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Abstract: This study presents a fractional-order neural network model formulated using the Atangana-Baleanu-Caputo
Fractional Derivative (ABC-FD) defined with respect to a generalized kernel function ϑ(t). The primary objective is to
establish rigorous results on the existence, uniqueness, and stability of solutions under minimal regularity assumptions. By
employing Banach’s and Krasnoselskii’s fixed point theorems, we prove existence and uniqueness. The stability analysis
compares three regimes: Mittag-Leffler, asymptotic, and finite-time, showing that they form a hierarchy of convergence
strength: asymptotic stability ensures gradual decay, Mittag-Leffler stability provides algebraic convergence, and finite-
time stability guarantees exact quenching within a bounded interval. Numerical simulations of two- and three-neuron
systems confirm these theoretical distinctions, illustrating the role of both the fractional order and ϑ(t) in shaping the rate
and type of convergence.
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1. Introduction
Fractional-order systems have found successful applications in various domains, including viscoelasticity, anomalous

diffusion, and control systems, due to their ability to capture long-term dependencies and complex dynamic behaviors.
In neural networks, fractional differential equations provide a natural framework to model processes such as synaptic
plasticity, adaptive coupling, and memory effects [1–5].

The development of fractional calculus has significantly advanced the modeling and analysis of complex dynamical
systems, particularly in neuroscience, where memory-dependent processes and non-local interactions are pervasive [6]. In
this context, Mechee et al. [7] introduced novel α-fractional operators for general functions, providing new perspectives
for defining and analyzing fractional integrals and derivatives. With its non-singular Mittag-Leffler kernel, the Atangana-
Baleanu-Caputo Fractional Derivative (ABC-FD) has subsequently emerged as a powerful tool for capturing hereditary
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effects in neural networks. Unlike the classical Caputo or Riemann-Liouville FDs (Cap-FDs or RL-FDs), the Atangana-
Baleanu-Caputo (ABC) operator avoids kernel singularities while preserving the ability to model power-law memory
decay, making it particularly suitable for neurodynamic systems [8, 9].

Fractional-order neural networks have attracted increasing attention for their ability to capture memory, hereditary
properties, and delayed signal transmission inherent in biological and artificial neural systems. Various studies have
established asymptotic, Mittag-Leffler, and finite-time stability results for delayed and inertial fractional-order networks,
contributing to global convergence and robustness analyses [10–18].

Recent developments in fractional-order artificial neural networks have further explored the influence of fractional
activation functions and fractional orders on synchronization and stability, with several reviews and analyses highlighting
their advantages in system stabilization and parameter optimization [19–21]. Variable-order and tempered fractional
neural networks have also been investigated to address complex dynamic behaviors and enhance modeling flexibility,
establishing new existence and stability results using fixed-point and Mittag-Leffler stability approaches [22–24].

Since time delays are intrinsic to neural communication, many works have focused on their impact on the stability of
fractional systems. Notable contributions include stability criteria for delayed and fuzzy neural networks using Lyapunov,
Razumikhin, and fractional techniques, improving both theoretical and computational tractability [25–29].

Building upon these advances, the present study introduces a fractional neural network model governed by a time-
scaling functionϑ(t) andMittag-Leffler-type kernel, providing a unified framework that generalizes existing non-singular
fractional models. The paper establishes the existence and uniqueness of solutions and investigates three types of stability:
asymptotic, Mittag-Leffler, and finite-time, under explicit conditions, thus deepening the understanding of how ϑ(t)
modulates the memory and decay characteristics of the system. Specifically, we consider the fractional model as follows:

A BC Dβk
0, ϑ ρi(t) =− γiρi(t)+

N

∑
j=1

wi jK (ρ j(t))+ηi(t) f (ρi(t), t), ρi(0) = ρ0
i , (1)

where A BC Dβk
0, ϑ is the ABC-FD of order βk ∈ (0, 1) with respect to increasing function ϑ(t), ρi(t) is the state of the i-th

neuron i = 1, 2, . . . , N, γi is the damping coefficient of the i-th neuron, wi j represents the synaptic weight from the j-th to
the i-th neuron, K (·) is a kernel function modeling coupling between neurons, ηi(t) is a modulation function dependent
on time, and f (ρi(t), t) is an activation function for the i-th neuron.

The central question of this study is how the existence, uniqueness, and stability of a fractional-order neural network
are affected by employing the ABC derivative with respect to a time-scaling function ϑ(t). We investigate whether this
formulation enhances dynamical flexibility and ensures convergence across asymptotic, Mittag-Leffler, and finite-time
stability regimes.

The main contributions of this work can be summarized as follows. First, we establish existence and uniqueness
results for the fractional neural system (1) using Banach’s and Krasnoselskii’s fixed-point theorems under minimal
assumptions. Second, we derive explicit damping conditions characterizing three distinct stability regimes: asymptotic,
Mittag-Leffler, and finite-time, and clarify their hierarchical relationship in terms of convergence strength. Third, we
provide numerical validation through Python-based simulations for two- and three-neuron networks, which confirm the
theoretical findings by illustrating algebraic decay under Mittag-Leffler stability and exact quenching under finite-time
stability.

The remainder of this paper is organized as follows: Section 2 provides a review of ABC fractional calculus, key
lemmas, and the study’s methodology. Section 3 introduces the equivalent integral of the model. Section 4 establishes
the existence and uniqueness results, and further provides detailed analyses of asymptotic, Mittag-Leffler, and finite-time
stability. Section 5 presents numerical examples and simulations. Section 6 discusses the conclusion and future work.
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2. Preliminaries
This section presents the background and methodology pertinent to the study.

2.1 Background
Some fundamental introductions to fractional calculus and the proposed model are provided in this section.
As usual, C : =C(J, RN) is the Banach space of all continuous functions from J to RN , with the norm ∥ ·∥∞ defined

by ∥ωi∥= max1≤i≤N supν∈J |ω(ν)|.
Definition 1 [6] Let µ ∈ (0, 1] and ω ∈ H1(0, T ). Then, the ABC-FD for a function ω in the sense of Caputo is

expressed as

A BC
(
Dµ

0 ω
)
(t) =

∆(µ)
1−µ

∫ t

0
Eµ

[
− µ

1−µ
(t −ν)µ ω ′(ν)

]
dν , t ∈ J,

where∆(µ)= 1−µ+ µ
Γ(µ) is a normalization function satisfying∆(0)=∆(1)= 1, andEµ(·) is theMittag-Leffler function,

defined as

Eµ(ω) =
∞

∑
i=0

ω i

Γ(µi+1)
, Re(µ)> 0, r ∈ C,

where Γ(µ) =
∫ ∞

0 e−xxµ−1dx, µ > 0.
Definition 2 [6] For µ ∈ (0, 1] and ω ∈ H1(0, T ), the Atangana-Baleanu (AB) fractional integral of order µ for a

function ω is given by

A BI µ
0 ω(t) =

1−µ
∆(µ)

ω(t)+
µ

∆(µ)Γ(µ)

∫ t

0
(t −ν)µ−1ω(s)ds, t ∈ J.

Definition 3 [30] The ϑ -RL fractional integral of an integrable function ω(t) with respect to another function ϑ(t)
is defined by

RL I µ
0, ϑ ω(t) =

1
Γ(µ)

∫ t

0
(ϑ(t)−ϑ(s))µ−1 ϑ ′(s)ω(s)ds. (2)

Definition 4 [31, 32] The ϑ -ABC-FD for a function ω(t) with respect to another function ϑ(t) is defined as

A BC Dµ
0, ϑ ω(t) =

∆(µ)
1−µ

∫ t

0
ϑ ′(s)Eµ

(
− µ

1−µ
(ϑ(t)−ϑ(s))µ

)
ω ′

ϑ (ν)dν ,

where ϑ ′(t) = d
dt ϑ(t) and ω ′

ϑ (t) =
ω ′(t)
ϑ ′(t) . Moreover, the corresponding AB fractional integral is

A BI µ
0; ϑ ω(t) =

1−µ
∆(µ)

ω(t)+
µ

∆(µ)
RLI µ

0, ϑ ω(t), t ∈ J.
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Lemma 1 [30] Let µ, ρ > 0 and ω: J→ R. Then
1) RL I µ

0; ϑ [ϑ(t)−ϑ(0)]ρ−1 = Γ(ρ)
Γ(µ+ρ) [ϑ(u)−ϑ(0)]µ+ρ−1;

2) RL I µ
0; ϑ

RL I
ρ

0; ϑ ω(t) = RL I
µ+ρ; φ

0; ϑ ω(t);
3)
(

1
φ(t)

d
dt

)
RL I µ

0; ϑ ω(t) = ω(t).
Lemma 2 [33] For µ ∈ (0, 1], the following relations hold:
i)
(

A BI µ
0; ϑ

A BC Dµ
0; ϑ ω

)
(t) = ω(t)−ω(0);

ii)
(

A BC Dµ
0; ϑ

A BI µ
0; ϑ ω

)
(t) = ω(t)−ω(0)Eµ

(
−µ
1−µ (ϑ(u)−ϑ(0))µ

)
.

Lemma 3 [34] Let ψ, η : [α, β ] → R+ be Lebesgue integrable functions and κ: [α, β ] → R+ a continuous, non-
decreasing function. Let φ ∈ C1[α, β ] be a strictly increasing time-scaling function with φ ′(t) > 0 for all t ∈ [α, β ].
Suppose the inequality

ψ(t)≤ η(t)+κ(t)
∫ t

α
φ ′(s)(φ(t)−φ(s))ν−1 ψ(s)ds, ν ∈ (0, 1)

holds for all t ∈ [α, β ]. Then, the following bound applies:

ψ(t)≤ η(t)+
∫ t

α
Gν (κ(t)Γ(ν), φ(t)−φ(s))φ ′(s)η(s)ds,

where

Gν(z, τ) =
∞

∑
k=1

zkτνk−1

Γ(νk)

is the generalized fractional resolvent kernel.
Corollary 1 [34] Under the hypothesis of Lemma 3, let η be a nondecreasing function on [α, β ]. Then, we have

ψ(t)≤ η(t)Eν
(
κ(t)Γ(ν)

)
[φ(t)−φ(α)]ν , ∀t ∈ [α, β ].

Finally, since fundamental results like Banach’s and Krasnoselskii’s fixed-point theorems and the Lipschitz condition
are standard in most texts, we refer to them in the reference [11].

2.2 Methodology

In this subsection, we present the methodological framework adopted to analyze the proposed fractional-order neural
network model formulated using the Atangana-Baleanu-Caputo Fractional Derivative (ABC-FD) with respect to a time-
scaling function ϑ(t). The study begins with the formulation of a generalized neural network system that incorporates
memory effects through a nonsingular Mittag-Leffler kernel. The differential model is then transformed into an equivalent
integral equation by employing the properties of the ABC fractional integral operator, allowing the use of fixed-point
theory. Existence and uniqueness of solutions are rigorously established under continuity, Lipschitz, and boundness
conditions on the nonlinear activation function f (x, t) and kernel K (x), using Banach’s and Krasnoselskii’s fixed-point
theorems. Subsequently, we investigate three types of stability: asymptotic, Mittag-Leffler, and finite-time, by deriving
appropriate fractional inequalities and damping conditions that characterize the system’s convergence behavior. Finally, a
numerical scheme based on a fractional Adams-Bashforth-Moulton approach is implemented to approximate the solutions.
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Python simulations for two- and three-neuron systems are conducted to illustrate the theoretical predictions and compare
the distinct stability behaviors.

3. Equivalent integral of model (1)
In this section, the generalized ABC fractional model and its equivalent integral form are introduced. The dynamics

of the i-th neural network are governed by:

A BC Dβk
0, ϑ ρi(t) =−γiρi(t)+

N

∑
j=1

wi jK (ρ j(t))+ηi(t) f (ρi(t), t), t ∈ [0, T ],

with the initial conditions

ρi(0) = ρ0
i ,

where i = 1, 2, . . . , N, γi, ρi, wi j, K (·), ηi, and f are defined as above.
Based on the preceding results, we now derive the equivalent integral form of the proposed model. By applying

Lemma 2 and using the fractional integral operator A BI βk
0; ϑ on both sides of the system, we obtain

ρi(t)−ρi(0) = A BI βk
0; ϑ

(
−γiρi(t)+

N

∑
j=1

wi jK (ρ j(t))+ηi(t) f (ρi(t), t)

)
.

Using Definition 4 for A BI βk
0; ϑ , we have

ρi(t) =ρi(0)+
1−βk

∆(βk)

[
−γiρi(t)+

N

∑
j=1

wi jK (ρ j(t))+ηi(t) f (ρi(t), t)

]

+
βk

∆(βk)

RL

I βk
0; ϑ

[
−γiρi(t)+

N

∑
j=1

wi jK (ρ j(t))+ηi(t) f (ρi(t), t)

]
.

By Eq. (2),

ρi(t) =ρi(0)+
1−βk

∆(βk)

[
−γiρi(t)+

N

∑
j=1

wi jK (ρ j(t))+ηi(t) f (ρi(t), t)

]

+
βk

Γ(βk)∆(βk)

∫ t

0
[ϑ(t)−ϑ(s)]βk−1 ϑ ′(s)

[
− γiρi(s)+

N

∑
j=1

wi jK (ρ j(s))

+ηi(s) f (ρi(s), s)
]
ds.
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Note that the first term is a function that includes ρi(t) as an argument. Then

ρi(t) =
1(

1+ γi
1−βk
∆(βk)

) [ρi(0)+
1−βk

∆(βk)

(
N

∑
j=1

wi jK (ρ j(t))+ηi(t) f (ρi(t), t)

)]

+
1(

1+ γi
1−βk
∆(βk)

) βk

Γ(βk)∆(βk)

∫ t

0
[ϑ(t)−ϑ(s)]βk−1 ϑ ′(s)

×
[
− γiρi(s)+

N

∑
j=1

wi jK (ρ j(s))+ηi(s) f (ρi(s), s)
]
ds.

For convenience, let us denote

ϑβk
(t, s): = [ϑ(t)−ϑ(s)]βk , ϑ ∗

βk
(t, s): = [ϑ(t)−ϑ(s)]βk−1 ϑ ′(s),

a: =
1−βk

∆(βk)
, b: =

βk

Γ(βk)∆(βk)
,

Fi(ρi(t), t): =
N

∑
j=1

wi jK (ρ j(t))+ηi(t) f (ρi(t), t),

and

Gi(ρi(t), t): =− γiρi(t)+
N

∑
j=1

wi jK (ρ j(t))+ηi(t) f (ρi(t), t).

Thus, the model (1) has a solution given by

ρi(t) =
1

(1+aγi)
[ ρi(0)+aFi(ρi(t), t)]+

b
(1+aγi)

∫ t

0
ϑ ∗

βk
(t, s) Gi(ρi(s), s)ds. (3)

4. Main results
In this section, we establish the existence and uniqueness of solutions, and discuss three different types of stability.

Moreover, we provide some numerical examples to justify our main results.

4.1 Existence and uniqueness results
This subsection aims to discuss the existence and uniqueness of solutions to system (1). To facilitate the establishment

of our findings, the following assumptions are necessary.
(H1) The function f : R× [0, T ]→ R and kernel K : R→ R are continuous and satisfy:
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| f (x, t)− f (y, t)| ≤ L f |x− y|, |K (x)−K (y)| ≤ LK |x− y|,

for all x, y ∈ R, t ∈ [0, T ], and constants L f , LK > 0.
(H2) The coefficients are bounded as

|ηi(t)| ≤ ηmax, i, |wi j| ≤ wmax, i, γi ≥ γmin, i > 0, K (0) = K0, f (0, 0) = f0.

(H3) For each neuron i,

γi > ηmax, iL f +
N

∑
j=1

wmax, iLK .

In view of Eq. (3), a map Φ: C → C is defined as

Φρi(t) =
1

(1+aγi)
[ ρi(0)+aFi(ρi(t), t)]+

b
(1+aγi)

∫ t

0
ϑ ∗

βk
(t, s) Gi(ρi(s), s)ds. (4)

Rewrite Eq. (4) using two operators Φ1 and Φ2, where

Φ1ρi(t) =
1

(1+aγi)
[ ρi(0)+aFi(ρi(t), t)] ,

Φ2ρi(t) =
b

(1+aγi)

∫ t

0
ϑ ∗

βk
(t, s) Gi(ρi(s), s)ds.

Now, we prove the existence theorems by Krasnoselskii’s fixed point theorem [35].
Theorem 1 (Existence of Solutions) Let f : J×R → R is a continuous. Assume that conditions (H1)-(H3) hold.

Then, there exists at least one solution ρi(t) ∈ C to the system (1). Provided that

∇ =:
2γi ϑβk

(T, 0) b
(1+aγi)βk

< 1, i = 1, 2, ..., N. (5)

Proof. Let Bκ = {ρ ∈ C : ∥ρ∥ ≤ κ} be a closed, convex, and bounded subset with κ > 0 and κ > Ω
1−∇ where

Ω: =
1

(1+aγi)

(
| ρi(0)|+a(γi κ + f0)+

βk ϑβk
(T, 0)Gmax, i(0, 0)

Γ(βk +1)∆(βk)

)
,

and Gmax, i(0, 0): = ∑N
j=1 wmax, i K0 +ηmax, i f0.

Step 1: Φ1 is a contraction.
Let ρ, ρ ′ ∈ Bκ . Then
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∣∣ Φ1ρi(t)−Φ1ρ ′
i (t)
∣∣ ≤ a

(1+aγi)

∣∣Fi(ρi(t), t)−Fi(ρ ′
i (t), t)

∣∣ .
From assumptions (H1), (H2), and the definition of Fi, we have

∣∣Fi(ρi(t), t)−Fi(ρ ′
i (t), t)

∣∣= ∣∣∣∣∣ N

∑
j=1

wi jK (ρ j(t))+ηi(t) f (ρi(t), t)−
N

∑
j=1

wi jK (ρ ′
j(t))+ηi(t) f (ρ ′

i (t), t)

∣∣∣∣∣
≤

N

∑
j=1

∣∣wi j
∣∣ ∣∣K (ρ j(t))−K (ρ ′

j(t))
∣∣+ |ηi(t)|

∣∣ f (ρi(t), t)−ηi(t) f (ρ ′
i (t), t)

∣∣

≤
N

∑
j=1

∣∣wi j
∣∣LK

∣∣ ρ j(t)−ρ ′
j(t)
∣∣+ |ηi(t)|L f

∣∣ ρi(t)−ρ ′
i (t)
∣∣

≤

(
N

∑
j=1

wmax, i LK +ηmax, iL f

)∣∣ ρi(t)−ρ ′
i (t)
∣∣

≤γi
∣∣ ρi(t)−ρ ′

i (t)
∣∣ .

Thus,

∥Φ1ρi −Φ1ρ ′
i∥ ≤ aγi

(1+aγi)

∥∥ρi −ρ ′
i
∥∥ .

By condition Eq. (5), Φ1 is a contraction.
Step 2: Φ2 is compact.
Now, we have to show that Φ2 is equicontinuous and uniformly bounded.
Clearly, Φ2 is continuous, as is Gi. Moreover, we have

| Gi(ρi(s), s)−Gi(0, 0)|=γi |ρi(t)|+
N

∑
j=1

∣∣wi j
∣∣ ∣∣K (ρ j(t))−K (0)

∣∣+ |ηi(t)| | f (ρi(t), t)− f (0, 0)|

≤γi |ρi(t)|+
N

∑
j=1

wmax .i LK

∣∣ρ j(t)
∣∣+ηmax, i L f |ρi(t)|

≤γi |ρi(t)|+
N

∑
j=1

wmax .i LK

∣∣ρ j(t)
∣∣+ηmax, i L f |ρi(t)| ,

(6)

and
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| Gi(0, 0)| ≤
N

∑
j=1

wmax, i K0 +ηmax, i f0 = Gmax, i(0, 0). (7)

Hence, for all of ρi ∈ Bκ one has

|Φ2ρi(t)| ≤
b

(1+aγi)

∫ t

0
ϑ ∗

βk
(t, s) | Gi(ρi(s), s)|ds

≤ b
(1+aγi)

∫ t

0
ϑ ∗

βk
(t, s) | Gi(ρi(s), s)−Gi(0, 0)|+ | Gi(0, 0)|

≤ b
(1+aγi)

∫ t

0
ϑ ∗

βk
(t, s)

[
γi |ρi(t)|+

N

∑
j=1

wmax .i LK

∣∣ρ j(t)
∣∣+ηmax, i L f

∣∣ρ j(t)
∣∣

+
N

∑
j=1

wmax, i K0 +ηmax, i f0

]
ds

≤ b
(1+aγi)

∫ t

0
ϑ ∗

βk
(t, s)

[
γi∥ρi∥+

N

∑
j=1

wmax .i LK ∥ρi∥+ηmax, i L f ∥ρi∥

+
N

∑
j=1

wmax, i K0 +ηmax, i f0

]
ds

≤ b
(1+aγi)

∫ t

0
ϑ ∗

βk
(t, s)

[
γiκ +

(
N

∑
j=1

wmax .i LK +ηmax, i L f

)
κ

+
N

∑
j=1

wmax, i K0 +ηmax, i f0

]
ds

≤ 1
(1+aγi)

βk

Γ(βk +1)∆(βk)
ϑβk

(T, 0) [ 2γiκ +Gmax, i(0, 0)] .

Consequently

∥Φ2ρi∥ ≤
βk ϑβk

(T, 0) [2γiκ +Gmax, i(0, 0)]
(1+aγi)Γ(βk +1)∆(βk)

. (8)

Therefore, it follows from Eq. (8) that Φ2 is uniformly bounded.
To prove the equicontinuity of Φ2, let ρi ∈ Bκ . Then, by assumption (H3) together with Eqs. (6) and (7), we obtain
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|Gi(ρi(s), s)| ≤|Gi(ρi(s), s)−Gi(0, 0) |+ |Gi(0, 0)|

≤γi ∥ρi∥+
N

∑
j=1

wmax .i LK ∥ρi∥+ηmax, i L f ∥ρi∥+ | G i(0, 0) | ≤ 2γiκ +Gmax, i(0, 0).

For t1, t2 ∈ J with t1 < t2, we have

|Φ2ρi(t2)−Φ2ρi(t1) |=
∣∣∣∣ b
(1+aγi)

∫ t2

0
ϑ ∗

βk
(t2, s)Gi(ρi(s), s)ds

− b
(1+aγi)

∫ t1

0
ϑ ∗

βk
(t1, s)Gi(ρi(s), s)ds

∣∣∣∣
≤ b
(1+aγi)

∫ t1

0

∣∣∣ϑ ∗
βk
(t1, s)−ϑ ∗

βk
(t2, s)

∣∣∣Gi(ρi(s), s)ds

+
b

(1+aγi)

∫ t2

t1
ϑ ∗

βk
(t2, s) |Gi(ρi(s), s)|ds

≤
βk [2γiκ +Gmax, i(0, 0) ]

∆(βk)(1+aγi)

1
Γ(βk)

∫ t1

0

∣∣∣ϑ ∗
βk
(t1, s)−ϑ ∗

βk
(t2, s)

∣∣∣ds

+
βk [2γiκ +Gmax, i(0, 0) ]

∆(βk)(1+aγi)

1
Γ(βk)

∫ t2

t1
ϑ ∗

βk
(t2, s)ds

≤
βk [2γiκ +Gmax, i(0, 0) ]

∆(βk)(1+aγi)

[
ϑβk

(t1, 0)−ϑβk
(t2, 0)+2ϑβk

(t2, t1)
]

≤
2βk [2γiκ +Gmax, i(0, 0) ]
∆(βk)(1+aγi)Γ(βk +1)

[ϑ(t2)−ϑ(t1)]
βk .

As t1 → t2, |Φ2ρi(t2)−Φ2ρi(t1) | → 0. Hence, Φ2 is equicontinuous. By the Arzelà–Ascoli theorem, Φ2 is compact.
Step 3: Φ1ρi +Φ2ρ ′

i ∈ Bκ .

Let ρi, ρ ′
i ∈ Bκ . Then

| Fi(ρi(s), s)| ≤| Fi(ρi(s), s)−Fi(0, 0)|+ | Fi(0, 0)|

≤
N

∑
j=1

∣∣wi j
∣∣ ∣∣K (ρ j(t))−K (0)

∣∣+ |ηi(t)| | f (ρi(t), t)− f (0, 0)|+ f0
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≤
N

∑
j=1

wmax .i LK

∣∣ρ j(t)
∣∣+ηmax, i L f

∣∣ρ j(t)
∣∣+ f0

≤
N

∑
j=1

wmax .i LK

∥∥ρ j
∥∥+ηmax, i L f

∥∥ρ j
∥∥+ f0

≤

(
N

∑
j=1

wmax .i LK +ηmax, i L f

)
κ + f0 ≤ γi κ + f0.

Hence

|Φ1ρi(t)| ≤
1

(1+aγi)
[| ρi(0)|+a | Fi(ρi(t), t)|]

≤| ρi(0)|+a(γi κ + f0)

(1+aγi)
.

It follows from Eq. (8) that

∥∥Φ2ρ ′
i
∥∥≤ βk ϑβk

(T, 0) [2γiκ +Gmax, i(0, 0)]
(1+aγi)Γ(βk +1)∆(βk)

.

Therefore

∥∥Φ1ρi +Φ2ρ ′
i
∥∥≤∥Φ1ρi∥+

∥∥Φ2ρ ′
i
∥∥

≤| ρi(0)|+a(γi κ + f0)

(1+aγi)
+

βk ϑβk
(T, 0) [2γiκ +Gmax, i(0, 0)]

(1+aγi)Γ(βk +1)∆(βk)

=Ω+∇κ

≤(1−∇)κ +∇κ = κ,

which implies

∥∥Φ1ρi +Φ2ρ ′
i
∥∥≤ k.

Since all statements of Krasnoselskii’s theorem are satisfied, the system (1) has at least one solution.
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Subsequently, the uniqueness result will be established by applying Banach’s fixed point theorem [35].
Theorem 2 (Uniqueness of solutions) Let f : J×R→R is continuous. Assume that conditions (H1) and (H2) hold,

then there exists a unique solution for the model (1) on J, provided that

(
a γi

(1+aγi)
+∇

)
< 1, i = 1, 2, ..., N, (9)

where ∇ is defined as in Theorem 1.
Proof. Consider the map Φ: C → C defined by

Φρi(t) =
1

(1+aγi)
[ ρi(0)+aFi(ρi(t), t)]+

b
(1+aγi)

∫ t

0
ϑ ∗

βk
(t, s) Gi(ρi(s), s)ds.

Let ρ, ρ ′ ∈ C , we have

∣∣ Φρi(t)−Φρ ′
i (t)
∣∣ ≤ a

(1+aγi)

∣∣Fi(ρi(t), t)−Fi(ρ ′
i (t), t)

∣∣
+

b
(1+aγi)

∫ t

0
ϑ ∗

βk
(t, s)

∣∣ Gi(ρi(s), s)−Gi(ρ ′
i (s), s)

∣∣ds.

From assumptions (H1), (H2), and definitions of Fi and Gi, we have

∣∣Fi(ρi(t), t)−Fi(ρ ′
i (t), t)

∣∣≤ γi
∣∣ ρi(t)−ρ ′

i (t)
∣∣ ,

and

∣∣ Gi(ρi(t), t)−Gi(ρ ′
i (t), t)

∣∣=γi
∣∣ρi(t)−ρ ′

i (t)
∣∣+ N

∑
j=1

∣∣wi j
∣∣ ∣∣K (ρ j(t))−K (ρ ′

j(t))
∣∣

+ |ηi(t)|
∣∣ f (ρi(t), t)− f (ρ ′

i (t), t)
∣∣

≤γi
∣∣ρi(t)−ρ ′

i (t)
∣∣+ N

∑
j=1

wmax .i LK

∣∣ρ j(t)−ρ ′
j(t)
∣∣

+ηmax, i L f
∣∣ρi(t)−ρ ′

i (t)
∣∣

≤

(
γi +

N

∑
j=1

wmax .i LK +ηmax, i L f

)∣∣ρi(t)−ρ ′
i (t)
∣∣
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≤2γi
∣∣ρi(t)−ρ ′

i (t)
∣∣ .

It follows that

∣∣ Φρi(t)−Φρ ′
i (t)
∣∣ ≤ a γi

(1+aγi)

∣∣ ρi(t)−ρ ′
i (t)
∣∣

+
2γi βk

(1+aγi)∆(βk)

1
Γ(βk)

∫ t

0
ϑ ∗

βk
(t, s)

∣∣ρi(s)−ρ ′
i (s)
∣∣ds

≤
(

a γi

(1+aγi)
+

2γi βk

(1+aγi)∆(βk)

ϑβk
(t, 0)

Γ(βk +1)

)∥∥ ρi −ρ ′
i
∥∥

≤
(

a γi

(1+aγi)
+

2γi ϑβk
(T, 0)b

(1+aγi)βk

)∥∥ ρi −ρ ′
i
∥∥ ,

which implies

∥∥ Φρi −Φρ ′
i
∥∥ ≤

(
a γi

(1+aγi)
+∇

)∥∥ ρi −ρ ′
i
∥∥ .

From Eq. (9), Φ is contraction. So, Banach’s fixed point theorem implies that system (1) admits a unique solution.

4.2 Stability analysis

This subsection examines three types of stability for the model (1): asymptotic stability, Mittag-Leffler stability, and
finite-time stability.

Theorem 3 (Asymptotic Stability) Assume that K and f are bounded, i.e,

|K (ρ(t))| ≤ LK |ρ(t)|, | f (ρ(t), t)| ≤ L f |ρ(t)|,

and |ηi(t)| ≤ Mη . Then, the zero solution of system (1) is asymptotically stable (limt→∞ ∥ρ(t)∥= 0). Provided that

sup
t≥0

[ϑ(t)−ϑ(0)]< ∞, γi > S+
βk

Γ(βk)(1−βk)
,

where S = ∑N
j=1 |wi j|LK +Mη L f .

Proof. Rewrite the solution for ρi(t) as follows
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ρi(t) =
ρi(0)+aFi(ρ(t), t)

1+aγi
+

b
1+aγi

∫ t

0
ϑ ∗

βk
(t, s)Gi(ρ(s), s)ds,

where a = 1−βk
∆(βk)

, b = βk
Γ(βk)∆(βk)

, Fi = ∑ j wi jK (ρ j)+ηi f (ρi, t), and Gi =−γiρi +Fi.
Applying Lipschitz conditions, we obtain

|ρi(t)| ≤
|ρi(0)|+a

(
∑ j |wi j|LK |ρ j(t)|+Mη L f |ρi(t)|

)
1+aγi

+
b

1+aγi

∫ t

0
|ϑ ∗

βk
(t, s)|

(
−γi|ρi(s)|+∑

j
|wi j|LK |ρ j(s)|+Mη L f |ρi(s)|

)
ds.

Since ∥ρ∥= maxi |ρi(t)|,

∥ρ(t)∥ ≤ ∥ρ(0)∥+aS∥ρ(t)∥
1+aγi

+
b

1+aγi

∫ t

0
ϑ ∗

βk
(t, s)(−γi +S)∥ρ(s)∥ds,

which implies

(
1+aγi −aS

1+aγi

)
∥ρ(t)∥ ≤ ∥ρ(0)∥

1+aγi
+

b
1+aγi

∫ t

0
ϑ ∗

βk
(t, s)(−γi +S)∥ρ(s)∥ds.

Since γi > S+ βk
Γ(βk)(1−βk)

, we have

1+aγi −aS > 0 and − γi +S < 0.

Hence

∥ρ(t)∥ ≤C1∥ρ(0)∥+C2

∫ t

0
ϑ ∗

βk
(t, s)∥ρ(s)∥ds,

where C1 =
1

1+aγi−aS , C2 =
b(−γi+S)
1+aγi−aS .

Using the fractional Grönwall inequality (Lemma 3 and Corollary 1), we obtain

∥ρ(t)∥ ≤C1∥ρ(0)∥Eβk

(
C2Γ(βk)[ϑ(t)−ϑ(0)]βk

)
.

Since C2 < 0 and supt≥0[ϑ(t)−ϑ(0)]βk < ∞,
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Eβk
(−z)∼ 1

zΓ(1−βk)
as z → ∞.

As t → ∞, z = |C2|Γ(βk)[ϑ(t)−ϑ(0)]βk → const.< ∞, giving

∥ρ(t)∥ ≤ C1∥ρ(0)∥
|C2|Γ(1−βk)z

→ 0.

i.e, ∥ρ(t)∥ → 0 as t → ∞. Therefore, all neuron states ρi(t) converges asymptotically to zero, establishing asymptotic
stability.

Theorem 4 (Mittag-Leffler Stability) Under the conditions of Theorem 3, there exist C, λ > 0 such that

∥ρ(t)∥ ≤C∥ρ(0)∥Eβk

(
−λ [ϑ(t)−ϑ(0)]βk

)
.

Proof. From Theorem 3, the error vector ρ(t) satisfies the integral inequality

∥ρ(t)∥ ≤C1∥ρ(0)∥+C2

∫ t

0
ϑ ∗

βk
(t, s)∥ρ(s)∥ds,

where

C1 =
1

1+aγi −aS
, C2 =

b(−γi +S)
1+aγi −aS

, S =
N

∑
j=1

|wi j|LK +Mη L f .

Since C2 < 0 whenever γi > S, the above inequality becomes

∥ρ(t)∥ ≤C1∥ρ(0)∥− |C2|
∫ t

0
ϑ ∗

βk
(t, s)∥ρ(s)∥ds.

Applying the fractional Grönwall inequality (Lemma 3 and Corollary 1), we obtain

∥ρ(t)∥ ≤C1∥ρ(0)∥Eβk

(
−|C2|Γ(βk)[ϑ(t)−ϑ(0)]βk

)
.

Letting

λ = |C2|Γ(βk) = Γ(βk)
b(γi −S)

1+aγi −aS
,

and C =C1, we derive the Mittag-Leffler decay estimate
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∥ρ(t)∥ ≤C∥ρ(0)∥Eβk

(
−λ [ϑ(t)−ϑ(0)]βk

)
, λ = Γ(βk)

b(γi −S)
1+aγi −aS

.

The condition γi > S = ∑N
j=1 |wi j|LK +Mη L f guarantees λ > 0, ensuring asymptotic Mittag-Leffler decay, i.e.,

Eβk
(−z)∼ 1

zΓ(1−βk)
as z → ∞,

and therefore ∥ρ(t)∥→ 0 as t → ∞.
Theorem 5 (Finite-Time Stability) Under the conditions of Theorem 3. If for some T > 0, the damping coefficients

satisfy

γi >
Γ(βk)∆(βk)

[ϑ(T )−ϑ(0)]βk
−S,

where ∆(βk) = 1−βk +
βk

Γ(βk)
, then ρ(t)≡ 0 for t ≥ T .

Proof. By Theorem 3, the error vector ρ(t) satisfies the integral inequality

∥ρ(t)∥ ≤C1∥ρ(0)∥+C2

∫ t

0
ϑ ∗

βk
(t, s)∥ρ(s)∥ds,

where

C1 =
1

1+aγi −aS
, C2 =

b(−γi +S)
1+aγi −aS

, S =
N

∑
j=1

|wi j|LK +Mη L f .

From the hypothesis γi > S, we have C2 < 0. Rewriting the inequality with |C2|=−C2 gives

∥ρ(t)∥ ≤C1∥ρ(0)∥− |C2|
∫ t

0
ϑ ∗

βk
(t, s)∥ρ(s)∥ds.

Applying the fractional Grönwall inequality (Lemma 3/Corollary 1) yields the Mittag-Leffler estimate

∥ρ(t)∥ ≤C1∥ρ(0)∥ Eβk

(
−|C2|Γ(βk)[ϑ(t)−ϑ(0)]βk

)
.

At t = T and denote L: = [ϑ(T )−ϑ(0)]βk and zT : = |C2|Γ(βk)L. Then, using the first-order bound for the Mittag-
Leffler function:

Eβk
(−z)≤ 1− ∆(βk)

Γ(βk)
z (z ≥ 0), ∆(βk): = 1−βk +

βk

Γ(βk)
,
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we obtain

∥ρ(T )∥ ≤C1∥ρ(0)∥
(

1−∆(βk) |C2|L
)
. (10)

Substituting |C2|=
b(γi −S)

1+aγi −aS
and C1 =

1
1+aγi −aS

, we get

1−∆(βk) |C2|L = 1−∆(βk)
b(γi −S)L

1+aγi −aS
.

Multiplying both sides by b/(1+aγi−aS) and rearranging, the condition γi >
Γ(βk)∆(βk)

L −S is algebraically equivalent
to 1−∆(βk) |C2|L ≤ 0. Hence, the right-hand side of Eq. (10) is nonpositive. Since C1 > 0 and ∥ρ(0)∥ ≥ 0, it follows
that

∥ρ(T )∥= 0, i.e. ρ(T ) = 0.

Finally, according to (Theorem 3), the solution that vanishes at time T remains identically zero for all subsequent
times. Hence

ρ(t)≡ 0 for all t ≥ T.

4.3 Comparison of stability conditions

Asymptotic, Mittag-Leffler, and finite-time stability types vary in their convergence properties and damping needs.
Table 1 shows that asymptotic stability ensures long-term convergence by imposing the least amount of damping. In
contrast, the Mittag-Leffler stability conclusion employs the same damping requirement as the asymptotic case but
provides a more precise characterization of the rate of convergence using the Mittag-Leffler function, which depicts a
decay of fractional order. On the other hand, finite-time stability ensures that the state achieves zero within a finite period
and requires the most stringent constraint on γi. Therefore, the stronger the required convergence rate, the less feasible it
is in practice.

Table 1. Comparison of the stability conditions and their practical implications

Stability Type Damping Condition Convergence Behavior Restrictiveness

Asymptotic γi > S+
βk

Γ(βk)(1−βk)
ρ(t)→ 0 as t → ∞ Low

Mittag-Leffler Same as asymptotic Eβk

(
−λ [ϑ(t)−ϑ(0)]βk

)
→ 0 Low

Finite-Time γi >
Γ(βk)∆(βk)

[ϑ(T )−ϑ(0)]βk
−S ρ(t) = 0 for t ≥ T High
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5. Implementations
Numerical simulations of two- and three-neuron systems are conducted to demonstrate and validate the theoretical

results.
Example 1 (2-neuron system) Consider the following fractional model

ABCDβk
0, ϑ ρ1(t) =− γ1ρ1(t)+

1
4
(w11 sin(ρ1(t))+w12 sin(ρ2(t)))+η1(t)

(
t

1+ t

)
ρ1(t),

ABCDβk
0, ϑ ρ2(t) =− γ2ρ2(t)+

1
4
(w21 sin(ρ1(t))+w22 sin(ρ2(t)))+η2(t)

(
t

1+ t

)
ρ2(t), (11)

with initial conditions ρ1(0) = 0 and ρ2(0) = 1, where i = 1, 2, t ∈ [0, 1], w11 = 0.2, w12 = 0.3, w21 = 0.4, w22 =−0.1,
γ1 = γ2 = 0.5, η1(t) = 0.1cos(t), η2(t) = 0.2cos(t), β0 = 0.8, ϑ(t) = ln(1+ t), and ϑ ′(t) = 1

1+t . The system is based on
the following nonlinear terms: K (ρ(t)) = 1

4 sin(ρ(t))and f (ρ(t), t) = t
1+t ρ(t). For x, y ∈R, | K (x)−K (y)| ≤ 1

4 |x−y|
and | f (x, t)− f (y, t) | ≤ 1

2 ||x− y|. Thus, K , f are Lipschitz continuous with constants LK = 1
4 , L f =

1
2 on R. Hence,

the condition (H1) holds. Also, γ1 = γ2 = 0.5, which satisfies |γi| ≥ γmin, i = 0.5 > 0, |η1(t)| ≤ 0.1 and |η2(t)| ≤ 0.2,
which are bounded by ηmax, i, |wi j|= 0.2, 0.3, 0.4, −0.1, which are bounded by wmax, i. Thus, the conditions in (H2) are
satisfied with the bounds γmin, i = 0.5, ηmax, i = 0.2, and wmax, i = 0.4.

Furthermore, condition (H3) is satisfied, that is

ηmax, iL f +
N

∑
j=1

wmax, i LK = 0.2
(

1
2

)
+2(0.4)

1
4
= 0.3 < 0.5 = γi.

For existence, the condition of Theorem 1 is

∇ =
2γi ϑβk

(T, 0) b
(1+aγi)βk

=
2γi ϑβk

(T, 0)(
1+ 1−βk

∆(βk)
γi

)
∆(βk)Γ(βk)

< 1.

We have T = 1, k = 0, γi = 0.5, β0 = 0.8, and ϑ(t) = ln(1+ t), which gives ϑβ0(T, 0) = [ϑ(T )−ϑ(0)]β0 =

0.8ln(2)≈ 0.733. Substituting the known values and ∆(β0) = 1−β0 +
β0

Γ(β0)
= 0.887, we conclude that ∇ ≈ 0.638 < 1.

Thus, all the hypotheses of Theorem 1 are fulfilled.
For uniqueness, the condition of Theorem 2 is

Λ: =
(

a γi

(1+aγi)
+∇

)
< 1.

Substituting the above values with a ≈ 0.225, we obtain

Λ ≈
(

(0.225)(0.5)
1+(0.225)(0.5)

+0.638
)
≈ 0.739 < 1.
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Consequently, by Theorem 2, the system (11) admits a unique solution. Figure 1 shows the simulation for Example
1.

Figure 1. Numerical simulation of 2-neuron system

Example 2 (3-neuron system) The model is defined as

ABCDβk
0, ϑ ρi(t) =−γiρi(t)+

1
6

3

∑
j=1

wi j tanh(ρ j(t))+ηi(t)(1+
t
8

sin(ρi)), i = 1, 2, 3, (12)

where t ∈ [0, 1], γi = 0.3, ηi(t) = 0.5cos(t), for all i = 1, 2, 3, initial conditions ρ(0) = (0.1, 0.1, 0.1), βk = 0.8, ϑ(t) =
ln(1+ t), ϑ ′(t) = 1

1+t , and the weight matrix is

W =


−0.4 −0.1 −0.2

0.1 0.4 0.1

0.4 0.1 0.2

 .

Here, diagonal matrix D is D = diag(0.1, 0.1, 0.1). To verify condition (H1), we have K (ρ(t)) = 1
6 tanh(ρ(t)), and

f (ρ, t) = 1+ t
8 sin(ρi). For ρ, y ∈ R, | K (ρ)−K (y)| = 1

6 | tanh(ρ)− tanh(y)| ≤ 1
6 |ρ − y|, and | f (ρ, t)− f (y, t)| ≤

1
8 |t||sin(ρ)− sin(y)| ≤ 1

8 |x− y|. Thus, K , f are Lipschitz continuous with constants LK = 1
6 , L f =

1
8 on R. Hence, the

condition (H1) holds. Also, for (H2), |γ1| = |γ2| = |γ3| = 0.3, which satisfies γi ≥ γmin, i = 0.3, |η1(t)| ≤ 0.5 = ηmax, i,
which are bounded by 0.5,

∣∣wi j
∣∣ ≤ 0.4 = wmax, i, which are bounded by 0.4. Thus, the conditions in (H2) are satisfied

with the bounds γmin, i = 0.3, ηmax, i = 0.5, and wmax, i = 0.4.
The condition (H3) is satisfied too, i.e,
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ηmax, iL f +
N

∑
j=1

wmax, i LK = 0.5
(

1
8

)
+3(0.4)

1
6
= 0.2 < 0.3 = γi.

For the existence, the condition of Theorem 1 is

∇ =
2γi ϑβk

(T, 0) b
(1+aγi)βk

=
2γi ϑβk

(T, 0)(
1+ 1−βk

∆(βk)
γi

)
∆(βk)Γ(βk)

< 1.

Substituting the above values with ϑβ0(T, 0)≈ 0.733, a = 1−βk
∆(βk)

≈ 0.225, b = 1
∆(βk)Γ(βk)

≈ 0.968 and ∆(β0)≈ 0.887,
we conclude that ∇ ≈ 0.499 < 1. Thus, all the hypotheses of Theorem 1 are fulfilled.

For uniqueness, the condition of Theorem 2 is

Λ: =
(

a γi

(1+aγi)
+∇

)
< 1.

Substituting the above values with a ≈ 0.225, we obtain,

Λ ≈
(

(0.225)(0.3)
1+(0.225)(0.3)

+0.499
)
≈ 0.562 < 1.

Therefore, Theorem 2 shows that the model (12) has a unique solution. Figure 2 shows the simulation for Example
2.

Figure 2. Numerical simulation of 3-neuron system
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Example 3 Consider the following fractional model with two neurons (N = 2) as


A BC Dβ1

0, tρ1(t) =−γ1ρ1(t)+w11K (ρ1(t))+w12K (ρ2(t))+η1(t) f (ρ1(t), t),

A BC Dβ2
0, tρ2(t) =−γ2ρ2(t)+w21K (ρ1(t))+w22K (ρ2(t))+η2(t) f (ρ2(t), t),

(13)

with initial conditions ρ1(0) = ρ0
1 and ρ2(0) = ρ0

2 .
For a general Fractional Differential Equation (FDE) of the form A BC Dβ

0, tρ(t) = g(t, x); x(0) = x0, the numerical
approximation using the two-step Newton’s method is given by

xp+1 =x(0)+
1−β
∆(β )

g(tp, xp)

+
βhβ

∆(β )Γ(β +1)

p

∑
n=2

g(tn−2, xn−2)
[
(p−n+1)β − (p−n)β

]

+
βhβ

∆(β )Γ(β +2)

p

∑
n=2

[
g(tn−1, xn−1)−g(tn−2, xn−2)

]
A1

+
βhβ

2∆(β )Γ(β +3)

p

∑
n=2

[
g(tn, xn)−2g(tn−1, xn−1)+g(tn−2, xn−2)

]
A2,

where

A1 =
[
(p−n+1)β (p−n+3+2β )− (p−n)β (p−n+3+3β )

]
,

A2 =
[
(p−n+1)β (2(p−n)2 +(3β +10)(p−n)+2β 2 +9β +12

)

−(p−n)β (2(p−n)2 +(5β +10)(p−n)+6β 2 +18β +12
)]

,

and ∆(β ) = 1−β + β
Γ(β ) .

For our specific model Eq. (13), we define the functions gi(t, ρ1, ρ2) for i = 1, 2 as

g1(t, ρ1, ρ2) =− γ1ρ1(t)+w11K (ρ1(t))+w12K (ρ2(t))+η1(t) f (ρ1(t), t),

g2(t, ρ1, ρ2) =− γ2ρ2(t)+w21K (ρ1(t))+w22K (ρ2(t))+η2(t) f (ρ2(t), t).

The iterative scheme for each neuron state is then given by
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ρ p+1
1 =ρ0

1 +
1−β1

∆(β1)
g1(tp, ρ p

1 , ρ p
2 )

+
β1hβ1

∆(β1)Γ(β1 +1)

p

∑
n=2

g1(tn−2, ρn−2
1 , ρn−2

2 )
[
(p−n+1)β1 − (p−n)β1

]

+
β1hβ1

∆(β1)Γ(β1 +2)

p

∑
n=2

[
g1(tn−1, ρn−1

1 , ρn−1
2 )−g1(tn−2, ρn−2

1 , ρn−2
2 )

]
A1, 1

+
β1hβ1

2∆(β1)Γ(β1 +3)

p

∑
n=2

[
g1(tn, ρn

1 , ρn
2 )−2g1(tn−1, ρn−1

1 , ρn−1
2 )+g1(tn−2, ρn−2

1 , ρn−2
2 )

]
A2, 1,

and

ρ p+1
2 =ρ0

2 +
1−β2

∆(β2)
g2(tp, ρ p

1 , ρ p
2 )

+
β2hβ2

∆(β2)Γ(β2 +1)

p

∑
n=2

g2(tn−2, ρn−2
1 , ρn−2

2 )
[
(p−n+1)β2 − (p−n)β2

]

+
β2hβ2

∆(β2)Γ(β2 +2)

p

∑
n=2

[
g2(tn−1, ρn−1

1 , ρn−1
2 )−g2(tn−2, ρn−2

1 , ρn−2
2 )

]
A1, 2

+
β2hβ2

2∆(β2)Γ(β2 +3)

p

∑
n=2

[
g2(tn, ρn

1 , ρn
2 )−2g2(tn−1, ρn−1

1 , ρn−1
2 )+g2(tn−2, ρn−2

1 , ρn−2
2 )

]
A2, 2,

where A1, 1 and A2, 1 are calculated using β1, A1, 2 and A2, 2 are computed using β2.
With gi(t, ρ1, ρ2) =−γiρi(t)+∑2

j=1 wi j tanh(ρ j(t))+ηiρi(t)sin(t), whereK (ρ j(t)) = tanh(ρ j(t)) and f (ρi(t), t) =
ρi(t)sin(t), the above numerical scheme enables the simulation of the fractional model Eq. (13). Figures 3-4 show the
simulation of the model (13) according to the parameters selected from Table 2.

Table 2. Parameters and functions used in the numerical simulation

Symbol Description Value/Expression Notes

βk FD order 0.8 ABC derivative
γi Damping coefficient 8 i = 1, 2

wi j Coupling weights

[
0 0.3

0.3 0

]
Excitatory coupling

ηi(t) Modulation function 0.5 Constant (i = 1, 2)
ϑ(t) Time scaling function 1− e−t ϑ ′(t) = e−t

K (x) Kernel function tanh(x) LK = 1

f (x, t) Activation function xsin(t) L f = 1
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Table 2. (cont.)

Symbol Description Value/Expression Notes

T Simulation time 10 Units: seconds
h Step size 0.1 Newton’s method

ρ1(0) Initial state (neuron 1) 1 –
ρ2(0) Initial state (neuron 2) -1 –

Figure 3. Stability dynamics of neuron 1 (ρ1(t)) under three stability regimes over t ∈ [0, 10] with ρ1(0) = 1

Figure 4. Stability dynamics of neuron 2 (ρ2(t)) under three stability regimes over t ∈ [0, 10] with ρ2(0) =−1
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5.1 Discussion
Here, we discuss and interpret the figures obtained from numerical simulations.
Figure 1 displays the dynamics of two interacting neurons governed by a logarithmic kernelϑ(t)= ln(1+t). Coupled

sine activations and periodic external inputs generate smooth oscillations that gradually stabilize. The system remains
bounded due to damping and balanced coupling, illustrating stable, synchronized behavior over time.

Figure 2 presents the dynamic responses of a three-neuron network with mixed excitatory and inhibitory couplings.
Damped oscillations appear due to the balance between the coupling matrixW and the damping coefficients γi = 0.3. The
trajectories ρ1(t), ρ2(t), and ρ3(t) converge to steady states, confirming bounded synchronization in the system.

Figures 3 and 4 present the time-domain behavior of Neuron 1 andNeuron 2, respectively, under three distinct stability
regimes: Mittag–Leffler, Asymptotic, and Finite-Time. Both neurons are initialized with opposite signs, ρ1(0) = 1 and
ρ2(0) =−1, time scaling function ϑ(t) = 1−e−t , β = 0.8, γi = 8 and interact symmetrically through the coupling matrix
w. The results demonstrate how fractional-order operators modify the stability characteristics of coupled neural systems
compared to their integer-order counterparts.

Neuron 1 (Figure 3) exhibits a slow, non-exponential convergence to equilibrium in the Mittag-Leffler trajectory,
demonstrating the fractional kernel’s ability to sustain memory effects. At t = Tf = 6, the finite-time curve decays
smoothly to zero, but the asymptotic profile converges more quickly but stays non-zero for t → ∞. Neuron 2 (Figure 4)
shows essentially comparable dynamics, but because of its negative initial state, its polarity is flipped. While introducing
small amplitude and phase deviations during transients, the connection maintains stability symmetry, as confirmed by
the simultaneous convergence of both neurons. The results reveal that asymptotic stability requires the mildest damping
condition, while the Mittag-Leffler case provides a precise fractional-order decay rate under the same assumptions. In
contrast, finite-time stability ensures complete state extinction within a finite interval but demands the strongest damping
threshold. Overall, these findings demonstrate that, depending on the fractional parameters and coupling strengths,
fractional-order neural systems can display a range of stability characteristics, from memory-driven Mittag-Leffler decay
to exponential and finite-time stabilization.

Remark 1 The function ϑ(t) governs the time-scaling of the fractional operator and thus directly affects the decay
rate and memory strength in the Mittag-Leffler estimate. If ϑ(t) grows faster (e.g., t2 or et − 1), the argument of the
Mittag-Leffler function increases rapidly, leading to faster decay and stronger stability. Conversely, a slower function
(e.g., ln(1+ t) or t1/2) produces slower decay and longer memory. The classical choice ϑ(t) = t yields the standard
fractional case. Hence, ϑ(t) acts as a tunable factor controlling both the convergence rate and the memory depth of the
system.

6. Conclusion
In this work, we have investigated a fractional-order neural system governed by the ABC operator with respect

to the function ϑ(t). Using Banach’s and Krasnoselskii’s fixed-point theorems, we established rigorous conditions for
the existence and uniqueness of solutions. The stability analysis revealed a clear hierarchy among the three stability
types: asymptotic stability corresponds to gradual long-term decay, Mittag-Leffler stability describes algebraic-type
convergence, and finite-time stability ensures complete quenching of trajectories within a finite horizon. The explicit
damping thresholds derived for the finite-time regime guarantee positivity and physical consistency of decay rates. The
function ϑ(t) further enables adaptive temporal scaling, enhancing numerical stability near t = 0. Simulations of two-
and three-neuron systems validated these results, confirming the theoretical predictions and demonstrating how fractional
parameters and damping intensity control the transition between the three stability modes.

Future work may focus on extending the present analysis to larger neural structures and incorporating external
perturbations or delays. Moreover, a promising extension of this work involves generalizing the model to higher-order
ABC derivatives with βk ∈ (m−1, m), enabling the incorporation of all m initial conditions ρ(k)

i (0) for k = 0, 1, , m−1.
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