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Abstract: This study presents a fractional-order neural network model formulated using the Atangana-Baleanu-Caputo
Fractional Derivative (ABC-FD) defined with respect to a generalized kernel function 9 (¢). The primary objective is to
establish rigorous results on the existence, uniqueness, and stability of solutions under minimal regularity assumptions. By
employing Banach’s and Krasnoselskii’s fixed point theorems, we prove existence and uniqueness. The stability analysis
compares three regimes: Mittag-Leffler, asymptotic, and finite-time, showing that they form a hierarchy of convergence
strength: asymptotic stability ensures gradual decay, Mittag-Leffler stability provides algebraic convergence, and finite-
time stability guarantees exact quenching within a bounded interval. Numerical simulations of two- and three-neuron
systems confirm these theoretical distinctions, illustrating the role of both the fractional order and ¥ (¢) in shaping the rate
and type of convergence.

Keywords: Atangana-Baleanu-Caputo Fractional Derivative (ABC-FD), neural network system, existence and stability
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1. Introduction

Fractional-order systems have found successful applications in various domains, including viscoelasticity, anomalous
diffusion, and control systems, due to their ability to capture long-term dependencies and complex dynamic behaviors.
In neural networks, fractional differential equations provide a natural framework to model processes such as synaptic
plasticity, adaptive coupling, and memory effects [1-5].

The development of fractional calculus has significantly advanced the modeling and analysis of complex dynamical
systems, particularly in neuroscience, where memory-dependent processes and non-local interactions are pervasive [6]. In
this context, Mechee et al. [7] introduced novel o-fractional operators for general functions, providing new perspectives
for defining and analyzing fractional integrals and derivatives. With its non-singular Mittag-Leffler kernel, the Atangana-
Baleanu-Caputo Fractional Derivative (ABC-FD) has subsequently emerged as a powerful tool for capturing hereditary
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effects in neural networks. Unlike the classical Caputo or Riemann-Liouville FDs (Cap-FDs or RL-FDs), the Atangana-
Baleanu-Caputo (ABC) operator avoids kernel singularities while preserving the ability to model power-law memory
decay, making it particularly suitable for neurodynamic systems [8, 9].

Fractional-order neural networks have attracted increasing attention for their ability to capture memory, hereditary
properties, and delayed signal transmission inherent in biological and artificial neural systems. Various studies have
established asymptotic, Mittag-Leftler, and finite-time stability results for delayed and inertial fractional-order networks,
contributing to global convergence and robustness analyses [10—18].

Recent developments in fractional-order artificial neural networks have further explored the influence of fractional
activation functions and fractional orders on synchronization and stability, with several reviews and analyses highlighting
their advantages in system stabilization and parameter optimization [19-21]. Variable-order and tempered fractional
neural networks have also been investigated to address complex dynamic behaviors and enhance modeling flexibility,
establishing new existence and stability results using fixed-point and Mittag-Leffler stability approaches [22-24].

Since time delays are intrinsic to neural communication, many works have focused on their impact on the stability of
fractional systems. Notable contributions include stability criteria for delayed and fuzzy neural networks using Lyapunov,
Razumikhin, and fractional techniques, improving both theoretical and computational tractability [25-29].

Building upon these advances, the present study introduces a fractional neural network model governed by a time-
scaling function ¥ (¢) and Mittag-Leffler-type kernel, providing a unified framework that generalizes existing non-singular
fractional models. The paper establishes the existence and uniqueness of solutions and investigates three types of stability:
asymptotic, Mittag-Leffler, and finite-time, under explicit conditions, thus deepening the understanding of how ¥ (z)
modulates the memory and decay characteristics of the system. Specifically, we consider the fractional model as follows:

N
SE G pi() = — it + X wiH (py(0) + ) f(pie). 1), pi(0) = pY, ()
j=1

where < %’%Qg *s is the ABC-FD of order fB € (0, 1) with respect to increasing function 9(r), p;(r) is the state of the i-th
neuroni =1, 2’, ..., N, ¥ is the damping coefficient of the i-th neuron, w;; represents the synaptic weight from the j-th to
the i-th neuron, J# () is a kernel function modeling coupling between neurons, 1;(¢) is a modulation function dependent
on time, and f(p;(), t) is an activation function for the i-th neuron.

The central question of this study is how the existence, uniqueness, and stability of a fractional-order neural network
are affected by employing the ABC derivative with respect to a time-scaling function ¥ (¢). We investigate whether this
formulation enhances dynamical flexibility and ensures convergence across asymptotic, Mittag-Leffler, and finite-time
stability regimes.

The main contributions of this work can be summarized as follows. First, we establish existence and uniqueness
results for the fractional neural system (1) using Banach’s and Krasnoselskii’s fixed-point theorems under minimal
assumptions. Second, we derive explicit damping conditions characterizing three distinct stability regimes: asymptotic,
Mittag-Leftler, and finite-time, and clarify their hierarchical relationship in terms of convergence strength. Third, we
provide numerical validation through Python-based simulations for two- and three-neuron networks, which confirm the
theoretical findings by illustrating algebraic decay under Mittag-Leffler stability and exact quenching under finite-time
stability.

The remainder of this paper is organized as follows: Section 2 provides a review of ABC fractional calculus, key
lemmas, and the study’s methodology. Section 3 introduces the equivalent integral of the model. Section 4 establishes
the existence and uniqueness results, and further provides detailed analyses of asymptotic, Mittag-Leffler, and finite-time
stability. Section 5 presents numerical examples and simulations. Section 6 discusses the conclusion and future work.
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2. Preliminaries

This section presents the background and methodology pertinent to the study.

2.1 Background

Some fundamental introductions to fractional calculus and the proposed model are provided in this section.

As usual, €: = C(J, RV) is the Banach space of all continuous functions from J to R, with the norm || - ||.. defined
by [[@i]| = max;<i<y supycy|@(V)].

Definition 1 [6] Let u € (0, 1] and ® € H'(0, T). Then, the ABC-FD for a function @ in the sense of Caputo is
expressed as

O A e

where A(u) =1—p+ % is a normalization function satisfying A(0) = A(1) = 1, and E, () is the Mittag-Leffler function,
defined as

Ms

R >0, reC,
= OI‘uz—i-l e(k) "

where [(p) = [ e x* 1dx, p>0.
Definition 2 [6] For p € (0, 1] and ® € H'(0, T), the Atangana-Baleanu (AB) fractional integral of order u for a
function o is given by

IE gl () = H‘w(r)+“(m/0t(rv)ﬂ—lw(s)ds, tel.

Definition 3 [30] The ¥-RL fractional integral of an integrable function @(¢) with respect to another function 9 (¢)
is defined by

g g0) = o [ (90 =96 9 () ds. @

Definition 4 [31, 32] The $¥-ABC-FD for a function @(¢) with respect to another function ¥ (¢) is defined as

2 g o) =t [ 9618, (12 00 - 06" ) @y,

where ¥/(t) = %19([) and (1) = %' Moreover, the corresponding AB fractional integral is

, -
TE g1 o) = R o)+ —— gl o), el
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Lemma 1 [30] Letu, p >0 and @: J — R. Then
DAL I 90 - D) = ”r“(ﬁi’l [9() = DO
2) ijoﬂﬁ J,S”ﬂp ( ) — jgﬂolfﬂp’(pw(t);

o

3)( M) J’fﬂ 1) = o).

Lemma 2 [33] For u € (0, 1], the following relations hold:

i) ('d’%tﬂoﬁfﬁ ,9/,%%7@&1960) (t) = o(t) — ©(0);

ii) (Wﬁ D s Mfo*jﬂw) (1) = o) — 0(0) Ey <%(19(u) - @(0))#).

Lemma 3 [34] Let v, n: [e, B] — R, be Lebesgue integrable functions and «: [, f] — R a continuous, non-

decreasing function. Let ¢ € C'[a, B] be a strictly increasing time-scaling function with ¢’(¢) > 0 for all 7 € [, B].
Suppose the inequality

!
y(r) <n()+x(@) /a ¢'(s) (@(1) = @(5)" " w(s)ds, ve(0,1)
holds for all 7 € [, B]. Then, the following bound applies:

0+ [ Gy (KOTV), 9(0) = 9(s) ¢'(5)n(5) s,

where

ZT:

o k. vk—1
k=

is the generalized fractional resolvent kernel.
Corollary 1 [34] Under the hypothesis of Lemma 3, let 1 be a nondecreasing function on [, 8]. Then, we have

w(t) <n(Ey (k(0)0(V)) [o() — ()", Vi€ [a, B.

Finally, since fundamental results like Banach’s and Krasnoselskii’s fixed-point theorems and the Lipschitz condition
are standard in most texts, we refer to them in the reference [11].

2.2 Methodology

In this subsection, we present the methodological framework adopted to analyze the proposed fractional-order neural
network model formulated using the Atangana-Baleanu-Caputo Fractional Derivative (ABC-FD) with respect to a time-
scaling function ¥(¢). The study begins with the formulation of a generalized neural network system that incorporates
memory effects through a nonsingular Mittag-Leffler kernel. The differential model is then transformed into an equivalent
integral equation by employing the properties of the ABC fractional integral operator, allowing the use of fixed-point
theory. Existence and uniqueness of solutions are rigorously established under continuity, Lipschitz, and boundness
conditions on the nonlinear activation function f(x, ¢) and kernel .’#"(x), using Banach’s and Krasnoselskii’s fixed-point
theorems. Subsequently, we investigate three types of stability: asymptotic, Mittag-Leffler, and finite-time, by deriving
appropriate fractional inequalities and damping conditions that characterize the system’s convergence behavior. Finally, a
numerical scheme based on a fractional Adams-Bashforth-Moulton approach is implemented to approximate the solutions.
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Python simulations for two- and three-neuron systems are conducted to illustrate the theoretical predictions and compare
the distinct stability behaviors.

3. Equivalent integral of model (1)

In this section, the generalized ABC fractional model and its equivalent integral form are introduced. The dynamics
of the i-th neural network are governed by:

d%%@(gkﬁp( Ylpl + Z le +nl< )f(P:([)7 t)’ re [07 T]7
with the initial conditions

pi(0) = p?,

wherei=1,2,...,N, ¥, pi, wij, J(-), Ni, and f are defined as above.
Based on the preceding results, we now derive the equivalent integral form of the proposed model. By applying
Lemma 2 and using the fractional integral operator % Tk B 0.5 on both sides of the system, we obtain

pi(t) = pi(0) = 7770 ( ¥ipilt) + sz, )+ i) f(pi(t), t)) :
Using Definition 4 for #*.7%, we have
) =pi0) + 55y [ wpilt) + zw,, )+ 1)/ (pi0) rﬂ
+A(ﬁ[3"k)R g0 [ G +Zwu ) +milt )f(Pi(t):t)]~
By Eq. (2),
pi(t) =pi(0) + IA(* g [ Yoi(r) + 2 wig 2 (py(0)) + M) £ (pil0), r)]

(Bk[;k (ﬁk) /l [6(1‘)_0(‘?)]&(71 ( |: %Pz +ZWU

+1i(s) f(pils), s)} ds.

Co iporary Math tics 720 | Mohammed S. Abdo, et al.




Note that the first term is a function that includes p;(¢) as an argument. Then

1
p,(t)—(lﬂm pi(0 <]le,, +nt()f(Pt(t)a[)>]
1 Bk ! _ (s Br—1 "(s
NEEELET A ) 1200w o)
x [~ (s +zw,, )+ M(5)f(Pi(s), 5)|ds.

For convenience, let us denote
O, (1, 5): = [0(0) = 91, 05 (1, 5): = [0(0) = 9(s)]P 1 (),

_1-B be — B
AB)” T T(BIAB)

Z wis A (pi(t)) +mi(t) £ (pi(t), 1),

and

Gi(pi(r), 1): =—pi(t) + Z wij (p;(t)) +ni(2) f(pi(t), 7).
Thus, the model (1) has a solution given by

! Zi(pi b [y $) 9i(pi(s), s)ds
) = (120 PO +a P00+ rms [ 95,0, (0. 5)ds ®

4. Main results

In this section, we establish the existence and uniqueness of solutions, and discuss three different types of stability.
Moreover, we provide some numerical examples to justify our main results.
4.1 Existence and uniqueness results

This subsection aims to discuss the existence and uniqueness of solutions to system (1). To facilitate the establishment
of our findings, the following assumptions are necessary.
(H1) The function f: R x [0, T] — R and kernel .#": R — R are continuous and satisfy:
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fOu ) = fOn Dl < Lgbe—=yl, [ (x) =2 ()] < Llx =),

forallx,y € R, ¢ € [0, T], and constants Ly, L > 0.
(H2) The coefficients are bounded as

|ni(t)| Snmax.,h |Wij| SWmax,ia ’yizymin,i>07 %(0):%, f(O, O)Zf()-
(H3) For each neuron i,

N
% > Mmax, iLr + Z Wmax, il -
Jj=1

In view of Eq. (3), amap ®: ¥ — ¥ is defined as

[PO)+aF (1) 0]+ (s | 95,09 F(pi). ) @

(1+ay)

Rewrite Eq. (4) using two operators ®; and ®;, where

D p;(t) = m[Pi(0)+a%(PiU)v 1],
®2(1) = ﬁ / 95 (1, 5) Gi(pi(s), 5)ds.

Now, we prove the existence theorems by Krasnoselskii’s fixed point theorem [35].
Theorem 1 (Existence of Solutions) Let f: J x R — R is a continuous. Assume that conditions (H1)-(H3) hold.
Then, there exists at least one solution p;(z) € % to the system (1). Provided that

2% 05,(T,0) b

VT an) e

1, i=1,2,..,N. (5)

Proof. Let By = {p € % ||p|| < k} be a closed, convex, and bounded subset with k > 0 and k > ;% where

1
Q- (| pi(0)] +a (% K+ fo) +

By 0, (T 0) G, £(0. o>>
(B + 1DA(Br) 7

and ggmax,i(oa 0): = ley:] Wmax, i J0+ Mmax, ifo.
Step 1: & is a contraction.
Letp, p’ € Bi. Then

Co iporary Math tics 722 | Mohammed S. Abdo, et al.




| ®1pi(t) — 1 p}(t) Fi(pit), 1) — Fi(pi (1), 1)].

| <arap]

From assumptions (H 1), (H2), and the definition of .%;, we have

‘ (Pz() |— ZWU +nz l ZWU +nl( )f( l(t)vt)
N
ZfWuHJ/ pj (1)) = (Pi(1)) |+ |mi(D)]| f(pi(e), 1) = mi(t) (P} (1), )]
j=1
N

< ; (i | L | pjt) = pi(0)| + [mi0) | Ly | pi(r) — p} (1))

N
< Z masz}V+nmaxt >’Pt /(t)’

N
~

<%| pi(t) = pi(r)].
Thus,

|®1pi — @ip]]| < i —pi|-

(1+V’

By condition Eq. (5), ®; is a contraction.

Step 2: d; is compact.

Now, we have to show that @, is equicontinuous and uniformly bounded.
Clearly, ®; is continuous, as is ¢;. Moreover, we have

N
| Zi(pi(s), 5) =40, 0)| =% |pi(1)| + Y [wij| |- (p(2)) — 22 (0)| 4 [ni(0) || f(pi(t), 1) — (0, 0)]|
=
N
§%|Pz(f)|+ lemax.i Ly |P](t)‘ + Nmax, i Lf |Pz(f)| (6)
j=

N
<% |p1(t)| + Z Wmax.i Ly |p](t)| 4 NMmax, i Lf |pi(t)|7
=

and
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C

N
‘ %(Oy 0)| < Z Wmax, i Ji/() + Tmax, if() = gmax,i(oa 0)- (7)
j=1

Hence, for all of p; € B one has

[®2pi(0)] fﬁ [ 95,65 19(pi(5) 9 ds
< [ 94,091 95, 9)~4(0,0) +] 410.0)
b ro N
Sm/o ¥, (1, 5) [%|pi(t)+;Wmax.i Ly |pj(t)] + Nmax,i L |p;(1)]

N
+ Z Wmax, i o+ MNmax, if0‘| ds
=1

b /f y
<o Vg t,s i1l + Wmax.i L ||Pi|| + max,iL i
T ar) o g, (1, 5) [Y|P | FZI w llpill+m £ Il

N
+ Z Wmax, i T+ Tmax, if0‘| ds
J=1

b t
<7 *
_(1+a%)/0 ﬁﬁk(t7 s)

N

YK+ ( Wmax.i Lz + Nmax, i Lf) K
=

N

+ Z Wmax, i Ko+ Tmax, ifo|ds

=1

< 1 Br
~ (14ay) T(Be + 1DA(B)

ﬁﬁk(T, 0) [ 2%K+gmax, i(07 O)] .

Consequently

B ﬂﬁk(T’ 0) [2’)/,'1('—%-%[;13)(7 ,'(O, 0)]

||(I>2pi|| < (1+a%)r(ﬁk+1)A(ﬁk)

®)

Therefore, it follows from Eq. (8) that @, is uniformly bounded.
To prove the equicontinuity of ®,, let p; € Bi. Then, by assumption (H3) together with Egs. (6) and (7), we obtain
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%i(pi(s), $)| <|%(pi(s), 5) = (0, 0) | +]%(0, 0)]

N
<Y llpill + Y wmax.i L [1pill + Mmax,i Ly |96l +194:(0, 0) | < 29K + Zinax, i (0, 0).
=1

Fort1, tp € J with t; < t,, we have

[@ap102)~ @) | = | s [ 05,2050 (5), 5

_(1+ba%) /0’1 Og (11, )9i(pi(s), s)ds

95, (11, 5) — 0} (12, s)

b 1
<t /0 G(pi(s), )ds

b (5] .
s | 5,09 9(p). ] ds
Bk [2%K+%max,i(0, 0) ] 1 /’1
= AB)(I+an)  T(B)Jo

Ug (11, 5) — Vg, (12, 5) | ds

Be 27k +Dnan i(0,0)] 1 [,
A(Bx) (14 ay;) F(ﬁk)'/ll 05, (12, 5)ds

ﬁk [2%7( + gmax, i(ov 0) ]
A(Br) (1+av)

[0, (11, 0) — Vg, (12, 0) + 28, (12, 11)]

2[3k [Z%K‘Fgmax,i(ov 0) ]
~A(BY) (1+ay) D(Be+1)

[9(02) — B (1))

Ast)y = 1y, |[Popi(t2) — P2pi(t1) | — 0. Hence, P; is equicontinuous. By the Arzela—Ascoli theorem, @, is compact.
Step 3: @ p; +Dop;! € By.
Let p;, p; € Bi. Then

| Zi(pi(s), )| <| Fi(pi(s), 5) = Zi(0, 0)[ +| Zi(0, 0)]

M=

<Y [wiil [ (pj(0)) = 2 (0)| + [mi()| | f(pi(t), 1) = (0, 0)| + fo

j=1
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<

M=

Wmax .i L%|Pj(f>‘+77max,il~f |p1(t)’+f0

J

=

<Y winai Lo [|0j]] + Mmax.i Ly [0+ fo
j=1

IN
N

N

Zwmax.i Le%'i‘nmax,i Lf) K+ fo < ¥ K+ fo.
=

Hence

|®1pi(1)] < (1 pi(0) +al Zi(pi(r), 1)]]

(1+a ,‘)

LPi0)[ +a(y x+ fo)
- (1+ay) '

It follows from Eq. (8) that

Bx Vp, (T, 0) 27K + Fimax, (0, 0)]
(14ay) T(Be+ 1)A(B)

[®2pi]| <

Therefore

[ @1pi +P2pi|| <[[P1pi]| + || P2p |
_1pO) | +a(x+ fo) | Be Bp,(T, 0) 2K +oax. (0, 0)
- (1+ay) (14+a%) T(Be+ 1)A(Br)
=Q+Vk
<(1-V)x+Vk=x,
which implies
|@1p;+ Papf|| < k.
Since all statements of Krasnoselskii’s theorem are satisfied, the system (1) has at least one solution. O
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Subsequently, the uniqueness result will be established by applying Banach’ s fixed point theorem [35].
Theorem 2 (Uniqueness of solutions) Let f: J x R — R is continuous. Assume that conditions (H1) and (H2) hold,
then there exists a unique solution for the model (1) on J, provided that

a; )
\% =
<(1+a%>+ ) <l, i=12,..,N, )

where V is defined as in Theorem 1.
Proof. Consider the map ®: ¥ — ¥ defined by

1

Dp;(t) = (tan)

[PU0)+aZ(pi(0).))+ s [ 93,(6:5) A(pi(9). 5)ds.

Let p, p’ € €, we have

| @pi(1) — Dpl(1))| sﬁ | Fipilt). 1) — Filpl(1). 1)
b r /
s [ 903,29 005, )P0, )] .

From assumptions (H1), (H2), and definitions of .%; and %;, we have

)

| Zilpi(t), 1) = FZilpi (1), )| < | pi(r) — pi(¢)

and
N
| Zi(pi(t), 1) = %P (2), 1)| =¥ |pi(r) — pi (1)] + ; \wij| | (pj(1)) = (p}(1))]

+ M) f(pi(r), 1) = f(pi (1), 1) |

N
<H1pi0) =PI} + X e L [s(0) = }(0)|

j=

+Tlmax,i Lf ’Pz(t) _ptl<t)‘

N
< <Yi+ Z Wmax.i Lz +T]max,i Lf ) |pi(t) _pzl(t)|
j=1
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SZ’)/,"Pi(t)_pi/(t)!'

It follows that

| ®p;(1) —Ppi(t)| < !pl —pi ()]

(1+a}/

Z%Bk / /
+ O (t,5) |pi i (s)|ds
(T ) STV 40 910 —2(0)

IN

at 2% Bx ﬁﬁk(t,()) o
((H'a?’i)+(1+a%)A(ﬁk)F(ﬁk+1)>Hpt ol

IA

( at; +2}’195,(T0 )H ||
(I+ay)  (1+an) B

which implies

avy
I @pi-opi] < (1 +9) ol

From Eq. (9), ® is contraction. So, Banach’s fixed point theorem implies that system (1) admits a unique solution.
O

4.2 Stability analysis

This subsection examines three types of stability for the model (1): asymptotic stability, Mittag-Leffler stability, and
finite-time stability.
Theorem 3 (Asymptotic Stability) Assume that #" and f are bounded, i.e,

|2 (p(1)] < Lklp()],  |f(p(1), )] < Lslp(1)],

and |1;(r)| < My. Then, the zero solution of system (1) is asymptotically stable (lim, .. || (¢)|| = 0). Provided that

o000 <o S g

where S = Y |wij|Lx +MyLy.

Proof. Rewrite the solution for p;(¢) as follows
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pi(0) +aFi(p(t), 1) b
= +
1 +ay, 1+ay .

it [ 93,0, 9%(p(5), s,

where a = i%ﬁi];, b= W, % = Z]Wl]‘%/(pj) + nif(pi, t), and gl = —Y%pPi +:%
Applying Lipschitz conditions, we obtain

pi(1)] < 1pi(0)[+a (Zj lwijlLk|pj(1)] JrMan\Pi(t)D
pilt)| < Crar

b
+Ta%/0 |05, (2, 5)] <_%|Pi(s)|+;|wijLK|Pj(S)|+Man|Pi(S)|> ds.

Since ||p|| = max;|p;(t)|,

| < 0 )l +aSlp()]

b ro
e Ty ) O S e,

lp()
which implies

[P (0)]] b
< - 70
) le@)l < 1+4ay + 1+ay

(l—i—ayi—aS
1+ay

!
| 95,09 n+9)lIp(s)ds.
0
Since ¥, > S+ m,we have
l4+ay—aS>0 and —7%+S5<0.

Hence

o) <CilpO)1+C: [ 85, 5)lp(s)lds,

_ 1 _ b(=%+tS)
where C = =5, C2 = g —as-

Using the fractional Gronwall inequality (Lemma 3 and Corollary 1), we obtain

Ip(0)] < Cillp(0) |Eg, (CT(BIB() — D(0)])

Since C; < 0 and sup,~o[B(r) — 9(0)]P < oo,
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1
Ep(—2) ~ = asz—oo.

(1 = Br)

Ast — oo, 7= |Co|T(Be) [9(t) — ¥(0)]P — const. < oo, giving

Gillp0)]]

era—py: "

()]l <

i.e, [[p(¢)]] = 0 as t — oo. Therefore, all neuron states p;(¢) converges asymptotically to zero, establishing asymptotic
stability. O

Theorem 4 (Mittag-Leffler Stability) Under the conditions of Theorem 3, there exist C, A > 0 such that
Ip() < Clip0)]1Eg, (~A[3() —8(0)))
Proof. From Theorem 3, the error vector p(¢) satisfies the integral inequality

le@)] < Cillp0)]i +C2/0t O, (2, 5) [lp(s)l ds,

where

1 c b(—y+5S)

C  — =
" T1xay—aS’ 2 1+ay;,—aS’

N
S = Z |Wij|L;g/ +M11Lf.
Jj=1
Since C; < 0 whenever ¥; > S, the above inequality becomes

o)l < Cullp @~ 1C2| [ 95,19l ds.

Applying the fractional Gronwall inequality (Lemma 3 and Corollary 1), we obtain

Ip @) < Cillp(0)Eg, (~IC2IT (B [B() —~ B(0)))

Letting

b(y—S)

A =G0 (B =T (B — o5

and C = C}, we derive the Mittag-Leffler decay estimate
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b(yi—S)

ol < Cllo©)1Es (~210) -~ 9% ).  A=T(B)T 10

The condition 3, > S = Z?’:l |wij|L ¢ +MpLy guarantees A > 0, ensuring asymptotic Mittag-Leffler decay, i.e.,

1
Eg (—2) ~ %~ asZ— oo,

(1= B)

and therefore ||p(¢)|| — 0 ast — oo. O
Theorem 5 (Finite-Time Stability) Under the conditions of Theorem 3. If for some T > 0, the damping coefficients
satisfy

where A(B) = 1 — B+ k5., then p(1) =0 for 1 > 7.
Proof. By Theorem 3, the error vector p () satisfies the integral inequality

t
@) < Cillp(0)] +C2/0 Vg (1, 5)[[p(s)] ds,
where

1 b(—y+S)

= — p— S:
1+ay —aS’ 2" 1+ay—aS’

G

N
' |W,’j|L,;{( +MyLy.

Jj=1

From the hypothesis ¥ > S, we have C; < 0. Rewriting the inequality with |C;| = —C, gives

Pl < CillpO - G2l [ ,0.5)IpGs) s

Applying the fractional Gronwall inequality (Lemma 3/Corollary 1) yields the Mittag-Leffler estimate

1)1 < Cillo )] Eg  ~ G (BI[B() ~ B(0))).

At =T and denote L: = [9(T) — ©(0)]B and z7: = |C2|T'(Bs)L. Then, using the first-order bound for the Mittag-
Leffler function:

A(Br) L Br
Eg(—z)<1- TR0~ (z=0), A(Br): =1-Pc+ T80
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we obtain

Ip(M)I < i) (1-ABAICIL). (10)

b(y—S)

Substituting |C| = 1 +ay—as 1= 1+ay—aS$’
i 1

we get

b(yi—S)L

1—=A(B) |G| L= 1*A(ﬁk)m'

Multiplying both sides by b/ (14 a¥y; — aS) and rearranging, the condition ; > w — Sisalgebraically equivalent
to 1 — A(Br) |C2| L < 0. Hence, the right-hand side of Eq. (10) is nonpositive. Since C; > 0 and ||p(0)|| > 0, it follows
that

()| =0, ie. p(T)=0.

Finally, according to (Theorem 3), the solution that vanishes at time 7 remains identically zero for all subsequent
times. Hence

p(t)=0 forallt > T.

4.3 Comparison of stability conditions

Asymptotic, Mittag-Leffler, and finite-time stability types vary in their convergence properties and damping needs.
Table 1 shows that asymptotic stability ensures long-term convergence by imposing the least amount of damping. In
contrast, the Mittag-Leffler stability conclusion employs the same damping requirement as the asymptotic case but
provides a more precise characterization of the rate of convergence using the Mittag-Leffler function, which depicts a
decay of fractional order. On the other hand, finite-time stability ensures that the state achieves zero within a finite period
and requires the most stringent constraint on 7. Therefore, the stronger the required convergence rate, the less feasible it
is in practice.

Table 1. Comparison of the stability conditions and their practical implications

Stability Type Damping Condition Convergence Behavior Restrictiveness
. B
Asymptotic Yi>S+ = p(t) —>0ast— oo Low
' T(Be) (1 - Br)
Mittag-Leffler Same as asymptotic Ep (—A[8(1) — ﬂ(O)]Bk) -0 Low
r A
Finite-Time Y > (B)A(B) ) p(t)=0fort >T High
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5. Implementations

Numerical simulations of two- and three-neuron systems are conducted to demonstrate and validate the theoretical
results.
Example 1 (2-neuron system) Consider the following fractional model

Bty p0) == 11 (0)+ § Oonsinpa )+ wrzsin(pa(1) + () (5 ) i),

A€ 78 3p2l0) =~ 1pa(t) + 5 (w1 sin(p1 (1)) + wazsin(p (1) + 1200 (1;) pa() (a1

with initial conditions p;(0) = 0 and p(0) = 1, where i =1, 2, € [0, 1], wi; = 0.2, wip = 0.3, wo; = 0.4, wyp = —0.1,

11 =7 =0.5n()=0.1cos(r), N2(t) = 0.2cos(z), Bo = 0.8, ¥(¢t) =In(1+1¢),and ¥'(¢) = % The system is based on
the following nonlinear terms: ¢ (p(t)) = § sin(p(t))and f(p(t), 1) = 1=p(7). Forx,y € R, | ¢ (x) — ( ) < dx—y|
and |f(x, 1) — f(n, 1) | < 2||x y|- Thus, ¢, f are Lipschitz continuous with constants L » = l Ly= 2 on R. Hence,

the condition (H1) holds. Also, y1 = 75 = 0.5, which satisfies |%| > ¥nin,; = 0.5 > 0, |11 (¢)] S 0.1 and |m2(2)| < 0.2,
which are bounded by Nmax, i» [wij| = 0.2, 0.3, 0.4, —0.1, which are bounded by wax, ;. Thus, the conditions in (H2) are
satisfied with the bounds ¥uin,; = 0.5, Nmax,; = 0.2, and wyay,; = 0.4.

Furthermore, condition (H3) is satisfied, that is

N
1 1
Nmax, iLf + Z Wimax, i Ly = 0.2 () +2(04)==03<05=1.
] 2 4
For existence, the condition of Theorem 1 is
2y ﬁﬁk(T,O)bi 2y, 19ﬁk(T 0) -1

(tamBe (14 L) ABOT (B

We have T =1, k=0, % =0.5, o = 0.8, and ®(¢) = In(1 +¢), which gives ¥ (T, 0) = [}(T) — 9(0)]Po =
0.81n(2) a2 0.733. Substituting the known values and A(fy) =1 — o + % =0.887, we conclude that V ~ 0.638 < 1.
Thus, all the hypotheses of Theorem 1 are fulfilled.

For uniqueness, the condition of Theorem 2 is

av
Ai=——+V ) <.
<<1+am+ )

Substituting the above values with a = 0.225, we obtain

. ( (0.225)(0.5)

_0229)105) | 638) ~0.739 < 1.
1+(0.225)(05) © ) <
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Consequently, by Theorem 2, the system (11) admits a unique solution. Figure 1 shows the simulation for Example

Dynamics of Neurons 1 and 2

107 — 00
— 00
0.8 1
2 06 -
wn
.
% 04
0.2 1
0.0 1
0 2 4 6 8 10
Time
Figure 1. Numerical simulation of 2-neuron system
Example 2 (3-neuron system) The model is defined as
ABC (B = ' .
@07ﬂpi(t):_%pi(t)+8 Wijtanh(pj(t))+ni(t)(l+ gSIH(pi))a i=1,2,3, (12)
j=1

wherer € [0, 1], %, = 0.3, n;(¢) = 0.5cos(z), foralli= 1,2, 3, initial conditions p(0) = (0.1, 0.1, 0.1), B = 0.8, ¥(¢) =

In(1+71), /() = %ﬂ, and the weight matrix is

-04 -0.1 -02

Here, diagonal matrix D is D = diag(0.1, 0.1, 0.1). To verify condition (H1), we have J¢ (p(t)) = %tanh(p(t)), and
f(p,1) = 1+ Lsin(py). Forp, ¥ € R, | # (p)— # ()| = | tanh(p) — tanh(y)] < Llp — I, and | £(p, 1)~ £(y, )] <
Lt||sin(p) —sin(y)| < §|x—y|. Thus, /#, f are Lipschitz continuous with constants L » = §, Ly = & on R. Hence, the
condition (H1) holds. Also, for (H2), |71| = || = |p3| = 0.3, which satisfies ¥% > Ymin,i = 0.3, |71 ()| < 0.5 = Nmax, i»
which are bounded by 0.5, |w; j, < 0.4 = Wax, i» Which are bounded by 0.4. Thus, the conditions in (H2) are satisfied
with the bounds ¥nin, i = 0.3, Nmax,; = 0.5, and wiayx,; = 0.4.

The condition (H3) is satisfied too, i.e,
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N 1 1
Mmax, iLf + Z Wmax,i Ly = 0.5 (8) +3(0.4) 6 =02<03=1.
j=1
For the existence, the condition of Theorem 1 is
_ 2')/, ﬁﬁk(T, 0) b . 2’}’, 19ﬁk(T7 0) <1

(ramBe (14 ofsy) ABOT (B

Substituting the above values with ¥g, (T, 0) ~ 0.733, a = i(ﬁ% ~0.225, b= m ~ 0.968 and A(fy) =~ 0.887,

we conclude that V ~ 0.499 < 1. Thus, all the hypotheses of Theorem 1 are fulfilled.
For uniqueness, the condition of Theorem 2 is

av
A=——+V ) <.
<<1+an~>+ )

Substituting the above values with a = 0.225, we obtain,

s ( (0.225)(0.3)

_022)195) | 499 ) ~0.562 < 1.
15(0.225)(03) " ° 99) 0-562 <

Therefore, Theorem 2 shows that the model (12) has a unique solution. Figure 2 shows the simulation for Example

Dynamics of Neurons 1, 2, and 3

2.0 4

1.5 4

1.0 4

Neuron State

0.5 4

0.0 1

Time (t)

Figure 2. Numerical simulation of 3-neuron system
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Example 3 Consider the following fractional model with two neurons (N = 2) as

””g@ﬁ‘tm( 1) =—=npi(t) +wiZ (p1(2)) + wil (p2(2)) +mi (1) f(p1 (1), 1),
(13)
SICGP pa (1) = —1pa (1) +war H (1 (1)) +waa (p2(1)) +Mat) f(p2(1), 1),

with initial conditions p; (0) = p{ and p>(0) = p?.
For a general Fractional Differential Equation (FDE) of the form <% C’””@g P (t) =g(t,x); x(0) = xo, the numerical
approximation using the two-step Newton’s method is given by

xPH =x(0)+ ﬂ (tp, x)

AB)®
BnP 4 -
+W’§2g(%z,xﬂ %) [(p*nJrl)ﬁ*(P’”)ﬁ}
BhP 2 -1 n=2\1A
+— (ﬁ ﬁ+2 nz’z[ glln—1,X g(tn,Q,X )] 1
B
+(ﬁhﬁ+3é[ tny X7) = 28(ta—1, X + gltn—2, X" )] Ag,

where
Av=|(p=n+D)P(p—n+3+2B)~ (p-nP(p—n+3+3B)|,

As = [(p—n+1)ﬁ (2(p—n)*+ (3B + 10)(p—n) +2B% + 9B + 12)

~(p—m)P (2p—n)?+ (5B +10)(p—n) + 6B + 188+ 12)].

and A(B) =1-B+ 5
For our specific model Eq. (13), we define the functions g;(¢, p1, p2) fori=1, 2 as

gi(t, p1, p2) =—npi(t) +winZ (p1(t)) + wi (p2(2)) + mi(t) f(p1(2), 1),
82(t, p1, p2) == 12p2(t) + w212 (p1(2)) +waa K (p2(1)) + M2(2) f(p2(1), 1).

The iterative scheme for each neuron state is then given by
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p+1 1-Bi
=p; + Iy,
pl ™ =p? A(ﬁ)gl(p pl. pY)

BihP p R | |
+m’;gl(ln—2,pl 2»P2 2) (p—n—i—l)ﬁ —(p—n)ﬁ}

+ﬁl—hﬁli [g1(t Pl P ) it P2 Pnz)}Au
A(ﬁl)r(ﬁl+2)n:2 P11 o P2 y P15 P2 ,

BihP p

=" Y noany_ o e n—1 Jn—1 - n—2 n—-2 A
+2A(ﬁl)r(ﬁl+3);2[g1(r,pl,pz) gi(ta—1, P15 Py )+ 812, P17 P77 |A2 1,

and

p+1 0 1_[}2

— 4+ tp, P7 P
p2 p2 A(BZ)gz(p pl pZ)

B hP2 p

+ ABTB+D) ngzgz(tnfz, P2 oy ) [(p—n+ )P —(p— n)ﬁz}

hP2 14 B .
JF(Bzﬁzﬁz_'_z;{gz -1, P1~ ,PEZ 1)*82(6172,/)1 y Py 2)}41,2

+ % i |:82 tm pl ’ p2) 2g2(tn*1a p{l_lv Pg_l) +g2(tn*23 p?_27 Pg_z) A 25
2A(B)T(B2+3) /= ’

where A;, 1 and A, ; are calculated using i, A} 2 and Az, are computed using f3;.

With g;(z, p1, p2) = —1ipi(1) + X, wijtanh(p;()) +1;pi(r) sin(r), where J# (p;(t)) = tanh(p;(z)) and f(p;(t), 1) =
pi(t) sin(z), the above numerical scheme enables the simulation of the fractional model Eq. (13). Figures 3-4 show the
simulation of the model (13) according to the parameters selected from Table 2.

Table 2. Parameters and functions used in the numerical simulation

Symbol Description Value/Expression Notes
Br FD order 0.8 ABC derivative
% Damping coefficient 8 i=1,2
. . 0 03 . .
Wij Coupling weights 03 0 Excitatory coupling
n:(r) Modulation function 0.5 Constant (i = 1, 2)
B(t) Time scaling function 1—e! ¥(t)=e"
JH (x) Kernel function tanh(x) Ly =1
f(x, 1) Activation function xsin(t) Li=1
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Table 2. (cont.)

Symbol Description Value/Expression Notes
T Simulation time 10 Units: seconds
h Step size 0.1 Newton’s method
p1(0) Initial state (neuron 1) 1 -
p2(0) Initial state (neuron 2) -1
Comparison of Stability Behaviors of Neuron 1
1.0
= = Mittag-Leftler
=== Asymptotic
0.8 s s
Finite-Time
- 06
3
0.4
0.2
o -
0 2 4

10
Time (t)

Figure 3. Stability dynamics of neuron 1 (p; (7)) under three stability regimes over ¢ € [0, 10] with p; (0) =1

Comparison of Stability Behaviors of Neuron 2
0.0 M SN N NN SN SN SN SN S S S
-0.2
- -04
3
-0.6
== == Mittag-Lefller
-0.8
=== Asymptotic
=== Finite-Time
-1.0
0 2 4

10
Time (t)

Figure 4. Stability dynamics of neuron 2 (p,(¢)) under three stability regimes over ¢ € [0, 10] with p,(0) = —1
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5.1 Discussion

Here, we discuss and interpret the figures obtained from numerical simulations.

Figure 1 displays the dynamics of two interacting neurons governed by a logarithmic kernel ¥ (¢) = In(1++¢). Coupled
sine activations and periodic external inputs generate smooth oscillations that gradually stabilize. The system remains
bounded due to damping and balanced coupling, illustrating stable, synchronized behavior over time.

Figure 2 presents the dynamic responses of a three-neuron network with mixed excitatory and inhibitory couplings.
Damped oscillations appear due to the balance between the coupling matrix W and the damping coefficients % = 0.3. The
trajectories py (¢), p2(t), and p3(7) converge to steady states, confirming bounded synchronization in the system.

Figures 3 and 4 present the time-domain behavior of Neuron 1 and Neuron 2, respectively, under three distinct stability
regimes: Mittag—Leffler, Asymptotic, and Finite-Time. Both neurons are initialized with opposite signs, p; (0) = 1 and
p2(0) = —1, time scaling function ¥(t) = 1 —e~, B = 0.8, % = 8 and interact symmetrically through the coupling matrix
w. The results demonstrate how fractional-order operators modify the stability characteristics of coupled neural systems
compared to their integer-order counterparts.

Neuron 1 (Figure 3) exhibits a slow, non-exponential convergence to equilibrium in the Mittag-Leffler trajectory,
demonstrating the fractional kernel’s ability to sustain memory effects. At t = Ty = 6, the finite-time curve decays
smoothly to zero, but the asymptotic profile converges more quickly but stays non-zero for + — co. Neuron 2 (Figure 4)
shows essentially comparable dynamics, but because of its negative initial state, its polarity is flipped. While introducing
small amplitude and phase deviations during transients, the connection maintains stability symmetry, as confirmed by
the simultaneous convergence of both neurons. The results reveal that asymptotic stability requires the mildest damping
condition, while the Mittag-Leffler case provides a precise fractional-order decay rate under the same assumptions. In
contrast, finite-time stability ensures complete state extinction within a finite interval but demands the strongest damping
threshold. Overall, these findings demonstrate that, depending on the fractional parameters and coupling strengths,
fractional-order neural systems can display a range of stability characteristics, from memory-driven Mittag-Leffler decay
to exponential and finite-time stabilization.

Remark 1 The function J(¢) governs the time-scaling of the fractional operator and thus directly affects the decay
rate and memory strength in the Mittag-Leffler estimate. If ¥(¢) grows faster (e.g., t> or ¢/ — 1), the argument of the
Mittag-Leffler function increases rapidly, leading to faster decay and stronger stability. Conversely, a slower function
(e.g., In(1+41) or /2 produces slower decay and longer memory. The classical choice ¥(¢) = 7 yields the standard
fractional case. Hence, ¥(¢) acts as a tunable factor controlling both the convergence rate and the memory depth of the
system.

6. Conclusion

In this work, we have investigated a fractional-order neural system governed by the ABC operator with respect
to the function ¥ (¢). Using Banach’s and Krasnoselskii’s fixed-point theorems, we established rigorous conditions for
the existence and uniqueness of solutions. The stability analysis revealed a clear hierarchy among the three stability
types: asymptotic stability corresponds to gradual long-term decay, Mittag-Leftler stability describes algebraic-type
convergence, and finite-time stability ensures complete quenching of trajectories within a finite horizon. The explicit
damping thresholds derived for the finite-time regime guarantee positivity and physical consistency of decay rates. The
function ¥ (¢) further enables adaptive temporal scaling, enhancing numerical stability near 7 = 0. Simulations of two-
and three-neuron systems validated these results, confirming the theoretical predictions and demonstrating how fractional
parameters and damping intensity control the transition between the three stability modes.

Future work may focus on extending the present analysis to larger neural structures and incorporating external
perturbations or delays. Moreover, a promising extension of this work involves generalizing the model to higher-order
ABC derivatives with f§; € (m — 1, m), enabling the incorporation of all m initial conditions pi(k) (0) fork=0,1,,m—1.
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