficients of the approximating polynomials are then efficiently determined by
solving the resulting algebraic system derived from the Karush-Kuhn-Tucker optimality conditions. The efficacy and
superiority of the method are demonstrated through several numerical examples, where it is compared against other well-
known synchronization techniques. The results confirm that our method offers significant advantages in accuracy and
convergence. Finally, we discuss the potential for extending this approach to a broader class of complex synchronization
problems.
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1. Introduction
Synchronization phenomena represent one of themost fundamental and pervasive behaviors in natural and engineered

systems, with applications spanning from biological rhythms to power grid stability and secure communications. The
systematic study of synchronization dates back to Huygens’ seminal observations of coupled pendulum clocks [1], while
modern research has been profoundly influenced by foundational works [2, 3] on oscillator populations. A pivotal
advancement came fromPecora et al. [4], who demonstrated that chaotic systems could synchronize, opening new avenues
for research and applications.

The landscape of synchronization methodologies has evolved considerably, with several distinct approaches
emerging to address different challenges. Generalized synchronization frameworks, pioneered by Pecora et al. [5] and
Abarbane et al. [6], extended synchronization concepts to systems with functional relationships between their states.
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Lyapunov-Based (LB) methods, particularly the finite-time stability theory developed by Bhat et al. [7], provided
rigorous mathematical foundations for synchronization analysis and controller design. More recently, intelligent control
approaches have gained prominence such as the Output-Feedback Controller Based Projective Lag-Synchronization
(OFCBPLS) [8], Adaptive Fuzzy Control (AFC) [9] for practical fixed-time synchronization, Practical Finite-Time Fuzzy
Synchronization (PFTFS) [10], and an Intelligent Fuzzy Controller (IFC) [11] for chaos synchronization.

The advent of network science revolutionized synchronization research, with comprehensive reviews by Boccaletti
et al. [12] and Arenas et al. [13] establishing fundamental relationships between network topology and collective
dynamics. This framework has enabled critical applications in: power systems [14–16], biological rhythms [17] and
secure communications [18]. Recent advances have extended to time-varying networks [19], multi-layer systems, and
sophisticated analysis using topological data analysis [20].

The complexity of synchronization problems in nonlinear systems has driven the development of advanced
computational techniques. Among these, Pseudo-Spectral (PS) methods have emerged as particularly powerful tools
due to their exponential convergence properties for smooth problems [21, 22]. The theoretical foundation for PS methods
in optimal control was established through the covector mapping theorem [23], with convergence properties rigorously
analyzed by Kang et al. [24]. The versatility of PS methods is demonstrated by their successful application to increasingly
challenging problems: fractional-order systems [25, 26], delay differential equations [27, 28], nonsmooth dynamical
systems [29], and stabilization and adaptive control design [30].

Despite these advancements, a significant gap persists between high-precision computational methods and their direct
application to synchronization problems. Existing control strategies often face limitations in: (i) The need for intricate
Lyapunov function construction, (ii) Computational efficiency for high-accuracy requirements (iii) Unified treatment
of finite-time and infinite-time synchronization. This paper bridges this gap by introducing a unified pseudo-spectral
framework for both finite-time and infinite-time synchronization problems. Our principal contributions are

1. Theoretical reformulation: We propose novel optimal control problems for both Finite-Time Synchronization
(FTS) and Infinite-Time Synchronization (ITS) problems and rigorously prove that their solutions guarantee synchronization
objectives.

2. Computational framework: We develop a Legendre PS methodology using Legendre-Gauss-Radau (LGR) points
for ITS problem and Legendre-Gauss-Lobatto (LGL) points for FTS problem, providing exponential convergence rates.

3. Implementation advantage: Our approach eliminates the need for complex Lyapunov function construction,
instead solving the resulting algebraic systems via Karush-Kuhn-Tucker (KKT) conditions and the Levenberg-Marquardt
algorithm (see Bazaraa et al. [31]).

4. Comprehensive validation: We demonstrate superior performance against five established methods including LB,
IFC, AFC, PFTFS and OFCBPLS.

The remainder of this paper is organized as follows: Section 2 formally defines the FTS and ITS problems. Sections
3 and 4 detail the PS implementation for ITS and FTS problems respectively. Section 5 describes the solution of algebraic
systems. Numerical examples and comparative analysis are presented in Section 6, with conclusions and suggestions in
Section 7.

2. Presenting synchronization problems
Consider the following nonlinear control system



ϕ̇ = f
(
ω, ϕ(ω), θ(ω), u(ω)

)
, ω ∈ I,

θ̇ = g
(
ω, θ(ω), v(ω)

)
, ω ∈ I,

ϕ(0) = α, θ(0) = β .

(1)
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In this system u(.) and v(.) are the control variables, ϕ(.) and θ(.) are the state variables where ϕ : I → A ⊆ Rn,
θ : I → B ⊆ Rn , u : I →C ⊆ Rm and v : I → D ⊆ Rp. Also f : I ×A×B×Rm → Rn and g : I ×B×Rp → Rn are given
functions. Here for all ω ≥ 0 we have f (ω) = ( f1(ω), f2(ω), . . . , fn(ω)) and g(ω) = (g1(ω), g2(ω), . . . , gn(ω))where
fi : I → R and gi : I → R are given continuous functions. Moreover for any function χ : [0, +∞)→ Rn in L2(I), we use
the following norms

∥χ(·)∥2 =

√∫
I
∥χ(ω)∥2

2dω, ∥χ(ω)∥2 =

√
n

∑
i=1

|χi(ω)|2, ω ∈ I,

where χi(ω) : I → R and χ(ω) =
(
χ1(ω), χ2(ω), . . . , χn(ω)

)
. We suppose that ϕ(·) ∈ L2(I) and θ(·) ∈ L2(I) which

means ∥ϕ(·)∥2 < ∞ and ∥θ(·)∥2 < ∞. Moreover, ϕ(·) and θ(·) are differentiable almost everywhere on the interval I.
ITS problem: Find a control pair

(
u(·), v(·)

)
for the system (1) over the infinite interval I = [0,∞) such that the

corresponding state pair
(
ϕ(·), θ(·)

)
satisfies limω→∞∥ϕ(ω)−θ(ω)∥= 0 or there exists ω1 > 0 such that ϕ(ω) = θ(ω)

for all ω ≥ ω1.
FTS problem: Find a control pair

(
u(·), v(·)

)
for the system (1) over the finite interval I = [0, T ] such that for the

corresponding state pair
(
ϕ(·), θ(·)

)
there exists ω1 ∈ [0, T ) such that ϕ(ω) = θ(ω) for all ω ∈ [ω1, T ].

3. Implementing method for ITS problem
Note that in the ITS problem, a smaller value of ω1 indicates a faster convergence rate. We assume that the ITS

problem admits a solution in the space L2(I). In this section, we first formulate an Infinite-Time Optimal Control (ITOC)
problem as a means to solve the ITS problem. We then introduce a PS method to approximate the solution, which leads
to an Nonlinear Programming (NLP) formulation. Furthermore, we apply the KKT optimality conditions to solve the
resulting NLP problem and thereby obtain a solution to the original ITS problem.

3.1 Proposing an ITOC problem

Here, an ITOC problem is proposed to solve ITS problem as follows

Minimize J(ϕ , θ) =
∫ ∞

0
∥ϕ(ω)−θ(ω)∥2

2 dω (2)

subject to



ϕ̇ = f
(
ω, ϕ(ω), θ(ω), u(ω)

)
,ω ≥ 0,

θ̇ = g
(
ω, θ(ω), v(ω)

)
,ω ≥ 0,

ϕ(0) = α, θ(0) = β .

(3)

Theorem 3.1 If
(
ϕ ∗(·), θ ∗(·), u∗(·), v∗(·)

)
is an optimal solution of ITOC problem (2)-(3) then limω→∞ ϕ ∗(ω) =

θ ∗(ω) which means
(
ϕ ∗(·), θ ∗(·), u∗(·), v∗(·)

)
is a solution for ITS problem.

Proof. Assume that
(
ϕ̄(·), θ̄(·), ū(·), v̄(·)

)
is a solution of ITS problem. Then we have limω→∞ ϕ̄(ω) = θ̄(ω) or

equivalently limω→∞∥ϕ̄(ω)− θ̄(ω)∥= 0. Also ϕ̄(·) ∈ L2([0, +∞)) and θ̄(·) ∈ L2([0, +∞)). So we get
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J(ϕ̄ , θ̄) =
∫ ∞

0
∥ϕ̄(ω)− θ̄(ω)∥2

2 dω < ∞. (4)

Moreover (ϕ̄(·), θ̄(·)) is a feasible solution for the ITOC problem (2)-(3), so it satisfies constraints (3). Now since(
ϕ ∗(·), θ ∗(·), u∗(·), v∗(·)

)
is an optimal solution of ITOC problem so it satisfies system (3) and

0 ≤ J(ϕ ∗, θ ∗) =
∫ ∞

0
∥(ϕ ∗(ω)−θ ∗(ω)∥2

2 dω ≤ J(ϕ̄ , θ̄)< ∞. (5)

Now with contradiction, assume that limω→∞
(
ϕ ∗(ω)− θ ∗(ω)

)
= k ̸= 0 where k ∈ Rn. Then limω→∞∥ϕ ∗(ω)−

θ ∗(ω)∥2 = ∥k∥2 > 0. So with relation (5), ∥k∥2 must be finite. Hence there are n1 ∈ N and ω1 ≥ 0 such that for all

ω ≥ ω1 we have ∥ϕ ∗(ω)−θ ∗(ω)∥ ≥ ∥k∥2 −
1
n1

. Therefore we get

J(ϕ ∗,θ ∗) =
∫ ∞

0
∥(ϕ ∗(·)−θ ∗(·)∥2

2 dω =
∫ ω1

0
∥(ϕ ∗(·)−θ ∗(·)∥2

2 dω +
∫ ∞

ω1

∥(ϕ ∗(·)−θ ∗(·)∥2
2 dω

≥
∫ ω1

0
∥(ϕ ∗(·)−θ ∗(·)∥2

2 dω +

(
∥k∥2 −

1
n1

)∫ ∞

ω1

dω.

By relation (4) and right hand side of the above inequality, the value of J
(
ϕ ∗, θ ∗) cannot be finite and this contradicts

with relation (5). Therefore limω→∞∥ϕ ∗(ω)−θ ∗(ω)∥= 0 that means limω→∞ ϕ ∗(ω) = θ ∗(ω). □

3.2 Proposing a PS method

In this paper, because the ITOC problem (2)-(3) is defined in the interval [0, ∞), with the help of variable change

ω = δ (τ) =
1+ τ
1− τ

,we can transfer the interval [0, ∞) to [−1, 1) . We define γ(τ) = δ̇ (τ) =
2

(1− τ)2 andΦ(τ) = ϕ(δ (τ))

and Θ(τ) = θ(δ (τ)). Therefore Φ̇(τ) = γ(τ)ϕ̇(τ) and Θ̇(τ) = γ(τ)θ̇(τ). Hence the problem (2)-(3) can be written as the
following equivalent form

Minimize J(Φ, Θ) =
∫ 1

−1
γ(τ)∥Φ(τ)−Θ(τ)∥2

2 dτ (6)

subject to



Φ̇(τ) = γ(τ) f
(
δ (τ), Φ(τ), Θ(τ), U(τ)

)
, −1 ≤ τ < 1,

Θ̇(τ) = γ(τ)g
(
δ (τ), Θ(τ), V (τ)

)
, −1 ≤ τ < 1,

Φ(−1) = α, Θ(−1) = β ,

(7)

where U(τ) = u(δ (τ)) and V (τ) = v(δ (τ)). Here (U(.), V (.)) and (Φ(.), Θ(.)) are the new control and state variables,
respectively. Nowwe solve the problem (6)-(7) by using a PSmethod. Suppose Pj(·) for j = 0, 1, 2, . . . , N, are Legendre
polynomials in the interval [−1, 1) which satisfies recurrence relation
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
Pj+1(τ) =

2 j+1
j+1

Pj(τ)−
j

j+1
Pj−1(τ) , j = 1, 2, . . .

P0(τ) = 1, P1(τ) = τ , τ ∈ [−1, 1) .

Also suppose that τ0 =−1 < τ1 < · · ·< τN < 1 are LGR in the interval [−1, 1), which are the roots of polynomials
P(·) = PN(·)+PN−1(·). In this paper, we suggest the following approximations for the state and control variables in the
problem (6)-(7)

Φ(τ)≃
N

∑
j=0

ϕ̄ jL j(τ), Θ(τ)≃
N

∑
j=0

θ̄ jL j(τ), U(τ)≃
N

∑
j=0

ū jL j(τ), V (τ)≃
N

∑
j=0

v̄ jL j(τ). (8)

In the relations (8), (ϕ̄ j, θ̄ j, ū j, v̄ j) for j = 0, 1, 2, . . . , N, are unknown coefficients and L j(τ) for j = 0, 1, 2, . . . , N,
are the Lagrange polynomials, defined by

Z j(τ) =
N

∏
i=1
i̸= j

τ − τi

τ j − τi
, j = 0, 1, 2, . . . , N.

Now according to the Kronecker delta property of Lagrange polynomials, we have

Φ(τk) = ϕ̄k, Θ(τk) = θ̄k, U(τk) = ūk, V (τk) = v̄k, k = 0, 1, 2, . . . , N. (9)

Also with (8), we get

Φ̇(τk)≃
N

∑
j=0

ϕ̄ jQk j, Θ̇(τk)≃
N

∑
j=0

θ̄ jQk j, k = 0, 1, 2, . . . , N, (10)

where Q =
(
Qk j

)
(N+1)×(N+1) is the derivative matrix in this PS method and is defined as

Qk j = L̇ j(τk) =



−N(N +2)
4

, j = k = 0,

τk

1− τ2
k
+

(N +1)PN(τk)

(1− τ2
k )
(
P′

N(τk)+P′
N+1(τk)

) , 1 ≤ j = k ≤ N,

P′
N(τk)+P′

N+1(τk)

(τk − τ j)
(
P′

N(τ j)+P′
N+1(τ j)

) , k ̸= j.

(11)

Lemma 3.1 Assume τ0 =−1 < τ1 < · · · < τN < 1 are LGR points in interval [−1, 1) . There exists a unique set of
weights {wk}N

k=0 such that for every polynomial q(·) of degree 2N or less, we have
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∫ 1

−1
q(t)dt =

N

∑
k=0

wkq(τk),

where the weights come from the following relation

wk =
1− τk

(N +1)2
(
PN(τk)

)2 , k = 0, 1, 2, 3, . . . , N.

Now, for better display of indices, formulas and method, we assume n = 1. By Lemma 3.1, we approximate the
integral of the objective functional in the problem (6)-(7) as

∫ 1

−1
γ(τk)

(
Φ(τ)−Θ(τ)

)2 dτ ≃
N

∑
k=0

wkγ(τk)
(
ϕ̄k − θ̄k

)2
. (12)

Now with the help of equations (9), (10) and (12) the problem (6)-(7) becomes a NLP problem as

Minimize JN(ϕ̄ , θ̄) =
N

∑
k=0

wkγ(τk)(ϕ̄k − θ̄k)
2 (13)

subject to



∑N
j=0 ϕ̄ jQk j = γ(τk) f

(
δ (τk), ϕ̄k, θ̄k, ūk

)
, k = 0, 1, 2, . . . , N,

∑N
j=0 θ̄ jQk j = γ(τk)g

(
δ (τk), θ̄k, v̄k

)
, k = 0, 1, 2, . . . , N,

ϕ̄0 = α, θ̄0 = β .

(14)

The variables of problem (13)-(14) are (ϕ̄k, θ̄k, ūk, v̄k), k = 0, 1, 2, . . . , N. Now by solving the NLP problem
(13)-(14), the optimal solutions (ϕ̄ ∗

k , θ̄ ∗
k , ū∗k , v̄∗k) for k = 0, 1, 2, . . . , N are obtained and by substituting in equations (8),

the approximate optimal solution of problem (6)-(7) is gained as

ϕ(ω)≃
N

∑
j=0

ϕ̄ ∗
j Z j

(
ω −1
ω +1

)
, θ(ω)≃

N

∑
j=0

θ̄ ∗
j Z j

(
ω −1
ω +1

)
, ω ∈ [0, ∞) , (15)

u(ω)≃
N

∑
j=0

ū∗jZ j

(
ω −1
ω +1

)
, v(ω)≃

N

∑
j=0

v̄∗jZ j

(
ω −1
ω +1

)
, ω ∈ [0, ∞) . (16)

In next subsection, we use the KKT optimality conditions for solving the NLP problem (13)-(14).

3.3 KKT optimality conditions for ITS problem

Consider the NLP problem (13)-(14) and define Fk(ϕ̄ , θ̄ , ū) and Gk(ϕ̄ , v̄) as
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
Fk(ϕ̄ , θ̄ , ū) = ∑N

j=0 ϕ̄ jQk j − γ(τk) f (δ (τk), ϕ̄k, θ̄k, ūk), k = 0, 1, 2, . . . , N,

Gk(θ̄ , v̄) = ∑N
j=0 θ̄ jQk j − γ(τk)g(δ (τk), θ̄k, v̄k), k = 0, 1, 2, . . . , N,

(17)

where

ϕ̄ = (ϕ̄0, ϕ̄1 · · · , ϕ̄N), θ̄ = (θ̄0, θ̄1 · · · , θ̄N), ū = (ū0, ū1 · · · , ūN), v̄ = (v̄0, v̄1 · · · , v̄N). (18)

Now by relation (17), the problem (13)-(14) is written as

Minimize JN(ϕ̄ , θ̄) =
N

∑
k=0

wkγ(τk)(ϕ̄k − θ̄k)
2 (19)

subject to



Fk(ϕ̄ , θ̄ , ū) = 0, k = 0, 1, 2, . . . , N,

Gk(θ̄ , v̄) = 0, k = 0, 1, 2, . . . , N.

ϕ̄0 = α, θ̄0 = β .

(20)

In order to solve this NLP problem, we find the necessary conditions of optimality and define the Lagrange auxiliary
function as

L(ϕ̄ , θ̄ , ū, v̄, λ , µ) = JN(ϕ̄ , θ̄)+λF(ϕ̄ , θ̄ , ū)+µG(θ̄ , v̄),

where F = (F0, F1, ..., FN) and G = (G0, G1, ..., GN), and further λ = (λ0, λ1, ..., λN) and µ = (µ0, µ1, ..., µN) are
the Lagrange multipliers. The KKT necessary optimality conditions for NLP problem (37)-(38) can be gained as



∂L
∂ ϕ̄i

= 0, i = 0, 1, 2, . . . , N

∂L
∂ θ̄i

= 0, i = 0, 1, 2, . . . , N

∂L
∂λi

= 0, i = 0, 1, 2, . . . , N

∂L
∂ µi

= 0, i = 0, 1, 2, . . . , N

∂L
∂ ūi

= 0, i = 0, 1, 2, . . . , N

∂L
∂ v̄i

= 0, i = 0, 1, 2, . . . , N

ϕ̄0 = α, θ̄0 = β .

(21)
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Hence we have



2wiγ(τi)(ϕ̄i − θ̄i)+∑N
k=0 λkF̂ki(ϕ̄ , θ̄ , ū) = 0, i = 0, 1, 2, . . . , N,

−2wiγ(τi)(ϕ̄i − θ̄i)+∑N
k=0 λkF̃ki(ϕ̄ , θ̄ , ū)+∑N

k=0 µkĜki(θ̄ , v̄) = 0, i = 0, 1, 2, . . . , N,

∑N
j=0 ϕ̄ jQi j − γ(τi) f (δ (τi), ϕ̄i, θ̄i, ūi) = 0, i = 0, 1, 2, . . . , N,

∑N
j=0 θ̄ jQi j − γ(τi)g(δ (τi), θ̄i, v̄i) = 0, i = 0, 1, 2, . . . , N,

∑N
k=0 λkF̄ki(ϕ̄ , θ̄ , ū) = 0, i = 0, 1, 2, . . . , N,

∑N
k=0 µkḠki(θ̄ , v̄) = 0, i = 0, 1, 2, . . . , N,

(22)

where

∂JN(ϕ̄ , θ̄)
∂ ϕ̄i

= 2wiγ(τi)(ϕ̄i − θ̄i),
∂JN(ϕ̄ , θ̄)

∂ θ̄i
=−2wiγ(τi)(ϕ̄i − θ̄i), (23)

F̂ki(ϕ̄ , θ̄ , ū) =
∂Fk

∂ ϕ̄i
=

Qii − γ(τi)
∂ f
∂ ϕ̄i

, i = k,

Qki, i ̸= k,
F̃ki(ϕ̄ , θ̄ , ū) =

∂Fk

∂ θ̄i
=

−γ(τi)
∂ f
∂ θ̄i

, i = k,

0, i ̸= k,
(24)

F̄ki(ϕ̄ , θ̄ , ū) =
∂Fk

∂ ūi
=

−γ(τi)
∂ f
∂ ūi

, i = k,

0, i ̸= k,
Ĝki(θ̄ , v̄) =

∂Gk

∂ θ̄i
=

Qii − γ(τi)
∂g
∂ θ̄i

, i = k,

Qki, i ̸= k,
, (25)

Ḡki(θ̄ , v̄) =
∂Gk

∂ v̄i
=

−γ(τi)
∂g
∂ v̄i

, i = k,

0, i ̸= k.
(26)

Now by solving algebraic system (22), we can obtain unknown coefficients ϕ̄ , θ̄ , ū and v̄. Also, by (15)-(16) we
can approximate the optimal solution of problem (6)-(7). Note that according to the Theorem 3.1,

(
ϕ(·), θ(·), u(·), v(·)

)
defined by (15) and (16) is an approximate solution for the original ITS problem.

4. Implementing method for FTS problem
The same as previous section, we implement the method in three subsection. In the following, we first propose a

Finite-Time Optimal Control (FTOC) problem to solve the FTS problem.
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4.1 Proposing a FTOC problem

In this subsection, a FTOC problem is proposed to solve the FTS problem as follows

Minimize J(ϕ , θ) =
∫ T

0
∥ϕ(ω)−θ(ω)∥2

2 dω (27)

subject to



ϕ̇(ω) = f
(
ω, ϕ(ω), θ(ω), u(ω)

)
, 0 ≤ ω ≤ T,

θ̇(ω) = g
(
ω, θ(ω), v(ω)

)
, 0 ≤ ω ≤ T,

ϕ(0) = α, θ(0) = β , ϕ(T ) = θ(T ).

(28)

Theorem 4.1 If
(
ϕ ∗(·), θ ∗(·), u∗(·),v∗(·)

)
is an optimal solution of FTOC problem (27)-(28) then there exists time

ω̄1 ∈ [0, T ] such that ϕ ∗(ω) = θ ∗(ω) for all ω ∈ [ω̄1, T ].
Proof. Assume

(
ϕ̄(·), θ̄(·), ū(·), v̄(·)

)
is a solution for FTS problem. So there is ω1 ∈ [0, T ) such that ϕ(ω) = θ(ω)

for all ω ∈ [ω1, T ]. Now by contradiction, and continuity of functions ϕ(·) and θ(·), there exists ω2 ∈ [0, T ) such that
ω2 > ω1 and

∫ T
ω2
∥ϕ ∗(ω)−θ ∗(ω)∥2

2 dω > 0. Define

ϕ̃(ω) =

{
ϕ ∗(ω), 0 ≤ ω ≤ ω2,

ϕ̄(ω), ω2 < ω ≤ T,
θ̃(ω) =

{
θ ∗(ω), 0 ≤ ω ≤ ω2,

θ̄(ω), ω2 < ω ≤ T,
(29)

ũ(ω) =

{
u∗(ω), 0 ≤ ω ≤ ω2,

ū(ω), ω2 < ω ≤ T,
ṽ(ω) =

{
v∗(ω), 0 ≤ ω ≤ ω2,

v̄(ω), ω2 < ω ≤ T.
(30)

It is trivial that
(
ϕ̃(·), θ̃(·), ũ(·), ṽ(·)

)
satisfies system (28) almost everywhere. Moreover, we get

J(ϕ̃ , θ̃) =
∫ ω2

0
∥ϕ ∗(ω)−θ ∗(ω)∥2

2 dω +
∫ T

ω2

∥ϕ̄(ω)− θ̄(ω)∥2
2 dω (31)

<
∫ ω2

0
∥ϕ ∗(ω)−θ ∗(ω)∥2

2 dω +
∫ T

ω2

∥ϕ ∗(ω)−θ ∗(ω)∥2
2 dω = J(ϕ ∗,θ ∗), (32)

which this contradicts with the optimality of
(
ϕ ∗(·), θ ∗(·), u∗(·), v∗(·)

)
.

4.2 Proposing a PS method for FTS problem

In this section, we will solve FTS problem by a PS method. Since problem FTOC (27)-(28) is on the interval [0, T ],
we first change it to the interval [−1, 1] by defining variable ω = δ (τ) =

T
2
(τ +1) where τ ∈ [−1, 1]. Define

Φ(τ) = ϕ(δ (τ)), Θ(τ) = θ(δ (τ)), U(τ) = u(δ (τ)), V (τ) = v(δ (τ)).
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Now, the problem (27) becomes as follows

Minimize J(Φ, Θ) =
∫ 1

−1

T
2
∥Φ(τ)−Θ(τ)∥2

2 dτ (33)

subject to



Φ̇(τ) =
T
2

f
(
δ (τ), Φ(τ), Θ(τ), U(τ)

)
, −1 ≤ τ ≤ 1,

Θ̇(τ) =
T
2

g
(
δ (τ), Θ(τ), V (τ)

)
, −1 ≤ τ ≤ 1,

Φ(−1) = α, Θ(−1) = β , Φ(1) = Θ(1).

(34)

The problem (33)-(34) is also solved like solving problem (6)-(7) with the help of LGL colocalization points and
a PS method. Notice that the LGL points {τk}N

k=0 are the roots of polynomial h(τ) = (1− τ2)ṖN(τ) where PN(·) is the
Legendre polynomial of degree N. Define Fk(ϕ̄ , θ̄ , ū) and Gk(ϕ̄ , v̄) as follows


Fk(ϕ̄ , θ̄ , ū) = ∑N

j=0 ϕ̄ jQk j −
T
2

f (δ (τk), ϕ̄k, θ̄k, ūk), k = 0, 1, 2, . . . , N,

Gk(θ̄ , v̄) = ∑N
j=0 θ̄ jQk j −

T
2

g(δ (τk), θ̄k, v̄k), k = 0, 1, 2, . . . , N,

(35)

where (ϕ̄ , θ̄ , ū, v̄) is defined by (18) and R =
(
Rk j

)
(N+1)×(N+1) is the derivative matrix in this PS method given by

Rk j = Ż j(τk) =



−N(N +1)
4

, j = k = 0

PN(τk)

PN(τ j)(τk − τ j)
, j ̸= k, 0 ≤ j, k ≤ N

0, 1 ≤ j = k ≤ N −1

N(N +1)
4

, k = j = N,

(36)

where Z j(·) is the Lagrange polynomial constructed based on the LGL points.
Lemma 4.1 Assume τ0 = −1 < τ1 < · · · < τN = 1 are LGL points in interval [−1, 1] . There exists a unique set of

weights {wk}N
k=0 such that for every polynomial q(·) of degree 2N −1 or less, we have

∫ 1

−1
q(t)dt =

N

∑
k=0

wkq(τk),

where the weights come from the following relation
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wk =
2

N(N +1)
· 1

(pN(τi))
2 , k = 0, 1, 2, 3, . . . , N.

Now by Lemma 4.1 and Equation (35), and the same as previous section, the problem (33)-(34) converted into the
following NLP problem

Minimize JN(ϕ̄ , θ̄) =
N

∑
k=0

T
2

wk(ϕ̄k − θ̄k)
2 (37)

subject to



Fk(ϕ̄ , θ̄ , ū) = 0, k = 0, 1, 2, . . . , N,

Gk(θ̄ , v̄) = 0, k = 0, 1, 2, . . . , N,

ϕ̄0 = α, θ̄0 = β , ϕ̄N = θ̄N .

(38)

In next subsection, we obtain the KKT conditions for solving the NLP problem (37)-(38).

4.3 KKT optimality conditions for FTS problem

As in the previous section, in order to find the necessary conditions of optimality, we can define the Lagrange auxiliary
function and obtain the KKT optimality conditions for the NLP problem (37)-(38), as the following algebraic system



wiT (ϕ̄i − θ̄i)+∑N
k=0 λkF̂ki(ϕ̄ , θ̄ , ū) = 0, i = 0, 1, 2, . . . , N,

−wiT (ϕ̄i − θ̄i)+∑N
k=0 λkF̃ki(ϕ̄ , θ̄ , ū)+∑N

k=0 µkĜki(θ̄ , v̄) = 0, i = 0, 1, 2, . . . , N,

∑N
j=0 ϕ̄ jRi j −

T
2

f (δ (τi), ϕ̄i, θ̄i, ūi) = 0, i = 0, 1, 2, . . . , N,

∑N
j=0 θ̄ jRi j −

T
2

g(δ (τi), θ̄i, v̄i) = 0, i = 0, 1, 2, . . . , N,

∑N
k=0 λkF̄ki(ϕ̄ , θ̄ , ū) = 0, i = 0, 1, 2, . . . , N,

∑N
k=0 µkḠki(θ̄ , v̄) = 0, i = 0, 1, 2, . . . , N,

ϕ̄0 = α, θ̄0 = β , ϕ̄N = θ̄N ,

(39)

where F = (F0, F1, ..., FN) and G = (G0, G1, ..., GN), and further λ = (λ0, λ1, ..., λN) and µ = (µ0, µ1, ..., µN) are
the Lagrange multipliers. Also,
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F̂ki(ϕ̄ , θ̄ , ū) =
∂Fk

∂ ϕ̄i
=

Rii −
T
2

∂ f
∂ ϕ̄i

, i = k

Rki, i ̸= k
F̂ki(ϕ̄ , θ̄ , ū) =

∂Fk

∂ θ̄i
=

−T
2

∂ f
∂ θ̄i

, i = k

0, i ̸= k
(40)

F̄ki(ϕ̄ , θ̄ , ū) =
∂Fk

∂ ūi
=

−T
2

∂ f
∂ ūi

, i = k

0, i ̸= k
Ĝki(θ̄ , v̄) =

∂Gk

∂ θ̄i
=

Rii −
T
2

∂g
∂ θ̄i

, i = k

Rki, i ̸= k
(41)

Ḡki(θ̄ , v̄) =
∂Gk

∂ v̄i
=

−T
2

∂g
∂ v̄i

, i = k

0, i ̸= k
(42)

Now, by solving system (39), we can obtain unknown coefficients (ϕ̄ , θ̄ , ū, v̄) which are the approximate solutions
for the NLP problem (37)-(38). Also, these solutions can be used to approximate the solution of FTOC problem (27)-(28).

Remark 4.1Notice that the existence of a solution of algebraic systems and their convergence to the optimal solutions
of (ITOC or FTOC) problems are discussed in some works (see [23–25, 27]). Also some generalization of convergence
analysis of PS methods is proposed by Noori Skandari et al. [28, 30, 32, 33].

5. Levenberg-Marquardt algorithm for the gained algebraic systems
The Levenberg-Marquardt algorithm is a highly effective method for solving square and non-square systems of

algebraic nonlinear equations. Essentially, the algorithm modifies the Gauss-Newton method to handle cases where
the problem is ill-conditioned or the initial guess is far from the solution. It introduces a damping parameter to switch
between the Gauss-Newton method and gradient descent. We present the Levenberg-Marquardt algorithm (implemented
inMATLAB software) to solve square algebraic systems (22) and (39). These systems has 6(N+1) equations and 6(N+1)
unknown variables (ϕ̄i, θ̄i, ūi, v̄i, λi, µi), i = 0, 1, 2, . . . , N. For more clarification, let us define these systems as
H(X) = 0 where

X = (x1, x2, ..., x6N+6) =
(
(ϕ̄i, θ̄i, ūi, v̄i, λi, µi) : i = 0, 1, 2, . . . , N

)
, (43)

and H(X) = (H1(X), H2(X), ..., H6N+6(X)). Start with an initial guess X (0) for the unknown vector X , and compute
the Jacobian matrix JH(X), which contains the first derivatives of each equation with respect to each unknown, given by

JH
i j =

∂Hi

∂X j
and update the solution vector X using the following iterative formula

X (r+1) = X (r)−
[

JH
(

X (r)
)T

JH
(

X (r)
)
+µI

]−1

JH
(

X (r)
)T

H
(

X (r)
)
, r = 0, 1, 2, . . . . (44)

Here, µ is the damping parameter, and I is the identity matrix. The parameter µ is adjusted dynamically at each
iteration. This algorithm is robust and can handle scenarios where the initial guess is far from the final solution. By
combining the fast convergence of the Gauss-Newton method with the stability of gradient descent, it achieves reliable
results. Convergence can be monitored by evaluating the norm of the residual vector H

(
X (r+1)

)
. If this norm falls below

a predefined threshold, the algorithm is considered to have successfully converged to a solution.
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6. Numerical examples
In this section, five comparative examples are given to illustrate the effectiveness of the presented approaches for

ITS and FTS problems. Notice that in Examples 1 and 2, we utilize relations Φ(τ) = ϕ(δ (τ)), Θ(τ) = θ(δ (τ)),U(τ) =

u(δ (τ)) and V (τ) = v(δ (τ)) where ω = δ (τ) =
1+ τ
1− τ

, for τ ∈ [−1, 1).
Example 1 Consider the following infinite-time nonlinear control system



ϕ̇(ω) =
1

1+θ 2(ω)
+ϕ(ω)θ(ω)+u(ω)(ϕ(ω)−1), ω ≥ 0

θ̇(ω) = θ(ω) tanh
(
θ(ω)

)
+ v(ω), ω ≥ 0

ϕ(0) = ϕ0, θ(0) = θ0.

(45)

To synchronize trajectories ϕ(·) and θ(·), we solve the corresponding algebraic system (22) and show the results for
different initial conditions ϕ0 and θ0 in Figures 1 and 2. It can be seen that the ITS problem is solved with a relatively
high convergence rate and the suggested method has a good capability to solve such a problem.

Figure 1. The solution of ITS problem by suggested method (with N = 8, ϕ0 = 1, θ0 = 1.5) for Example 1
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Figure 2. The solution of ITS problem by suggested method (with N = 8, ϕ0 = 1, θ0 = 1.3) for Example 1

Figure 3. The solution of ITS problem by suggested method (with N = 8, ϕ0 = 1, θ0 = 1.5) for Example 2
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Example 2 Consider the following infinite-time nonlinear control system



ϕ̇(ω) = ϕ 2(ω)+θ(ω)+u(ω), ω ≥ 0

θ̇(ω) = eθ(ω)+θ 2(ω)+ v(ω), ω ≥ 0

ϕ(0) = ϕ0, θ(0) = θ0.

(46)

To achieve synchronization between the trajectories ϕ(·) and θ(·), we solve the associated algebraic system (22)
and illustrate the outcomes for various initial conditions ϕ0 and θ0 in Figures 3 and 4. The results indicate that the ITS
problem is resolved with a relatively rapid convergence rate. These findings underscore the effectiveness and reliability
of the proposed method in handling such synchronization tasks.

Figure 4. The solution of ITS problem by suggested method (with N = 8, ϕ0 = 1, θ0 = 1.3) for Example 2

Example 3 Consider the following finite-time nonlinear control system
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

ϕ̇(ω) = sin
(
πθ(ω)

)
+ cos

(
πϕ(ω)

)
+ωu(ω), 0 ≤ ω ≤ 1,

θ̇(ω) = tan
(
θ(ω)

)
+

θ(ω)

1+(θ)2 + v(ω), 0 ≤ ω ≤ 1,

ϕ(0) = ϕ0, θ(0) = θ0.

(47)

To evaluate the synchronization of the trajectories ϕ(·) and θ(·), we solve the associated algebraic system (39).
Figures 5 and 6 present the results for various initial conditions (ϕ0, θ0), demonstrating that the FTS problem is resolved
with a rapid convergence rate. This highlights the robustness and efficiency of our proposed method.

Now we want to compare our method with other well-known methods for solving FTS problems such as OFCBPLS
[8], AFC [9], PFTFS [10], and IFC [11]. We apply these methods to solve the FTS problem discussed in Example 3. It
can be seen in Figure 7, AFC and PFTFS methods fail to achieve synchronization. In contrast, as shown in Figure 8, the
OFCBPLS method and IFC are a little successful. However, comparing the absolute errors shows that our method is more
effective and achieves a lower synchronization error and superior performance.

Figure 5. The solution of FTS problem by suggested method (with N = 8, ϕ0 = 1, θ0 = 1.5) for Example 3
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Figure 6. The solution of FTS problem by suggested method (with N = 8, ϕ0 = 1, θ0 = 1.3) for Example 3

Figure 7. The failed results of solving the FTS problem (with ϕ0 = 1, θ0 = 1.5) by AFC and PFTFS methods for Example 3
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Figure 8. The solution of FTS problem (with ϕ0 = 1, θ0 = 1.5) by OFCBPLS and IFC methods for Example 3

Example 4 Consider the following finite-time nonlinear control system



ϕ̇(ω) = ϕ 2(ω)+θ(ω)sin(ω)+u(ω), 0 ≤ ω ≤ 1

θ̇(ω) = sin
(
πθ(ω)

)
+ cos

(
ωθ(ω)

)
+ v(ω), 0 ≤ ω ≤ 1

ϕ(0) = ϕ0, θ(0) = θ0.

(48)

To synchronize the trajectories ϕ(·) and θ(·), we solve the associated algebraic system (39). The results for various
initial conditions (ϕ0, θ0), presented in Figures 9 and 10, demonstrate that the FTS problem is successfully resolved with
a rapid convergence rate, affirming the robustness and efficacy of the proposed method. A comparative analysis further
highlights its performance. Established PFTFS and IFC methods, fail to achieve synchronization for Problem Example
4 as shown in Figure 11. In contrast, as shown in Figure 12, while the OFCBPLS and AFC methods are successful, our
method achieves a lower synchronization error and superior performance, reveals that our approach yields superior results
with consistently lower synchronization error.
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Figure 9. The solution of FTS problem by suggested method (with N = 8, ϕ0 = 1, θ0 = 1.5) for Example 4

Figure 10. The solution of FTS problem by suggested method (with N = 8, ϕ0 = 1, θ0 = 1.3) for Example 4
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Figure 11. The failed results of solving the FTS problem (with ϕ0 = 1, θ0 = 1.5) by PFTFS and IFC methods for Example 4

Figure 12. The solution of FTS problem (with ϕ0 = 1, θ0 = 1.5) by AFC and OFCBPLS methods for Example 4
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Example 5 Consider the following finite-time nonlinear control system



ϕ̇(ω) = ϕ(ω)−ϕ 2(ω), 0 ≤ ω ≤ 2

θ̇(ω) = θ(ω)+ sin(θ(ω))+ v(ω), 0 ≤ ω ≤ 2

ϕ(0) = 2, θ(0) = 1.

(49)

To synchronize the trajectories ϕ(·) and θ(·), we solve the associated algebraic system (39). The results presented
in Figure 13, demonstrates that the FTS problem is successfully resolved with a rapid convergence rate, confirming
the method’s robustness and competence. The superiority of our approach is further established through a comparative
analysis. The established methods, including LB [7], IFC, PFTFS and OFCBPLS methods fail to achieve synchronization
for this problem, as evidenced by the results in Figures 14 and 15. Consequently, the comparative results confirm the
distinct advantage of our proposed method in effectively solving the presented FTS problem in Example 5.

Figure 13. The solution of FTS problem by suggested method (with N = 8) for Example 5
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Figure 14. The failed results of solving the FTS problem by OFCBPLS and PFTFS methods for Example 5

Figure 15. The failed results of solving the FTS problem by IFC and LB methods for Example 5
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7. Conclusions and suggestions
This paper has introduced a unified PS framework for solving both FTS and ITS problems in nonlinear dynamical

systems. The core of our methodology was the novel reformulation of these synchronization problems as equivalent
optimal control problems, for which we provided rigorous proofs that their optimal solutions guarantee synchronization.
By leveraging the high accuracy of Legendre pseudo-spectral methods, utilizing LGR points for ITS and LGL points
for FTS, we transcribed these continuous-time problems into tractable NLP problems. The resulting systems of algebraic
equations, derived from the KKT optimality conditions, were solved efficiently using the Levenberg-Marquardt algorithm.
The numerical simulations unequivocally demonstrate the effectiveness and superiority of the proposed method. In
numerical simulation, our approach consistently outperformed five established synchronization techniques, methods
such as LB [7], OFCBPLS [8], AFC [9] for practical fixed-time synchronization, PFTFS [10], and IFC [11] for chaos
synchronization, in terms of convergence speed, precision, and reliability. A key advantage of our method is its
independence from the complex and often challenging task of constructing Lyapunov functions, relying instead on a
robust computational framework with exponential convergence properties.

The versatility of the proposed framework opens numerous avenues for future research. Building on this work, we
suggest the following promising directions:

1. Extension to complex system classes: The method can be generalized to synchronize systems governed by more
complex dynamics, such as:

• Fractional fixed-order and variable-order dynamical systems: This would significantly broaden applicability in
modeling viscoelastic materials, biological tissues, and other systems with memory effects.

• Systems with state and input delays: Investigating synchronization in delayed systems is crucial for applications in
networked control, biology, and chemistry.

• Stochastic and hybrid dynamical systems: Extending the framework to handle random perturbations and switching
dynamics would enhance its robustness for real-world applications.

2. Application to specific engineering challenges: The framework’s potential for real-world impact can be explored
by applying it to high-value engineering problems, including:

• Precision synchronization ofmulti-robot systems: For coordinatedmotion planning and collaborative task execution
in swarms of drones or autonomous vehicles.

• Secure communication schemes: Designing new chaos-based cryptographic systems where the high accuracy of
the PS method ensures reliable synchronization between transmitter and receiver.

• Control of pathological neural synchronization: Exploring its use in designing Deep Brain Stimulation (DBS)
protocols to disrupt synchrony in neurological disorders like Parkinson’s disease.

3. Algorithmic and computational enhancements:
• Developing an adaptive PS method that dynamically adjusts the number and location of collocation points to

improve efficiency for problems with sharp transients or localized phenomena.
• Implementing a real-time iteration scheme based on the proposed NLP formulation to enable Model Predictive

Control (MPC) for online synchronization tasks.
In conclusion, the PS framework developed in this paper provides a powerful, accurate, and versatile tool for

synchronization. We are confident that its future extensions and applications will make substantial contributions to the
fields of optimal control and complex systems theory.
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