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Abstract: In network analysis, measuring centrality is essential for determining the relative importance of each vertex
within a network. A vertex with higher centrality signifies greater importance compared to others. To facilitate theoretical
studies, networks are commonly modelled using graphs. Deoxyribonucleic Acid (DNA) molecules, some scheduling
problems, and food webs have a common linear structure that can be modelled as interval graphs. We explore this matter
within the framework of calculating vertex eccentricities to ascertain the comparative importance of nodes within the
network structure. Eccentricity centrality plays an important role in identifying significant vertices in social networks,
facility location networks, etc. In this paper, we compute the eccentricity centrality of the comb product between a
well-known graph and an interval graph, and we design two O(n) time algorithms—one for finding the eccentricity of
all vertices of the interval graph and another for making a Breadth-First Search (BFS) tree of interval graph. We also
compute the eccentricity centrality of the comb product between two interval graphs using these algorithms. We also
analyse the time complexity of the proposed algorithms. Finally, we present a real application involving in finding a
central warehouse in a warehouse network of an online product-selling company based on our study results.
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1. Introduction
In network analysis, centrality measurement is a fundamental step to find the correlative importance of every vertex.

The higher centrality of a vertex indicates that it is more important than others. For theoretical investigations, it is necessary
to represent a network by a graph. In communication networks, such as online social platforms, telecommunications,
and extensive brain networks, there is often a delay in message transmission between a sender and a recipient due to
the distance between them. The distance d(u, v) represents the shortest path length between nodes u and v in a graph.
Measuring the distance between two vertices is particularly relevant in solving facility location problems. For instance,
when broadcasting a message, it is ideal to minimize the maximum distance any vertex has from the source. This can be
achieved by choosing a vertex with the minimum eccentricity or maximum centrality, optimizing message delivery across
the network.

The eccentricity of a vertex u is the greatest distance between u and the other vertices of the graph. The eccentricity
centrality of u is defined by the reciprocal of the eccentricity of u. A vertex with lower eccentricity indicates higher
centrality of the vertex. Mathematically, the eccentricity centrality EC(u) is defined by EC(u) =

1
maxy∈V d(u, y)

where V

represents the vertex set in the network. If the eccentricity of a vertex is high, then other vertices of the graph are near.
And, if the eccentricity of a vertex is low, then there is at least one vertex that is far from the other. The eccentricity is a
more powerful parameter if it is high. The objective of this measure is to identify the vertices that could be reached from
other vertices more quickly. Eccentricity centrality is used to analyze many networks [1, 2].

In 1950, Hajos and Benzer first introduced the interval graphs. It plays an essential role in refining the linear
arrangement of Deoxyribonucleic Acid (DNA) molecules [3]. They have been applied as mathematical models in various
fields, such as food web networks [4] (also known as consumer-resource systems) and job scheduling [5] in industry. The
first algorithm capable of recognizing interval graphs in linear time and constructing an interval model was developed
using a tree-based data structure [6]. Later, more straightforward linear-time algorithms emerged, utilizing alternative
characteristics of interval graphs [7, 8] to improve efficiency.

An Interval Graph (IG) is nothing but an intersection graph of a collection of intervals on a straight line. LetG=(V,E)
be a simple, connected, and undirected graph, and I = {I1, I2, . . . , In} be a set of intervals which are placed on R (the real
line). A graph G is referred to as an interval graph if there is a function that maps the vertices of G with the intervals in
I such that two nodes of G are adjacent if and only if their corresponding intervals overlap. The set I is referred to as the
Interval Representation (IR) of the IG G. In this article, we denote an IG G as IG. Let Ii = [ai, bi], 1 ≤ i ≤ n, where ai and
bi represent, respectively, the left endpoint and right endpoint of the interval Ii. We assumed that every interval consists of
two endpoints and no two intervals share the same endpoint. We also assumed that the intervals in I are indexed according
to their right endpoints in ascending order.

In the area of graph theory, Breadth-First Search (BFS) [9, 10] is a widely used and fundamental algorithm for
traversing graphs. This algorithm enables the construction of a BFS tree from a connected graph by visiting all vertices
at one level before progressing to the next. In [11], Tarjan introduced an O(n+m) time complexity algorithm to build a
BFS tree for general graphs. They [12] also presented an algorithm to construct a BFS tree of IG that takes O(logn) time
employing O(n) processors on an Exclusive-Read, Exclusive-Write (EREW) Parallel Random Access Machine (PRAM)
model. An IG IG and its IR are displayed in Figure 1, and a BFS tree rooted at v1 of IG is shown in Figure 2. We use these
figures throughout the paper. We consider that the interval representation of an interval graph is given.

It is well-known that for a graph consisting of n vertices andm edges, the eccentricities of all vertices can be computed
inO(nm) time, by BFS from each vertex. This algorithm is not typically used in real-world scenarios for massive, intricate
networks like Facebook, which involve hundreds of millions of nodes and billions of connections. To construct the BFS
tree for these cases, it takes hours to complete [13]. In [14], Saha has formulated an efficient algorithm (takes only
O((n2/p)+ logn)time) for determining the diameter, eccentricity, and radius of circular-arc-graphs under an Exclusive-
Read, Exclusive-Write PRAM with p processors. Nandi et al. [15] computed the diameter of the permutation graph by
BFS tree within O(n) time. In the present article, we find the eccentricity centrality of the comb product between two
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IGs and the comb product between the common graphs (complete graph, wheel graph, star graph, path graph, and cycle
graph).
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Figure 1. Interval graph IG and its representation
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Figure 2. BFS tree of interval graph IG

1.1 Survey

The eccentricity centrality is based on the shortest path between a vertex and other vertices in the networks. Hage
and his co-author [16] first explored the idea of eccentricity centrality based on eccentricity in the network. They used
the Floyd-Warshall algorithm to obtain the eccentricity, and this algorithm takes O(n3) time to compute the eccentricity
centrality. Authors [17] computed eccentricity of interval graph using the intersection mode, but required O(n2) time.
Olariu [18] designed an O(m + n)-time algorithm to find the center (indirectly eccentricity as computation of center
depends on it) of an interval graph. Authors [19] developed an algorithm to compute the eccentricity distribution of large
graphs. Few authors [20] studied the total eccentricity of some graph operations, and a bound for that of the tensor product.
In 2017, Puthuessery et al. [21] computed the eccentricity centrality for connected a connected. Bentert et al. proposed
a faster algorithm to determine the centralities of interval + kv graphs [22] constructs on the existence of a quadratic-
time algorithm for finding all pair shortest distances on IG [23]. Authors [24] designed efficient shared-memory parallel
algorithms (which are applicable in many real-life applications arising in large-scale network analysis) and presented the
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first comprehensive experimental study of graph eccentricity computation algorithms in the literature. Also, Li et al. [25]
studied the efficiency issue of computing and maintaining the eccentricity distribution on a dynamic small-world network.
Authors [26] explored the eccentricities of the vertices of a graph via parallel set cover. In 2022, Ducoffe [27] presented
an almost linear time algorithm to find the eccentricities of all vertices (so, all graph centralities) of interval + kv graphs
for each fixed k, and he also computed all eccentricities of IG in O(m+ n log3 n) time. In the same year, Li et al. [28]
designed algorithms for the scalable computation of eccentricities of all nodes of graphs. After that, Gomez et al. [29]
explored the path eccentricity of graphs. In 2024, Lu et al. [30] studied the resistance eccentricity (that is, useful for
measuring the structural significance of a node in network science) of nodes in a graph.

1.2 Result

In the present article, we propose a faster sequential algorithm to make a BFS tree of IG within O(n) time. After
that, we study some new properties on the BFS tee of IG, the eccentricity of each node of IG and the relation between the
height of its BHS tree, and diameter. Based on these results, we compute the eccentricities of all vertices of IG, designing
an O(n) time algorithm. Besides these, we find the eccentricity centrality of the comb product between two IGs and the
comb product between the common graph (complete graph, wheel graph, star graph, path graph, and cycle graph) and IG.
We also analyze the time complexity of the proposed algorithms.

1.3 Structure of the article

The next section presents some theorems related to the eccentricity centrality of the comb product between two graphs.
In Subsection 2.1, we find the eccentricity centrality of the comb product between a complete graph and an interval graph.
In Subsection 2.2, we find the eccentricity centrality of Sn▷ IG. Subsection 2.3 gives the eccentricity centrality ofWn▷ IG.
The eccentricity centrality of Cn ▷ IG is calculated in Subsection 2.4. Subsection 2.5 gives the eccentricity centrality of
Pn ▷ IG. In Subsection 2.6, we design a sequential algorithm to make a BFS tree of IG. After that, we study some new
properties on the BFS tree of IG, the eccentricity of each node of IG, and the relation between the height of its BFS tree
and diameter. Here, we also develop an efficient algorithm to compute the eccentricities of all vertices of IG. Finally, we
propose a result to find the eccentricity centrality of the comb product between two IGs. The last section provides the
paper’s conclusion.

2. Eccentricity centrality of comb product of graphs
For two connected graphs G, H, where o is a node of H, the comb product, symbolled by G▷H, of G and H is a

graph made by taking one copy of G and |V (G)| copies of H and grafting the ith copy of H at the node o to the ith node of
G.

2.1 Eccentricity centrality of Kn ▷ IGKn ▷ IGKn ▷ IG

Kn ▷ IG is the comb product between the complete graph Kn and the interval graph IG. Suppose that the grafting
occurs at v1 of each copy of IG. Let the vertices of Kn and IG are {ui : i = 1 : 1 : n} and {v j : j = 1 : 1 : m} respectively.
We re-label the nodes of Kn ▷ IG just as the nodes of the ith copy of IG are relabeled by vi, 1, vi, 2, ..., vi, m. Comb product
K4 ▷ IG is shown in Figure 3, Figure 2 displays the BFS tree of IG.
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Figure 3. Comb product K4 ▷ IG

Theorem 1 The EC(v) of each node v of Kn ▷ IG is
1

h+ p+1
, where v is situated at level p of the BFS tree Tv1 of the

IG IG.
Proof. Suppose v is any node of Kn ▷ IG. Again, let v is situated at level p, 0 ≤ p ≤ h on the BFS tree Tv1 of IG (ith

copy) and h is the height of that tree. The vertex situated at level h of the BFS trees of IG (other than ith copy) is the farthest
vertex from v. Now, the shortest distance from v to vi, 1 is p, and the distance between any pair of nodes of Kn is 1. So,

the longest distance from v to other vertices of Kn ▷ IG is h+ p+1. Therefore, EC(v) =
1

maxy∈V d(v, y)
=

1
h+1+ p

.

2.2 Eccentricity centrality of Sn ▷ IGSn ▷ IGSn ▷ IG

Sn ▷ IG is the comb product between the star graph Sn of n vertices and IG. Suppose that the grafting occurs at v1 of
each copy of IG. Let the vertices of Sn and IG be, respectively, {ui : i = 1 : 1 : n} and {v j : j = 1 : 1 : m}. We re-label
the nodes of Sn ▷ IG just as the nodes of the ith copy of IG are relabeled by vi, 1, vi, 2, ..., vi, m. Figure 4 displays the graph
S4 ▷ IG.

Theorem 2 The eccentricity centrality EC(v) of each vertex v of Sn ▷ IG is

EC(v) =



1
h+ p+1

, if v is situated at level p of the BFS tree Tv1 of interval graph

corresponding to the central vertex of Sn,

1
h+ p+2

, if v is situated at level p of the BFS tree Tv1 of the interval graph

corresponding to the non-central vertex of Sn.

Proof. Let v be any vertex of Sn▷IG as well as of IG that is attached to the central node of Sn. Again let, v is situated at
level p of the BFS tree Tv1 of that IG and h(Tv1) = h. The vertex situated at level h of Tv1 of IG (attached with the non-central
nodes of Sn) are the farthest vertex from v. The distance of v1, 1 from v is p, and the distance of vi, 1, i = 2, 3, ..., n from v1, 1

is 1. So, the longest distance from v to other vertices of Sn ▷ IG is h+ p+1. Hence, EC(v) =
1

maxy∈V d(v, y)
=

1
h+1+ p

.

Again, let v = vq, j be any vertices of Sn ▷ IG that are attached to the non-central vertex of the star graph. If v is
situated at level p, then the distance from v = vq, j to vq, 1 is p. The distance from vq, 1 to vi, 1, i = 2, ..., q−1, q+1, ..., n is
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2. The vertices situated at level h of the BFS trees of IG (attached with the other non-central vertices of Sn) are the farthest
vertices from v. So, the longest distance from v is h+ p+2. Therefore, EC(v) =

1
maxy∈V d(v, y)

=
1

h+2+ p
.
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Figure 4. Comb product S4 ▷ IG

2.3 Eccentricity centrality ofWn ▷ IGWn ▷ IGWn ▷ IG

Wn ▷ IG is the comb product between the wheel graph Wn of n+ 1 vertices and the interval graph IG. Suppose that
the grafting occurs at v1 of each copy of IG. Let the vertices of Wn and IG be, respectively, {ui : i = 1 : 1 : n+ 1} and
{v j : j = 1 : 1 : m}. We re-label the nodes ofWn▷IG just as the nodes of the ith copy of IG are relabeled by vi, 1, vi, 2, ..., vi, m.
Figure 5 displays the graph W4 ▷ IG.
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Figure 5. Comb product W4 ▷ IG
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Theorem 3 The eccentricity centrality EC(v) of each vertex v of Wn ▷ IG is

EC(v) =



1
2+ p+h

, if v is situated at level p of the BFS tree Tv1 of the interval graph

corresponding to the non-central of Wn,

1
1+ p+h

, if v is situated at level p of the BFS tree Tv1 of the interval graph

corresponding to the center of Wn.

Proof. Suppose v be any vertices ofWn▷ IG as well as of IG that are attached to the central vertex of the wheel graph.
Again, let v is situated at level p of the BFS tree Tv1 of that IG and the height of the said BFS tree is h. The distance of
v1, 1 from v is p, and the distance of vi, 1, i = 2, 3, ..., n+1 from v1, 1 is 1. The vertices situated at level h of the BFS trees
of IG (attached with the non-central vertices of Wn) is the farthest vertex from v. So, the longest distance from v to other
vertices of Wn ▷ IG is h+ p+1. Hence, EC(v) =

1
maxy∈V d(v, y)

=
1

h+1+ p
.

Again, let v = vq, j be any vertices of Wn ▷ IG that are attached to the non-central vertices of the wheel graph. If v is
situated at level p of Tv1 , then the distance from v = vq, j to vq, 1 is p. The distance from vq, 1 to vi, 1, i = 2, 3, ..., q−1, q+
1, ..., n+1 is 2. The vertices situated at level h of the BFS trees of IG (attached with the other non-central vertices ofWn)
are the farthest vertices from v. So, the longest distance from v is h+ p+2. Hence, EC(v) =

1
maxy∈V d(v, y)

=
1

h+2+ p
.

2.4 Eccentricity centrality of comb product of cycle graph and interval graph

Cn ▷ IG is the comb product between the cycle graph Cn and the interval graph IG. Suppose that the grafting occurs
at v1 of each copy of IG. Let the vertices of Cn and IG be, respectively, {ui : i = 1 : 1 : n} and {v j : j = 1 : 1 : m}. We
re-label the nodes of Cn ▷ IG just as the nodes of the ith copy of IG are relabeled by vi, 1, vi, 2, ..., vi, m. Figure 6 displays
the graph C4 ▷ IG.
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Figure 6. Comb product C4 ▷ IG

Theorem 4 The eccentricity centrality EC(v) of each vertex v of Cn ▷ IG is
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EC(v) =



1
n
2
+ p+h

, if n is even and v is situated at level p of the BFS tree Tv1 of interval graph,

1
n−1

2
+ p+h

, if n is odd and v is situated at level p of the BFS tree Tv1 of interval graph.

Proof. When n is even, let the vertices of Cn and IG be
{

ui : i = 1, 2, . . . ,
n
2
, . . . , n

}
and {v j : j = 1 : 1 : m},

respectively. We re-label the nodes of Cn ▷ IG just as the nodes of the ith copy of IG are relabeled by vi, 1, vi, 2, . . . , vi, m.
Let v = vi, j be any vertices ofCn ▷ IG. Also, let v is situated at level p of the BFS tree Tv1 of IG (ith copy) and h(Tv1) = h.
The distance from v to vi, 1 is p, and the greatest distance between two nodes ofCn is

n
2
. The vertices situated at level h of

the BFS trees of IG (attached with the vertex at a distance
n
2
of Cn from vi, 1) is the farthest vertex from v. So, the longest

distance from v to other vertices of Cn ▷ IG is h+ p+
n
2
. Hence, EC(v) =

1
maxy∈V d(v, y)

=
1

h+
n
2
+ p

.

Again, when n is odd, let the vertices ofCn and IG are
{

ui : i = 1, 2, . . . ,
n−1

2
,

n+1
2

, ..., n
}
and {v j : j = 1 : 1 : m},

respectively. We re-label the nodes of Cn ▷ IG just as the nodes of the ith copy of IG are relabeled by vi, 1, vi, 2, . . . , vi, m.
Let v = vi, j be any vertices ofCn ▷ IG. Also, let v is situated at level p of Tv1 of IG (ith copy) and h(Tv1) = h. The distance

from v to vi, 1 is p and the greatest distance between two nodes of Cn is
n+1

2
. The vertices be situated at level h of the

tree Tv1 of IG (attached with the node at a distance
n+1

2
of Cn from vi, 1) is the farthest vertex from v. So, the longest

distance from v to other vertices of Cn ▷ IG is h+ p+
n+1

2
. Therefore, EC(v) =

1
maxy∈V d(v, y)

=
1

h+
n+1

2
+ p

.

2.5 Eccentricity centrality of Pn ▷ IGPn ▷ IGPn ▷ IG

Pn ▷ IG is the comb product between the path graph Pn and the interval graph IG. Suppose that the grafting occurs at
v1 of each copy of IG. Let the nodes of Pn and IG be, respectively, {ui : i = 1 : 1 : n} and {v j : j = 1 : 1 : m}. We re-label
the nodes of Pn ▷ IG just as the nodes of the ith copy of IG are relabeled by vi, 1, vi, 2, ..., vi, m. Figure 7 displays the graph
P4 ▷ IG.

Theorem 5 The eccentricity centrality EC(v) of each vertex v of Pn ▷ IG is

EC(v) =



1
n−1+ p+h

, if v = u1, j or v = un, j and v is situated at level p of the

BFS tree Tv1 of the IG,

1
(n− i)+ p+h

, if v = ui, p; n− i ≥ i−1; i = 2 : 1 : n−1 and

v is situated at level p of the BFS tree Tv1 of the IG,

1
(i−1)+ p+h

, if v = ui, p; n− i < i−1; i = 2 : 1 : n−1 and

v is situated at level p of the BFS tree Tv1 of the IG.
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Figure 7. Comb product P4 ▷ IG

Proof. Let v = u1, j be any vertices of Pn ▷ IG that are attached to u1 of the path graph Pn. Again, let v is situated at
level p of the BFS tree Tv1 of IG and h(Tv1) = h. The distance of u1, 1 from v is p, and the distance of un, 1 from u1, 1 is
n−1. The nodes situated at level h of the tree Tv1 of IG (attached with un of Pn) is the farthest node from v. So, the longest

distance from v to other vertices of Pn ▷ IG is h+ p+n−1. Hence, EC(v) =
1

maxy∈V d(v, y)
=

1
h+n−1+ p

. If v = un, j,

then we get the same result.
Again, let v = ui, p be any vertices of Pn ▷ IG that are attached to ui of the path graph, i.e., v is situated at level p

of the tree Tv1 of IG. The distance from v = vi, p to vi, 1 is p. If n− i ≥ i− 1, then the vertex situated at level h of Tv1

of IG (attached with un−i of Pn) is the farthest vertices from v. So, the longest distance from v is h+ p+ n− i. Hence,
EC(v) =

1
maxy∈V d(v, y)

=
1

h+ p+n− i
.

Again, if n− i < i−1, then the vertex situated at level h of the tree Tv1 of IG (attached with ui−1 of Pn) is the farthest

vertex from v. So, the longest distance from v is h+ p+ i−1. In this case, EC(v) =
1

maxy∈V d(v, y)
=

1
h+ p+ i−1

.

2.6 Eccentricity centrality of comb product between two interval graphs

IH ▷ IG is the comb product between two interval graphs IH and IG. Suppose that the grafting occurs at v1 of each
copy of IG. Let the nodes of IH and IG be, respectively, {ui : i = 1 : 1 : n} and {v j : j = 1 : 1 : m}. We re-label the nodes
of IH ▷ IG as {x j, q(i, p) : i = 1 : 1 : n; j = 1 : 1 : m}, where p and q indicate the level of the BFS tree of IH and IG,
respectively. Interval graph IH and its representation and the BFS trees with root at u1 and u4 are, respectively, shown in
Figure 8, Figure 9, and Figure 10. The comb product of two interval graphs IH ▷ IG is shown in Figure 11. To find the
eccentricity centrality of the comb product between two interval graphs, we first find the eccentricity of the interval graph
IH .
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Figure 8. Interval graph IH and its representation
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Figure 10. BFS tree Tulmax of IH , where ulmax = u4
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Figure 11. Comb product IH ▷ IG

2.6.1BFS tree of interval graphs

Here we present a new faster algorithm to make a BFS tree Tux , ux is the root, of IG.
Algorithm IBFS
Input: An interval representation [ai, bi], i = 1 : 1 : n.
Output: The BFS tree Tux with root as ux.
Step 1: Select and mark the interval Ix in IR and set the root as ux.
Step 2: Scan the interval [ax, bx]

Step 2.1: Find the sets A = {ai : ai of all unmarked intervals whose ai or bi are in [ax, bx]},
B = {bi : bi of all unmarked intervals whose ai or bi are in [ax, bx]} and marked these intervals.

Step 2.2: Set S = {i : ai, bi ∈ A∪B}.
Step 2.3: Set parent(uk) = ux for all k ∈ S.
Step 2.4: Compute m, M, where m is the subscript of ai ∈ A with left-most position in IR and M = max{i : bi ∈

B}.
Step 3: {Right scanning}

Step 3.1: Scan all unmarked intervals whose ai ∈ [rl , rr] = [bx, bM] and make a set R that contains all the bi

corresponding to these intervals.
Step 3.2: If R is the empty set, then move to Step 4, else move to the next Step.
Step 3.3: Set parent(uk) = uM for all k ∈ B = {i : bi ∈ R}.
Step 3.4: Reset the interval [rl , rr] for the next iteration such that rl = rr, rr = bM , where M = maxB.

Step 4: {Left scanning}
Step 4.1: Scan all unmarked intervals whose bi ∈ [ll , lr] = [am, ax] and make a set L that contains all ai

corresponding to these intervals.
Step 4.2: If both L and R are empty sets, then stop.

Else if L is the empty set, then move to Step 3.
Else move to the next Step.
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End if.
Step 4.3: Set parent(uk) = um for all k ∈ A = {i : ai ∈ L}.
Step 4.4: Reset the interval [ll , lr] for next iteration such that lr = ll , ll = am, where m is the subscript of ai ∈ L

with left most position in IR.
Step 4.5: Move to Step 3.
Stop
end IBFS.
From the above Algorithm IBFS, we get a set of parents(uk), k ∈ A∪B∪S, by which we can construct the BFS tree

Tux . If we use the proposed Algorithm IBFS for the IG IH displayed in Figure 8 and take u1 as the root, then parent(u2) =

u1, parent(3) = u2 and parent(u4) = u2. Finally, we can easily construct the BFS tree Tu1 as shown in Figure 9.
For the tree Tu1 , we consider ulmax → parent(ulmax → ·· · → u1) as the axial path of it. So, the height of the tree Tu1

is the length of axis.
Theorem 6 Algorithm IBFS executes in O(n) time.
Proof. In Algorithm IBFS, Step 1 needs constant time. To compile Step 2, we require O(n) time. In Step 3, at each

iteration during the right scanning we scan only unmarked intervals. So, to finish the right scanning we need only O(n)
time. Also, in Step 4, at each iteration during the left scanning we scan only unmarked intervals. So, to finish the left
scanning, we need only O(n) time. Therefore, the algorithm IBFS executes in O(n) time.

2.6.2Some notations

Here we present some notations (Table 1).

Table 1. Notations

Symbol Description

e(v) Eccentricity of the node v.

Tx BFS tree with root as x.

IG Interval Graph.

In IG with n vertices.

IR Interval Representation of IG.

ulmax Vertex whose corresponding interval’s left endpoint’s position is maximum in IR.

h(T ) Height of the tree T .

u∗i The vertex at level i on the axial path of Tu1 .

Ai Set of nodes at level i of Tu1 excluding u∗i .

u′i The vertex at level i on the axial path of Tulmax .

A′
i Set of nodes at level i of Tulmax excluding u′i.

h h = h(Tu1 ) = h(Tulmax ).

2.6.3Eccentricity of IG

The eccentricity of a node v ofV , we denote it by e(v), represents the greatest length among all shortest paths starting
from v and finishing at other remaining nodes, i.e., e(v) = Max{d(v, ux) : ux ∈ V}. If a graph is disconnected (may
have isolated vertices), the eccentricity of any vertex is infinite or undefined. For this reason, we consider here a simple,
undirected, and connected interval graph. To find the eccentricity of all vertices of interval graphs, we state and prove
some important results, and then we also design an algorithm.

First, we call a vital result on interval graphs.
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Lemma 1 If a, b, and c are any three nodes of an IG, where a< b< c and a is directly connected with c then (b, c)∈E
Now, we present some new results.
Lemma 2 The vertex ulmax lies at the last level of the tree Tu1 .
Proof. Let us assume that the node ulmax is not at the last level of the tree Tu1 . This means the interval corresponding

to the node ulmax is not scanned in the last interval [rl , rr]. That means almax is not at the maximum position in IR. Which
is a contradiction as per the definition of ulmax. Therefore, ulmax is at the last level of the tree Tu1 .

Lemma 3 For the tree Tu1 , (u, u∗1) ∈ E, for all u in A1.
Proof. According to the scanning procedure of the Algorithm IBFS, bi (corresponding to u∗1) > b j (corresponding

to the vertex u j ∈ A). So, u1 < u j < ui, where 1 < j < i. Therefore, by Lemma 1, (u, u∗1) ∈ E, for all u in A1.
Lemma 4 For an interval graph G, h(Tu1) = diameter(G).
Proof. As u1 is at level 0 and ulmax is at level h of the tree Tu1 of the IG G, so, by Lemma 3, h(Tu1) = diameter(G).
Lemma 5 For the tree Tulmax , (u, u′1) ∈ E, for all u in A′

1.
Proof. It can be proved in the same way as Lemma 3.
Lemma 6 For IG G, h(Tulmax) = diameter(G).
Proof. It can be proved in the same way as Lemma 4.
Lemma 7 For IG G, h(Tu1) = h(Tulmax).
Proof. This result can be easily verified by comparing the results of the Lemma 4, 6.
Lemma 8 If the node v is situated at level p on the BFS tree Tu1 , then v lies at level h− p or h− p+ 1 of the BFS

tree Tulmax .
Proof. We know h = h(Tu1) = h(Tulmax) and the BFS trees Tu1 and Tulmax are constructed by the same Algorithm

IBFS and the position of the right endpoint of ulmax is maximum among all ai, i = 1 : 1 : n in IR. Now, if the node v is at
level p of Tu1 , then the interval corresponding to v is scanned during the (p−1)th right scanning during the construction
of Tu1 . So, the interval corresponding to v shall be scanned during the (h− p−1)th or (h− p)th right scanning during the
construction of Tu1 . This implies that v lies at level h− p or h− p+1 of the BFS tree Tulmax .

Lemma 9 If v is the root of either Tu1 or Tulmax and the height of these BFS trees is h, then the eccentricity of v is h.
Proof. Let v be the root of the tree Tu1 , and h(Tu1) = h. The vertex/vertices at level h is/are the farthest vertex from

v and the maximum distance is h. So by definition, the eccentricity of v is h. Again, if we consider v as the root of Tulmax

then we will get the same result.
Lemma 10 If the height of the BFS tree Tu1 is even and v is situated at level p where p >

h
2
then the eccentricity of

v is p.
Proof. Let the height h of the BFS tree Tu1 be even, and v is situated at level p where p >

h
2
. So, p > h− p. The

vertex/vertices at level p is/are the farthest vertex from u1. So, the longest distance from node v to other nodes is p. So,
by definition, the eccentricity of v is p.

Lemma 11 If the height of the BFS tree Tu1 be even, and v is situated at level p on Tu1 as well as q of Tulmax , p <
h
2

then the eccentricity of v is q.
Proof. Let the height of the BFS tree Tu1 is even and v is situated at level p where p <

h
2
. So, by Lemma 3, v is

situated at level h− p or h− p+1 on the BFS tree Tulmax . As p <
h
2
, the distance from v to u1 or the vertices at level 1 is

less than the distance from v to the vertices at level h of Tu1 , p < h− p. So, the vertex/vertices at level h of Tu1 is/are the
furthest vertex/vertices from v. But, the distance from v to those vertices is either h− p or h− p+1. For this ambiguous
case, we compute the level of the vertex v on Tulmax . If v is situated at level q of Tulmax then, e(v) = q as q = h− p > p or
q = h− p+1 > p.

Lemma 12 If the height of the BFS tree Tu1 is even and v is situated on the axial path at level p of Tu1 where p =
h
2

then the eccentricity of v is p.

Volume 6 Issue 6|2025| 8569 Contemporary Mathematics



Proof. Let the height of the BFS tree Tu1 be even, and v is situated on the axial path at level p of Tu1 where p =
h
2
.

The distance from the node v to the node(s) situated at level h is h− p = h− h
2
=

h
2
and d(v, u1) =

h
2
. The distance from

the node v to other nodes of G is ≤ h
2
. Therefore, the longest distance is

h
2
= p. Hence, the eccentricity of v is p.

Lemma 13 If the height h of the BFS tree Tu1 is even and v is a leaf node, situated at level
h
2
of Tu1 then

e(v) =



h
2
+2, if v is not connected with the vertices at level

h
2
+1 and the node on

axial path at level
h
2
of Tu1

h
2
+1, if v is not connected with the vertices at level

h
2
+1 and conncted with

the node on axial path at level
h
2
of Tu1

h
2
, otherwise

Proof. Let the height h of the BFS tree Tu1 be even, and v is a leaf node and situated at level
h
2
on Tu1 . Again, let the

vertices of the axial path be ui where i = 0, 1, 2, ..,
h
2
, ..., h and u∗h be any leaf node of Tu1 at level h.

Case 1:
Let v be not adjacent to the vertices at level

h
2
+1 and the node on the axial path at level

h
2
of Tu1 . So, there is only

one path from v to the vertices at level h (v → u h
2−1 → u h

2
→ uh/u∗h). Therefore, the distance from v to the vertices at level

h is h− h
2
+2 =

h
2
+2. Also, d(v, u1) =

h
2
. Therefore, Max{d(u, v) : u ∈V}= h

2
+2. Hence e(v) =

h
2
+2.

Case 2:
Let v be not adjacent to the vertices at level

h
2
+1 and adjacent to the vertex on the axial path at level

h
2
of Tu1 . The

shortest path between v and the vertices at level h is v → u h
2
→ u h

2+1 → uh/u∗h. Therefore, the distance from v to the

vertices at level h is h− h
2
+1 =

h
2
+1. Also, d(v, u1) =

h
2
. So, Max{d(u, v): u ∈V}= h

2
+1. Hence, e(v) =

h
2
+1.

Case 3:
Let v be adjacent to the vertices on the axial path at level

h
2
+ 1 of Tu1 . The shortest path between v and the nodes

at level h is v → u h
2+1 → u h

2+2 → uh/u∗h. Therefore, the distance from v to the vertices at level h is h− h
2
=

h
2
. Also,

d(v, u1) =
h
2
. Therefore, Max{d(u, v) : u ∈V}= h

2
. Hence e(v) =

h
2
.

Lemma 14 If the height of the BFS tree Tu1 is odd and v is situated at level p where p >
h+1

2
then the eccentricity

of v is p.
Proof. Let the height h of the BFS tree Tu1 be odd, and v is situated at level p where p >

h+1
2

. As p >
h+1

2
,

then the vertex/vertices at level p is/are the farthest vertex from u1. Also, the vertices at level h are at a distance at most
h− p+2 from v, as p >

h+1
2

. So, Max{d(u, v) : u ∈V}= p. Therefore, by definition, the eccentricity of v is p.
Lemma 15 If the height of the BFS tree Tu1 is odd and v is situated at level p on Tu1 as well as at level q on Tulmax ,

p <
h+1

2
then the eccentricity of v is q.
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Proof. Let the height of the BFS tree Tu1 be odd, and v is situated at level p where p <
h+1

2
. So, by Lemma 3, v is

situated at level h− p or h− p+1 on the BFS tree Tulmax . As p <
h+1

2
, the distance from v to u1 or the vertices at level 1

p, which is less than the distance from v to the vertices at level h of Tu1 , i.e., the vertex/vertices at level h of Tu1 is/are the
furthest vertex/vertices from v. But, the distance from v to those vertices is either h− p or h− p+1. For this ambiguous
case, we find the level of the vertex v on Tulmax . If v is situated at level q of Tulmax then e(v) = q.

Lemma 16 If the height of the BFS tree Tu1 is odd and v is situated on the axial path at level p of Tu1 where p =
h+1

2
then the eccentricity of v is p.

Proof. Let the height of the BFS tree Tu1 be odd, and v is situated on the axial path of Tu1 at level p where p =
h+1

2
.

The distance of the nodes situated at level h from the node v is h− p = h− h+1
2

=
h−1

2
, and the distance of v from u1

is
h+1

2
. So, d(v, u)≤ h+1

2
, ∀u ∈V (G). Therefore, the maximum distance is

h+1
2

= p. Hence e(v) = p.

Lemma 17 If the height of the BFS tree Tu1 is odd and v is a leaf node, situated at level p of Tu1 where p =
h+1

2
then

e(v) =


h− p+2, if v is not connected with the nodes at level p+1 and the node on

axial path at level p of Tu1

p, otherwise

Proof. Let the height h of the BFS tree Tu1 be odd, and v is a leaf node situated at level p of Tu1 where p =
h+1

2
.

Again, let the vertices of the axial path be ui, where i = 0, 1, 2, .., p, ..., h and the leaf node be ui j, where i is the level of
v and j is the original subscript of v.

Case 1:
Let v be not adjacent to the vertices at level p+1 and the node on the axial path at level p of Tu1 . So, there is only

one path from v to the vertices at level h (v → up−1 → up → uh/uh j). Therefore, the distance from v to the vertices at level

h is h− p+ 2 = h− h+1
2

+ 2 =
h+3

2
=

h+1
2

+ 1. The distance from v to u1 is p =
h+1

2
. Therefore, the maximum

distance is h− p+2. Hence e(v) = h− p+2.
Case 2:
Let, v be adjacent to the vertex at level p+1 or adjacent to the node on the axial path at level p of Tu1 . If v is adjacent

to the vertex at level p+ 1 then the shortest path between v and the vertices at level h is v → up+1 → up+2 → uh/uh j.

Therefore, the distance from v to the vertices at level h is h − p = h − h+1
2

=
h−1

2
. The distance from v to u1 is

p =
h+1

2
. Therefore, the maximum distance is p. Hence e(v) = p.

If v is adjacent to the node at level p on the axial path, then the shortest path between v and the vertices at level h is
v→ up → up+1 → uh/uh j. Therefore, the distance from v to the vertices at level h is h− p+1= h− h+1

2
+1=

h+1
2

= p.

The distance from v to u1 is p =
h+1

2
. Therefore, the maximum distance is p. Hence e(v) = p.

2.6.4Algorithm and complexity

Here, we are ready to propose a faster algorithm to obtain the eccentricity of all vertices of IG G.
Algorithm ECCEN-INT
Input: Interval representation Ii, i = 1 : 1 : n of the IG G.
Output: Eccentricity of each node ui, i = 1 : 1 : n of the IG G.
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Step 1: Construct two BFS-trees Tu1 and Tun and compute the height h.
Step 2: Compute the level of ui (denoted by pi) for Tu1 for i = 1 : 1 : n.
Step 3: Compute the level of ui (denoted by qi) for Tulmax for i = 1 : 1 : n.
Step 4: for i = 1 : 1 : n

If h is even and pi >
h
2
, then e(ui) = pi. //Lemma 10

Else if h is even and pi <
h
2
, then compute qi and e(ui) = qi. //Lemma 11

Else if h is even and ui is situated on the axial path at level pi of Tu1 where pi =
h
2
, then e(ui)= pi. //Lemma 12

Else if h is even and ui is leaf node, situated at level pi of Tu1 where pi =
h
2
, then (by Lemma 13)

e(ui) =



h
2
+2, if ui is not connected with the nodes at level

h
2
+1 and the node on

axial path at level
h
2
of Tu1

h
2
+1, if ui is not connected with the nodes at level

h
2
+1 and conncted with

the node on axial path at level
h
2
of Tu1

h
2
, otherwise

Else if h is odd and pi >
h+1

2
, then e(ui) = pi. //Lemma 14

Else if h is odd and pi <
h+1

2
, then compute qi and e(ui) = qi. //Lemma 15

Else if h is odd and ui is situated on the axial path at level pi of Tu1 where pi =
h+1

2
, then e(ui) = pi (by

Lemma 16)
Else if h is odd and ui is a leaf node, situated at level pi of Tu1 , where pi =

h+1
2

, then (by Lemma 17)

e(ui) =


h− pi +2, if v is not connected with the nodes at level pi +1 and the node on

axial path at level pi of Tu1

pi, otherwise

End if
End

End ECCEN-INT.
Theorem 7 Algorithm ECCEN-INT takes O(n) time for computing eccentricity of all nodes of IG G .
Proof. In 1st Step, for constructing two BFS-trees Tu1 and Tulmax , and computing the height h, O(n) time is necessary.

The second and third Steps need O(n) time to compute pi and qi for each ui, separately. Step 4 takes O(n) time to calculate
the eccentricity of each vertex of G. Hence, the Algorithm ECCEN-INT takes O(n) time.

Note 1: Our ECCEN-INT algorithm has been implemented with standard BFS operations that maintain integer vertex
levels using well-defined queue-based traversal. For practical values of n, the computation of vertex levels does not lead
to numerical or overflow errors, as the levels are represented by integer indices corresponding to graph vertices. For
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extremely large graphs, that is, for very large values of n, appropriate data types (such as long integers) should be used to
avoid potential computational inaccuracies when storing vertex levels in the following way.

• Since the maximum level in a BFS tree is at most the diameter of the graph, it will usually be much smaller than n.
• Instead of using absolute numbers for vertex levels, store only relative levels (for example, starting from 0 in each

BFS traversal). We have followed this rule to level the vertices of BFS tree of interval graphs.
• Instead of storing levels for all vertices as large integers, store them in an array of normal integers (32-bit).
Theorem 8 The eccentricity centrality EC(v) of each vertex v of IH ▷ IG is

1
e(u)+q+h2

where v = x j, q(i, p),

u = x1, 0(i, p), i = 1 : 1 : n, j = 1 : 1 : m and h1 and h2 are the height of the BFS tree of IH with root as u1 and IG

with root as v1 respectively.
Proof. Let v = x j, q(i, p) be any vertices of IH ▷ IG that attached with IH where p and q indicate the level of the

BFS tree of IH and IG. Again let, the height of the said BFS trees IH and IG are h1 and h2, respectively. The distance
from v to x1, 0(i, p) is q. Also, the maximum distance from x1, 0(i, p)(= u) to other vertices of IH is the eccentricity
of u, is e(u). The vertices situated at level h2 of the BFS trees of IG is the farthest vertex from v. So, the longest
distance from v to other vertices of IH ▷ IG is q+ e(u)+ h2 = e(u)+ q+ h2. Hence, the eccentricity centrality of v is

EC(v) =
1

maxy∈V d(v, y)
=

1
e(u)+q+h2

.

Illustrative example: We consider the graph IH ▷ IG displayed in Figure 11. First, we apply the Algorithm ECCEN-
INT to find the eccentricity of all vertices of IH , and then we apply the result of Theorem 7. For IH , we have e(u1) =

2, e(u2) = 1, e(u3) = 2, e(u4) = 2. The height of the BFS tree corresponding to IG is h2 = 2. For this comb product graph,
u = x1, 0(i, p), v = x j, q(i, p), i, j = 1, 2, 3, 4 and p, q = 0, 1, 2.

Now we apply the formula, we have

EC(x1, 0(1, 0)) =
1

e(u)+q+h2
=

1
2+0+2

=
1
4
.

EC(x2, 1(1, 0)) =
1

e(u)+q+h2
=

1
2+1+2

=
1
5
.

EC(x3, 1(1, 0)) =
1

e(u)+q+h2
=

1
2+1+2

=
1
5
.

EC(x4, 2(1, 0)) =
1

e(u)+q+h2
=

1
2+2+2

=
1
6
.

EC(x1, 0(2, 1)) =
1

e(u)+q+h2
=

1
1+0+2

=
1
3
.

EC(x2, 1(2, 1)) =
1

e(u)+q+h2
=

1
1+1+2

=
1
4
.

EC(x3, 1(2, 1)) =
1

e(u)+q+h2
=

1
1+1+2

=
1
4
.

EC(x4, 2(2, 1)) =
1

e(u)+q+h2
=

1
1+2+2

=
1
5
.
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EC(x1, 0(3, 2)) =
1

e(u)+q+h2
=

1
2+0+2

=
1
4
.

EC(x2, 1(3, 2)) =
1

e(u)+q+h2
=

1
2+1+2

=
1
5
.

EC(x3, 1(3, 2)) =
1

e(u)+q+h2
=

1
2+1+2

=
1
5
.

EC(x4, 2(3, 2)) =
1

e(u)+q+h2
=

1
2+2+2

=
1
6
.

EC(x1, 0(4, 2)) =
1

e(u)+q+h2
=

1
2+0+2

=
1
4
.

EC(x2, 1(4, 2)) =
1

e(u)+q+h2
=

1
2+1+2

=
1
5
.

EC(x3, 1(4, 2)) =
1

e(u)+q+h2
=

1
2+1+2

=
1
5
.

EC(x4, 2(4, 2)) =
1

e(u)+q+h2
=

1
2+2+2

=
1
6
.

The above results satisfy the graph we considered.

2.6.5Comparative analysis of algorithms for calculating eccentricity in a interval graphs

Here, we present a comparative analysis of existing algorithms for calculating eccentricity in interval graphs, focusing
on methods, authors, and time complexity.

Table 2. Comparative chart

Author(s) Method time Complexity

Gavril et al. [17] Structural properties O(n2)

Olariu [18] BFS O(m+n)

Nandi et al. [15] BFS and our studied result O(n) (our result)

From Table 2, we see that our algorithm is more efficient than the existing results.
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3. Application of the eccentricity centrality of Pn ▷ ImPn ▷ ImPn ▷ Im

Although the Cartesian product of two graphs is commonly used to model a warehouse network, in this study, we
attempt to represent this network through the comb of two graphs, as it also captures the hierarchical and distributed nature
of the supply chain. Here, we present a real application of the comb product between Pn and IG Im. Details are given
below in stepwise.

Step 1: Problem and objectives.
Problem: Suppose an online product-selling company with several warehouses distributed across different districts,

some of which serve as main warehouses while others are local warehouses. These main warehouses are connected to
each other by logistic support. Each main warehouse is also connected by logistic support with local warehouses in
these districts. Suppose this company operates in three districts, say A (Howrah), B (Purba Medinipur), and C (Paschim
Medinipur). The company has one main warehouse (situated near rail station/national highway) and five local warehouses
(situated in the town area) in each district.

Objective: To determine the most centrally located warehouse that minimizes the longest path to other warehouses
in this network.

Step 2: Graph model for the warehouse network.
To model problem, we use the comb product of a path graph and an interval graph. We can approach it as follows.

The path graph will represent the main warehouses, while the interval graphs will represent local warehouses within these
main warehouses in each district.

Step 2.1: Construction of a path graph for the main warehouses.
Here, we consider that the main warehouses are connected to each other in a line. So they will form a path graph.

For example, if X (Howrah), Y (Mecheda), and Z (Kharagpur) are, respectively, the main warehouses in the districts A, B,
and C , then the path graph P3 will be like Figure 12.

����
���� ����

X Y Z

Figure 12. Path graph P3

Step 2.2: Construction of interval graphs for local warehouses in each district.
In each district, we construct one interval graph that represents the interconnection or overlapping among the local

warehouses. Each node in this interval graph represents a local warehouse. The length of each interval in an interval graph
represents the service range (logistical reach of a warehouse) of a local warehouse. This means that a longer interval would
indicate a larger service area, meaning the warehouse can serve customers or connect with other warehouses over a greater
distance. A shorter interval would indicate a smaller or more localized service area. Two nodes of an interval are connected
if their service areas overlap. So, we construct three interval graphs for three districts. Let the local warehouses in three
districts be as follows.

In district A: M (Mourigram), U (Uluberia), B (Bagnan), A (Amta), and U∗ (Udaynarayanpur).
In district B: P (Panskura), T (Tamluk), N (Nandakumar), K (Kanthi), and E (Egra).
In district C: M∗ (Midnapore), S (Salboni), G (Garhbeta), C∗ (Chadrakona), and G∗ (Ghatal).
We assume that these three interval graphs are isomorphic, only the vertex labeling is distinct. For convenience, let

IA
5 , IB

5 , IC
5 (displayed in Figure 13) are respectively the interval graphs in the districts A, B, andC. Let these three interval

graphs be isomorphic to I5.

Volume 6 Issue 6|2025| 8575 Contemporary Mathematics



�
��

�
��

�
��

M

U

B

A

�
��

�
��

�
��

�
��

�
��

P

T

N

K

E

�
��

�
��

�
��
�
��

�
��

M∗

G∗

C∗

S

G

�
��

�
��
U∗

(a) (b) (c)

Figure 13. (a) IA
5 , (b) IB

5 , (c) IC
5

Step 3: Construction of the comb product graph.
The comb product P3 ▷ I5 between a complete graph P3 and an interval graph I5 involves connecting each vertex

in P3 to a copy of I5. This structure will allow for both robust central connectivity among main warehouses and local
connectivity within three districts, A, B, andC. Let the vertices of P3 ▷ I5 (Figure 14) be vi, j, i = 1, 2, 3; j = 1, 2, 3, 4, 5.
Its real image (drawn by Google map) is drawn in Figure 15.

Figure 14. Comb product P3 ▷ I5

Step 4: Calculate eccentricity centrality for each vertex of P3 ▷ I5.
We calculate the eccentricity centrality of each node of the comb product graph by the theorem 5 presented in our

paper.
Step 5: Identification of the optimal central warehouse.
The node with the maximum eccentricity centrality (i.e., with the lowest eccentricity) will be considered as the most

central node in terms of maximum reachability. This node will have the shortest maximum distance to all other nodes in
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the comb product graph, making it the best option for minimizing distribution time to any warehouse in the network. In
P3▷ I5, the vertex v2, 1 has the minimum eccentricity (i.e., maximum eccentricity centrality), which is 5. So, we can select
the warehouse at Mecheda or Panskura as the central warehouse for the above-mentioned company.

Step 6: Time complexity For the comb product graph P3▷ I5, n = 3 and m = 5. So, interval graph I5 has five vertices,
and Path P3 has three vertices and comb product graph has fifteen vertices. Now, to find the eccentricities of all vertices
IH , our Algorithm ECCEN-INT needs O(m) time, where m = 5. Again, we find the eccentricity centrality of all vertices

of P3 ▷ I5 with the help of the formula EC(v) =
1

maxy∈V d(v, y)
=

1
e(u)+q+h2

, where v ∈ V (P3 ▷ I5). So, to calculate

the values of eccentricity centrality of all the vertices of P3 ▷ I5, we need O(3m) time, where m = 5. So, the overall time
complexity to identify the optimal warehouse in the warehouse network we considered is O(m)+O(3m)≈ O(m) time.

Figure 15. Real map of the comb product P3 ▷ I5

Limitations: The comb product graph model has some limitations. The model assumes that every warehouse in
the network has the exact same internal layout structure. All warehouses connect to the broader network in the same
standardized way. It does not account for critical logistical constraints like delivery time windows, traffic restrictions, or
variable unloading conditions. The comb product lacks flexibility for modeling dynamic changes, such as the addition of
new warehouses or routes.

Note 2: In the above illustration, we did not present sensitivity analysis of our results to variations in the graph
structure (e.g., when changing the number of vertices in Pn or Im). If the number of vertices in Pn or Im either increase or
decrease then it do not affect the performance of the proposed algorithm and optimization (means select the most centrally
located warehouse that minimizes the longest path to other warehouses in this network) of our solution of as our proposed
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algorithm runs in O(m) time (here m indicate the number of vertices of interval graph). When the value of m is large
(or small), a time complexity of O(m) indicates that the running time of the algorithm increases (or decreases) linearly
with the size of the input. In other words, as the number of input elements doubles, the time required to complete the
algorithm also approximately doubles. This means the algorithm performs one major operation for each input element.
Besides these, in variations in the graph structure, the value of eccentricity of vertices may change, but in every case, we
can identify the most centrally located warehouse that minimizes the longest path to other warehouses in this network.

4. Conclusion
In the present article, we have proposed some theorems related to the eccentricity centrality of the comb product

between well-known graphs (Kn, Sn, Wn, Pn, and Cn) and IG. To find a BFS tree of IG, we have designed an algorithm
that runs in O(n) time. After that, we have studied some new results related to the diameter and eccentricity of the IG.
Based on these results, we have also designed anotherO(n) time algorithm to find the eccentricity of all vertices of interval
graphs using the BFS tree. We have also developed a formula for the eccentricity centrality of the comb product between
two interval graphs. We also calculate the execution time of the proposed algorithms. Besides these, we have presented
a real-life application of our studied result. In the future, we shall try to develop our proposed algorithms for weighted
graphs and fuzzy weighted graphs to solve more complex, realistic problems. Also, we have a plan to include a case study
using real-world data in our future research to strengthen the practical applicability of the proposed model.
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