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Abstract: The nonlinear Fisher equation, which can be applied to crystallization, fluid dynamics, fiber optics, plasma,
and biological population models, is of particular importance. We build bilinear equations using Hirota’s derivatives,
and then we compute several kinds of solitons. We use the Hirota Bilinear Method (HBM) and the ansatz approach
to develop Lump Solution (LS), Multi-Waves (MWs), Ma-Breathers (MBs), Kuznetsov-Ma-Breathers (KMBs), and
Rogue Waves solutions (RWs) for the proposed model. In the domains of science and engineering, the developed wave
solutions are highly significant. We also investigated the stability analysis of the proposed model by using the linear
stability approach. Solutions for breathers could be applied to increase the effectiveness of solitons in plasma waves and
optical communication systems. Lump wave solutions can be used to manipulate and control laser beams for material
manufacturing or laser surgery, whereas roguewave solutions can help ensure the safety of ships and oil rigs. Under certain
constraints, we additionally investigate one, two, and other soliton interactions for suggestedmodel. To anticipate thewave
dynamics, specific 2D, 3D, and contour portraits are also examined with the help of computing software Mathematica.
To regulate fusion as a potential energy source in the future, these interactions may be applied to plasma stability and
containment. This work presents a novel contribution to the field by exploring soliton solutions of the nonlinear Fisher
equation. To the best of our knowledge, this research has not been previously addressed in the literature. The suggested
method provides a more powerful computational framework for examining Non Linear Evolution Equations (NLEEs) in
engineering and mathematical sciences and yields a wide variety of solutions.
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1. Introduction
It is widely acknowledged that almost all non-linear physical processes may be described by mathematical equations,

commonly referred to as non-linear Differential Equations (DEs). Nonlinear Partial Differential Equations (NLPDEs),
which are particularly important in this discipline, have been extensively used to study nonlinear phenomena. In many
different fields, NLPDEs have shown themselves to be an excellent tool for defining a wide range of physical processes
[1–5]. Recently, the Fisher Equation (FE) has received a lot of attention. A key role for soliton theory is played by
soliton types, which include dark soliton, bright soliton, unique soliton, and others that have been described in literature.
Numerous methods have been put forth to investigate various physical phenomena connected to nonlinear wave equations
because of their important mathematical characteristics and broad range of applications. It is acknowledged that the
efficacy of various strategies varies based on the particular situation; some methods may work well for some problems
but not for others. Understanding the physical relevance and qualitative characteristics of many occurrences depends
critically on the analytical solutions of NLPDEs. In the literature, a number of techniques have been effectively developed
and applied to get analytical answers for NLPDEs, including neural networks approaches [6, 7], modified exp-function
scheme [8–10], exponential rational function scheme [11, 12], inverse scattering approach [13, 14], generalized unified
approach [15, 16], Hirota Bilinear Method (HBM) [17–19], generalized Kudryashov scheme [20–22], extended direct
algebraic scheme [23, 24], extended simple equation approach [25], planner dynamical system scheme [26, 27], and many
other. There are various kinds of solutions that are discussed. Significantly, solutions like [28–31] are very noteworthy.
Solitons are nonlinear wave packets or pulses that can propagate continuously over extremely large distances without
deteriorating or changing shape. Usually, the existence of these pulses in optical fibers depends on a delicate balancing
act between the effects of self-phase oscillation and group velocity dispersion. To comprehend nonlinear processes, it
is crucial to construct soliton solutions to the Non Linear Evolution Equations (NLEEs) that arise in nonlinear research.
Solitons are used extensively in applied mathematics, physics, optical science, and challenges in engineering. In an optical
system for communication, placing the solitons close to one another is crucial for increasing the fiber’s ability to transport
information. There are numerous recently developed nonlinear models that are completely integrated. These systems,
which explain the self-interaction of single solitons, can be characterized as flows in multisoliton fields. As a result, there
is now more interest in investigating “exact solutions” for NLPDEs.

The goal of this work is to find soliton solutions of the nonlinear Fisher equation, which is important in mathematical
physics and engineering, using the HBM and ansatz approaches. These techniques are highly effective for N-solitons
and solutions of nonlinear waves for NLEEs arising in optics, plasma physics, fluid dynamics and quantum mechanics.
By providing analytical solutions for nonlinear waves, these techniques offer valuable analytical insight into phenomena
such as optical pulse transmission, and reaction-diffusion processes in biology. In mathematical physics and engineering,
this equation is used to investigate the various physical characteristics of nonlinear waves [33, 34]. The wave solution
explains the transition front by moving at a steady speed from one homogeneous to another. A sine wave is therefore
described in physics and mathematics as a self-sustaining, solitary wave that maintains its size and shape while traveling
at a steady speed. The interplay betweenwave speed and frequency is referred to as dispersive effects. The physical system
is described by solutions to a generic class of Partial Differential Equations (PDEs). These equations are dispersive and
mildly nonlinear. The Nonlinear Fisher Equation (NLFE) is described as [35]:

wt = wxx +α(1−wδ )(w−a). (1)

Taking α = 1, δ = 1, and a = 0 yields Eq. (1) as

wt −wxx −w+w2 = 0. (2)
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It explains how diffusion and reaction interact in this process. This equation was proposed by Fisher as amodel for the
spread of a mutant gene, wherew(x, t) represents the beneficial gene density. This equation is used in population dynamics
and chemical kinetics, which covers challenges like the neutron population in a nuclear reaction and the nonlinear
evolution of a population in a one-dimensional space [36, 37]. Over the past few years, numerous researchers have
developed distinct methods for producing findings for the NLFE. Using the homotopy perturbation technique, Aǧırseven
and Öziş discovered analytical solutions for proposed model [38]. To obtain exact solutions for this equation, Yaun et
al. [39] employed the complex technique. Feng et al. used the Cole-Hop transformation and the first integrable scheme
to find solutions for the proposed equation [40]. Wu et al. used the sub-super solution technique to find solutions in
traveling waves for the fisher type equation [41]. Wazwaz et al. established precise solutions for Fisher type equations
using efficient method [42]. Yildirim et al. established explicit solutions for suggested equations using the differential
transform technique [43].

In the present study, we use the HBM and ansatz approaches to derive several new, more general, and interesting
soliton solutions such as Lump Solution (LS), Multi-Waves (MWs), Ma-Breathers (MBs), Kuznetsov-Ma-Breathers
(KMBs), and Rogue Waves solutions (RWs) for the well-known nonlinear equation. The proposed techniques are highly
effective for PDEs that admit bilinearization. However, they may have some limitations when apply to higher-dimensional
models or the models that do not admit bilinear form. To the best of our knowledge, this study has never been reported
before. By choosing the appropriate parameter choices, specific findings are displayed in 3D, contour and 2D graphs to
illustrate the physical behavior of solutions. We also examined the stability analysis that validate soliton solutions. This
study extend theocratical understanding proposed equation and its applications in diverse field of engineering.

The remaining work is adjusted as follows: Section 2 discusses the 1-soliton, 2-soliton, and N-soliton for Eq. (1). In
Section 3, the ansatz approach is used to calculate the significant lump solutions. Section 4 covers MWs solutions. We
use a hyperbolic function ansatz to calculate RWs solutions in Section 5. In Section 6, the exp function transformation
is used to construct the useful interpretation of MBs. Section 7 provides the KMBs solutions. Section 8 is structured
using the solution interpretations and graphical depiction. Section 9 discusses comparison analysis. Stability analysis is
disclosed in Section 10. Lastly, Section 11 offers conclusions.

2. Soliton interactions
We apply the ansatz in Eq. (2) [44]:

w(x, t) =
g(x, t)
f (x, t)

. (3)

Applying Eq. (3) to Eq. (2) yields

(Dt −D2
x)g. f = 0, (4)

D2
x( f . f ) = 0, (5)

g− f = 0, (6)

where Hirota bilinear operator D is defined as
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t Dl

x(g. f ) =
(

∂
∂ t

− ∂
∂ t ′

)k( ∂
∂x

− ∂
∂x′

)l

g(x, t) f (x, t)|t ′=t, x′=x. (7)

Here, we examine the series expansion of g and f for a small parameter τ .

g =
∞

∑
j=1

τ jg j, (8)

f = 1+
∞

∑
j=1

τ j f j. (9)

2.1 One soliton solution

In order to determine the one soliton, we assume

g = τg1, f = 1+ τ f1. (10)

By replacing Eq. (10) into Eq. (4) and equating the coefficient of τ , we obtain

(g1)t − (g1)xx = 0. (11)

Now, we assume

g1 = eλx+µt+c1 . (12)

Combining Eq. (12) with Eq. (11) yields

µ = λ 2, (13)

g1 = eλx+λ 2t+c1 . (14)

By replacing Eq. (10) into Eq. (6) and equating the coefficient of τ , we obtain

g1 − f1 = 0 ⇒ g1 = f1. (15)

Thus, the 1-soliton solution is
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w1(x, t) =
g
f
=

τeλx+λ 2t+c1

1+ τeλx+λ 2t+c1
, (16)

where

τ = 1.

2.2 Two soliton solution

In order to determine the one soliton, we assume

g = τg1 + τ2g2, f = 1+ τ f1 + τ2 f2. (17)

By inserting Eq. (17) into Eq. (4) and equating the coefficient of τ2, we obtain

(g1)t f1 − ( f1)tg1 − (g2)xx −2 f1(g1)xx − (g2)xx +2( f1)x(g1)x − ( f1)xxg1 = 0. (18)

Now, we assume

g2 = eλ1x+µ1t+c2 . (19)

From Eq. (19) and Eq. (22), we have

µ1 = λ 2
1 , (20)

g2 = eλ1x+λ 2
1 t+c2 . (21)

From Eq. (17) into Eq. (6) and equating the coefficient of τ2, we obtain

g2 − f2 = 0 ⇒ g2 = f2. (22)

Thus, the 2-soliton solution is

w2(x, t) =
g
f
=

τeλx+λ 2t+c1 + τ2eλ1x+λ 2
1 t+c2

1+ τeλx+λ 2t+c1 + τ2eλ1x+λ 2
1 t+c2

, (23)

where
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τ = 1.

In the same way, we can collect N-solitons by utilizing the ansatz as given in [45, 46].

f = ∑
w=0, 1

exp

(
n

∑
i=1

wiωi +∑
i< j

λi jwiw j

)
, (24)

where w indicates that each wi takes either 0 or 1, and ωi = m1, ix1 +m2, ix2 + ...+mM, ixM +ωi, 0, 1 ≤ i ≤ n and ωi, 0

arbitrary phase shifts. The Hirota bilinear form transforms the NLPDE into a symmetric bilinear equation through a
suitable variable substitution, enabling systematic construction of N-soliton solutions via exponential-function expansion.

3. Lump soliton solution
The subsequent ansatz is used for lump solutions of Eq. (2) [47]:

w = 2[ln f (x, t)]xx, (25)

and derive the subsequent form

2 f 2 fx
2 +4 f ft fx

2 +16 fx
4 −4 f 2 fx fxt −2 f 3 fxx −2 f 2 ft fxx

−32 f fx
2 fxx +10 f 2 f 2

xx +2 f 3 fxxt +8 f 2 fx fxxx −2 f 3 fxxxx = 0 (26)

We can now assume that the function f in Eq. (27) as [47]:

f = τ2
1 + τ2

2 + v7, (27)

where τ1 = v1x+ v2t + v3, τ2 = v4x+ v5t + v6, and vi (0 < i ≤ 7) are constants. From Eq. (27), and Eq. (26) and the
solution of equations derived from the coefficients of x and t.

When v1 = v6 = 0,
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

v2 =−

√√√√44v2
4 +32

5 +2
√

484v4
4 +88v2

4v2
5 + v4

5

−5v2
5 +88v2

4

v5
,

v3 =− v5√√√√44v2
4 +32

5 +2
√

484v4
4 +88v2

4v2
5 + v4

5

−5v2
5 +88v2

4

,

v7 =−
484v4

4

(
44v2

4 +32
5 +2

√
484v4

4 +88v2
4v2

5 + v4
5

)
v2

5

(
−5v2

5 +88v2
4 +88v2

4

) .

(28)

By combining these with Eq. (25), we have

w =

2

−4v2
4(v5t + v4x)2 +22

4

(v5t + v4x)2 +

(
− v5√

λ
− v2

4t
√

λ
v5

)2

− 484v4
4λ

v2
4


(v5t + v4x)2 +

(
− v5√

λ
− v2

4t
√

λ
v5

)2

− 484v4
4λ

v2
5

2 , (29)

where

λ =
44v2

4 +32
5 +2

√
484v4

4 +88v2
4v2

5 + v4
5

−5v2
5 +88v2

4
.

4. Multi-waves soliton solutions
For MWs solution, consider f as [47]:



f = f0 coshτ1 + f1 cosτ2 + f2 coshτ3 + v10,

τ1 = v1x+ v2t + v3,

τ2 = v4x+ v5t + v6,

τ3 = v7x+ v8t + v9,

(30)

where vi (0 < i ≤ 10) are real constants. Using Eq. (30) into Eq. (26) and the solution of equations derived from the
coefficients of x and t.
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When v10= v6 = 0,



v1 =

√
−140v2

7 +42+14
√

128v4
7 −32v2

7 +9

v4
,

v4 = 0,

v5 = 0,

v8 = 0.

(31)

By combining these with Eq. (25), we have

w =
2(∆1∆2 −∆3)

( f1 + f2 cosh(v9 + v7x)+ f0 cosh(v3 + v2t + xλ ))2 , (32)

where

λ =

√√√√−140v2
7 +42+14

√
128v4

7 −32v2
7 +9

14
, ∆1 = ( f1 + f2 cosh(v9 + v7x)+ f0 cosh(v3 + v2t + xλ )) ,

∆2 =
(
v2

7 f2 cosh(v9 + v7x)+ f0λ 2 cosh(v3 + v2t + xλ )
)
, ∆3 = (v7 f2 sinh(v9 + v7x)+ f0λ sinh(av3 + v2t + xλ ))2.

5. Rogue waves solutions
For RWs solution, we utilize the subsequent ansatz [48]:



f (x, t) = τ2
1 + τ2

2 +m1 cosh(α(x, t))+ v7,

τ1 = v1x+ v2t + v3,

τ2 = v4x+ v5t + v6,

α(x, t) = b1x+b2t,

(33)

where vi (0 < i ≤ 10), b1, b2 are real constants. We can obtain the precise equations that generate parameter values by
inserting Eq. (33) into Eq. (26).

When v1 = b2 = v6 = 0, the subsequent solutions are obtained:
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

v2 =− 3v7b4
1 +44v2

4b2
1 +3v7b2

1 −2v2
4√

−3v7b4
1 +44v2

4b2
1 +3v7b2

1 −2v2
4

6b2
1 +6

b1

,

v3 =

√√√√−
3v7b4

1 +44v2
4b2

1 +3v7b2
1 −2v2

4

6b2
1 +6

b1
,

v5 =

√
9(v7b6

1 + v7b2
1)+132v2

4b4
1 +18v7b4

1 +126v2
4b2

1 −6v2
4

8b1
.

(34)

By combining these with Eq. (25), we have

w =
2∆1∆2(

v7 +

(
− t∆

b1λ
+

λ
b1

)2

+(v4x+ tµ)2 +m1 cosh(b1x)

)2 , (35)

where

λ =

√
−

3v7b4
1 +44v2

4b2
1 +3v7b2

1 −2v2
4

6b2
1 +6

,

∆ = 3v7b4
1 +44v2

4b2
1 +3v7b2

1 −2v2
4,

µ =

√
9(v7b6

1 + v7b2
1)+132v2

4b4
1 +18v7b4

1 +126v2
4b2

1 −6v2
4

8b1
,

∆1 =

(
v7 +

(
− t∆

b1λ
+

λ
b1

)2

+(v4x+ tµ)2 +m1 cosh(b1x)

)
,

∆2 =
(
2v2

4 +b2
1m1 cosh(b1x)

)
− (2v4 (v4x+ tµ)+b1m1 sinh(b1x))2,

(3v7b4
1 +44v2

4b2
1 +3v7b2

1 −2v2
4)(6b2

1 +6)< 0,

(
9(v7b6

1 + v7b2
1)+132v2

4b4
1 +18v7b4

1 +126v2
4b2

1 −6v2
4

)
(8b1)> 0.

6. Ma-breathers solution
For MBs solution, we use the subsequent ansatz [48]:
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f (x, t) = e−i(q1x)el1t+l2 +m1e2(l1t+l2)+ ei(q1x)+a1, (36)

where a1, q1, l1, l2, and m1 are real parameters. The Eq. (36) is inserted into Eq. (26) to yield a set of equations. We
obtain the subsequent solutions by solving system:

a1 = 0, l1 =
1
4
(
−1+2q2

1
)
. (37)

By combining these with Eq. (25), we have

w =
2(∆2 −∆1)

∆2
2

(38)

where

∆1 =
(

ieiq1xq1 − iel2+ 1
4 (−1+2q2

1)t−iq1xq1

)2
,

∆2 =
(

eiq1x + el2+ 1
4 (−1+2q2

1)t−iq1x + e2(l2+ 1
4 (−1+2q2

1)t)m1

)
,

∆3 =
(
−eiq1xq2

1 − el2+ 1
4 (−1+2q2

1)t−iq1xq2
1

)
.

7. Kuznetsov-Ma-breather
For KMBs solution, we utilize the subsequent ansatz [48]:

f (x, t) = e−q1(x−b1t)+ k1 cos(p(x+b1t))+ k2 cos(q(x−b1t)) , (39)

where k1, q1, q, k2, and b1 are real parameters. The Eq. (39) is inserted into Eq. (26) to yield a set of equations that
determine the values of the coefficients. We obtain the subsequent solutions:

q =−

√
1−b1q1 +6q2

1 −
√

1−2b1q1 +8q2
1 +b2

1q2
1 −16b1q3

1 +32q4
1

√
2

, k2 = 0. (40)

By combining these with Eq. (25), we have

w =
2∆1∆2

(
3e−3(−b1t+x)+ k1λ sin((b1t + x)λ )

)2

∆2
1

, (41)
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where

∆1 =
(

e−3(−b1t+x)+ k1 cos((b1t + x)λ )
)
,

∆2 =
(

9e−3(−b1t+x)− k1λ 2 cos((b1t + x)λ )
)
,

1−2b1q1 +8q2
1 +b2

1q2
1 −16b1q3

1 +32q4
1 > 0.

8. Results and discussion
Several investigations have been conducted on the Fisher equation. Chen and Zhang investigated multiple soliton

solutions of Fisher equation by using tanh function approach [49]. Khan et al. investigated the same model with modified
simple equation approach [50]. Iqbal et al. studied the proposed model to obtain mixed soliton solutions by using an
explicit approach. Pinar and Kocak studied the same model and obtained multiple soliton solutions [51]. Eq. (16), Eq.
(23), and Eq. (24), which describe one soliton, two solitons, and N solitons, respectively, provide the HBM that we used
to study the nonlinear Fisher equation for multiple soliton for the first time in literature. Instead of using an analytical
approach, the HBM is utilized to solve many soliton equations algebraically. A single soliton solution can be found using
the traveling wave ansatz, however several soliton solutions for different NLEEs can be found with the aid of HBM.
First, we analyzed one soliton, two soliton, and extended the concept to N-soliton for Eq. (2) via HBM, and the resulting
profiles are presented. The one soliton patterns for the solution in Eq. (16) with λ = −1.5, c1 = −4, are displayed in
our Figure 1. In Figure 2, we presented two soliton pattern for the solution in Eq. (24) when λ =−0.05, λ1 = 0.5, c1 =

4, c2 = −0.05. Using the Eq. (26) and the ansatz approach, we have obtained lump solutions for Eq. (2), and their
graphs are presented. Figures 3 and 4 illustrates lump solution by considering parameter values v4 = −0.99, v5 = 5,
and v4 = −6, v5 = 5, respectively. Figure 3 depicts peak bright soliton solution, while change in the wave profile can
be seen by varying the parameter values in Figure 4. Figure 5 shows bright soliton solutions for Eq. (32) choosing
v3 = 0.5, v2 = −0.5, v7 = −1.6, v9 = −4, f0 = 5, f1 = 8, f2 = 7. In Figures 6 and 7, we obtain two peak bright multi-
waves solutions by choosing v3 = 0.05, v2 = 5, v7 =−1.6, v9 =−4, f0 = 0.05, f1 = 10, f2 = 0.07, and v3 = 0.05, v2 =

5, v7 =−0.6, v9 =−4, f0 = 0.05, f1 = 10, f2 = 0.007, respectively. Figure 8 illustrates peak bright face of solutions for
Eq. (35), when v4 = 0.05, v3 = −0.5, v5 = −5, v7 = 0.5, m1 = −9, b1 = 0.5. Figure 9 shows two peak bright face of
solutions for Eq. (35), when v4 = 2.5, v3 =−0.5, v5 =−0.5, v7 = 0.5, m1 =−5, b1 = 1.5. Figure 10 depicts multiple peak
bright faces of the solution for Eq. (38) choosing q1 = 0.99, l2 = 0.2, m1 = 0.5. Figure 11 depicts periodic solution for
Eq. (38) choosing q1 = 3, l2 = 0.05, m1 = 5. Figure 12 shows MBs solution for Eq. (38), when q1 = 3, l2 = 0.5, m1 = 5.
Figure 13 shows peak bright soliton profile for Eq. (41), when k2 = 1, k1 =−8, b1 =−20, q1 =−0.05.
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Figure 1. The 3D, contour and 2D profiles of 1-soliton for Eq. (16), representing anti-kink type soliton when λ =−1.5, c1 =−4

Figure 2. The 3D, contour and 2D profiles of 2-solution for Eq. (23), representing dark shaped soliton when λ =−0.05, λ1 = 0.5, c1 = 4, c2 =−0.05

Figure 3. The 3D, contour and 2D profiles of lump solution for Eq. (29), depicting bright shaped soliton when v4 =−0.99, v5 = 5
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Figure 4. The 3D, contour and 2D profiles of lump solution for Eq. (29), depicting bright soliton when v4 =−6, v5 = 5

Figure 5. The 3D, contour and 2D profiles of multi-waves solution for Eq. (32), depicting peak amplitude when v3 = 0.5, v2 =−0.5, v7 =−1.6, v9 =
−4, f0 = 5, f1 = 8, f2 = 7

Figure 6. The 3D, contour and 2D profiles of multi-waves solution for Eq. (32), depicting peak amplitude with multiple waves when v3 = 0.05, v2 =
5, v7 =−1.6, v9 =−4, f0 = 0.05, f1 = 10, f2 = 0.07
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Figure 7. The 3D, contour and 2D profiles of multi-waves solution for Eq. (32), depicting peak amplitude with multiple waves when v3 = 0.05, v2 =
5, v7 =−0.6, v9 =−4, f0 = 0.05, f1 = 10, f2 = 0.007

Figure 8. The 3D, contour and 2D profiles of rogue waves solution for Eq. (35), depicting sharp localized peak when v4 = 0.05, v3 = −0.5, v5 =
−5, v7 = 0.5, m1 =−9, b1 = 0.5

Figure 9. The 3D, contour and 2D profiles of rogue waves solution for Eq. (35), illustrating sharp localized peak when v4 = 2.5, v3 = −0.5, v5 =
−0.5, v7 = 0.5, m1 =−5, b1 = 1.5
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Figure 10. The 3D, contour and 2D profiles of MBs solution for Eq. (38), exhibiting a localized oscillation in time when q1 = 0.99, l2 = 0.2, m1 = 0.5

Figure 11. The 3D, contour and 2D profiles of MBs solution for Eq. (38), depicting multiple positive and negative amplitudes when q1 = 3, l2 =
0.05, m1 = 5

Figure 12. The 3D, contour and 2D profiles of MBs solution for Eq. (38), depicting periodicity of amplitude when q1 = 3, l2 = 0.5, m1 = 5
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Figure 13. The 3D, contour and 2D profiles of KMBs solution for Eq. (41), depicting positive peak amplitude when k2 = 1, k1 =−8, b1 =−20, q1 =
−0.05

9. Comparison analysis
Over the past few years, numerous researchers have developed distinct methods for the NLFE [38–43]. This section

covers the comparison analysis of our solution with the solution derived in [35] (Table 1).

Table 1. Comparison analysis of our solutions with [35]

Solutions in [35] Our solutions

(i) Employed the exp(−Φ(η)) function approach. (i) Utilized Hirota bilinear approach and different ansatz
transformations.

(ii) These solutions include trigonometric and hyperbolic solutions. (ii) These solutions included exponential, rational, linear, hyperbolic
trigonometric, and trigonometric functions.

(iii) By using suggested approach, the singular bright, combined
bright-dark, singular dark, kink, and anti-kink solitons.

(iii) It yields the one soliton, two soliton, N-soliton, LS, MWs, MBs,
KMBs, and RWs solutions. We also discussed the stability analysis of

suggested model.

10. Stability analysis
This section of the study examines stability analysis, assuming that the perturbed solutions of Eq. (2) contain the

subsequent form

w(x, t) = A0 +µw(x, t). (42)

The steady state solution of Eq. (2) can be easily observed for any constant A0. By integrating Eq. (42) into Eq. (2),
one obtains

µwt −µwxx +µ3w3 +A3
0 +3µ2w2A0 +3A2

0µw−µw−A0 = 0. (43)

By linearizing the Eq. (43), we obtain
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µwt −µwxx +3A2
0µw−µw−A0 = 0. (44)

Assume the following solution to Eq. (44):

w(x, t) = e(iσx+ηt), (45)

where σ is the normalized wave number. By inserting Eq. (45) into Eq. (44) and solving for η , we obtain

η(σ) = A0(1−3A0)−σ2. (46)

The real part is negative for all σ values, as shown by Eq. (46), hence any superposition of the solutions will seem
to decay. Consequently, the dispersion is stable.

11. Conclusions
In this research, with the aid of HBM and ansatz function approaches, we investigated the nonlinear Fisher equation

for one, two, andN-soliton solutions alongwith stability analysis. In contemporary telecommunications networks, a single
soliton can be utilized to send data over great distances without experiencing appreciable signal deterioration, whereas two
soliton solutions can be used to investigate the interaction of two water waves. We also studied LS, MWs, MBs, KMBs,
and RWs solutions. These solutions could be utilized for localized disruptions in water waves and the regulation of light
pulse propagation in fiber optics. Additionally, localized chemical or electrical disruptions in biological systems, including
chemical reaction-diffusion systems and neural networks, can be modeled using these solutions. Above all, we discovered
RWs solutions that have multiple applications in wave energy harvesting, marine and ocean engineering, insuring and risk
evaluation, weather prediction, oceanography, and leisure and tourism. Furthermore, 2D and 3D visual representations are
offered to illustrate the dynamical behavior of the identified solutions. We can better comprehend the dynamical properties
and patterns of these solutions by using the contour profiles. As far as we are aware, these solutions are unique and have
never been discovered previously. In addition to helping to construct more precise theoretical frameworks, the research
deepens our understanding of soliton behavior in complex models. This approach can be used to handle a wide range
of higher-dimensional nonlinear challenges that arise in mathematical physics and the applied sciences. The developed
results have shown that the used approach is a potent, highly effective, and powerful. In the future, the these techniques
will be used to solve a number of significant models in the domains of mathematical physics, engineering, and the natural
sciences due to their significant performance.
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Appendix
We use the subsequent transformation as given in Eq. (25)

w(x, t) = 2
f (x, t) fxx(x, t)− fx(x, t)2

f (x, t)2 ,

into

wt −wxx −w+w2 = 0.

By calculating the required derivative as:

wt = 2.
( ft fxx + f fxxt −2 fx fxt) f 2 −2( f fxx − f 2

x ) f ft
f 4 ,

and

wxx = 2.
f 3 fxxxx −3 f 2 f 2

xx +2 f 4
x

f 4 −8.
( f 3 fxxx −3 f 2 fx fxx +2 f f 3

x ) fx

f 5 .

By replacing these derivatives in considered equation and after simplification we have:

2 f 2 fx
2 +4 f ft fx

2 +16 fx
4 −4 f 2 fx fxt −2 f 3 fxx −2 f 2 ft fxx

−32 f fx
2 fxx +10 f 2 f 2

xx +2 f 3 fxxt +8 f 2 fx fxxx −2 f 3 fxxxx = 0.
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