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Abstract: Convergence performance is a very important index for the Recurrent Neural Networks (RNN). Network model
structure, activation function and learning rate (also named as gain) are the general ways to improve the convergence
performance, in which, it is a common and effective method to design a suitable learning rate. Specially, the recent work
has already presented the varying learning rate schemes for the superior convergence. However, these schemes have no
relationship with the error function of the solved problem. It means that the learning rate would not change along with
the error function. This would lead us to adjust the learning rate without purpose. To address this issue, we present
a dynamically and adaptively error-based varying gain for the Zeroing Neural Networks (ZNN) to solve the linear time
varying equation, together with its theoretical analysis on the convergence performance. The theoretical and experimental
results shows that the error-based varying gain can be used to accelerate the convergence speed, and to achieve a superior
convergence performance for the ZNN models.

Keywords: convergence performance, error-based varying gain, time varying, linear matrix equation, Zeroing Neural
Network (ZNN)

MSC: 68T07, 65F45

Abbreviation
RNN Recurrent Neural Networks
ZNN Zeroing Neural Network

GLNN Gradient-based Liquid Neural Network
FCRNN Fully Connected Recurrent Neural Networks
LTVMVE Linear Time Varying Matrix-Vector Equation
TVQP Time Varying Quadratic Programming

1. Introduction

Intelligent computing is widely applied in many research investigations and practical engineering field. For example,
the robot control problem r(z) = f(13(¢)) can be synthesized as a quadratic programming problem solving with the end
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effector r(r) € R™, joint angle place () € R" and the nonlinear mapping f(-), which is also simulated in Section 4.
[1-6]. In [7], the authors present the influence of local thermal nonequilibrium and thermal gradients on magneto-darcy-
Rayleigh-Bénard convective stability by mathematical model analysis. In linear control system, the pole placement can be
realized by the Sylvester equation AX — XB = C solving [8—10], where A € R™", B € R™",C € R™", and X is the unknown
matrix. Lyapunov matrix equation is used to judge the stability for the linear dynamic control system [11, 12], and linear
matrix-vector equation is one of the basic formula for the deep learning [13, 14]. Because of the parallel-computing,
convenient hardware realization and generalization ability, Recurrent Neural Networks (RNN) have already become a
popular intelligent computing and optimization tool [15—-18].

Generally speaking, the gradient-based neural network is broadly applied for the time-invariant intelligent computing
problem. In [19], a robust Gradient-based Liquid Neural Network (GLNN) framework utilized ordinary differential
equation-based liquid neurons is proposed to solve the beamforming problem, in which, the matrix/vector coefficients are
static and fixed, which would not be changed with time t. However, in the real engineering applications, the parameters
of the system are generally time varying, which is a function of time 7. For instance, in the control process of the robot
arm, the end-effector r(¢) and the joint angle ©(¢) are certainly changed along with the time 7 [1-3]. To address these
issues, recently, Zeroing Neural Networks (ZNN) are found to be good at the time-varying problem solving [4-6, 11, 12]
and attracted many attentions.

It is noted that convergence performance is one of the key basic index to measure the neural networks, which could
be improved from the network structure, activation function and learning rate (or say, gain). In [20], the authors present
a survey on the structure of ZNN models for superior convergence and robustness, including the different ZNN structure
model with the fixed/varying gain and activation functions. In [21], a novel Fully Connected Recurrent Neural Network
(FCRNN) structure is proposed for the identification of unknown dynamics of nonlinear systems by imparting necessary
memory property to the structure and improves its ability in handling the dynamical systems. Activation function is
another effective method for a better convergence and robustness. Jin et al. in [22] presented a fuzzy activation function
for the ZNN models to compute the currents in circuits with the improvement of the convergence and noise resistance
ability by introducing the fuzzy logic technique. A novel Variable-Parameter Variable-Activation-Function Finite-Time
Neural Network (VPA-FTNN) to deal with joint-angle drift issues of redundant-robotic arms [23], in which, the finite-time
convergence can be achieved without the use of the special activation function. In a summary, much work is devoted to
improve the convergence and robustness by designing and exploiting the novel activation functions [20-22].

Recently, as another versatile and effective technique for the improvement of the convergence, varying gain can also
be encapsulated with ZNN models for the fast convergence speed. In [24], Xiao et al. presented a finite time ZNN model
for the generalized Lyapunov equation, together with the comparisons with the fixed and varying gains. Its experimental
results reveal that, in the same uniformly bounded perturbation environment, the residual error of the varying gain ZNN
would fast converge to zero, while the fixed gain ZNN model obtains a bounded residual error. A fuzzy complex gain
ZNN model is presented for the time-variant complex Sylvester equation problem, in which, the fuzzy parameter can
be adaptively adjust the convergence rate according to the residual error from the fuzzy viewpoint [25]. Therefore, the
varying gain can improve the convergence speed for the ZNN models [5, 6, 26-28].

However, it is contradictory that the close to zero residual error would be easily oscillated for the big gain, while the
varying gain would be bigger and bigger along with the increase time 7. This implies that it might be not suitable for the
long deployment of the ZNN models if the varying gain increases with the increasement of time ¢ as well. Therefore, to
overcome this problem, in this paper, we present a balance varying gain scheme, which can be dynamically and adaptively
suitable for the change of the residual error as time goes on. In the beginning, a big gain is provided for ZNN model since
the beginning residual error is big, and when the residual error is close to zero near to the end, a relative small gain is
required for ZNN model even if t — +co. By this way, the beginning error would be a sharp decent in a short time, and
then the small error close zero would perfectly and smoothly converge to zero. The theoretical analysis and experimental
results further substantiate this conclusion.

The rest of the article are organized as follows. Section 2 lists the Linear Time Varying Matrix-Vector Equation
(LTVMVE) problem solving, and presents the related ZNN models with the error-based varying gain, scheduled varying
gain, error-related varying gain and the fixed gain. In Section 3, two theorems on the convergence of the proposed
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ZNN models are discussed and proved. The validated experimental results are provided in Section 4, together with their
comparisons under the same experimental environment and parameter settings. The conclusions are summarized in the
final section. Before ending this section, the main contributions of this article are listed as follows.

(1) A novel error-based varying gain is proposed for the ZNN models, which can dynamically and adaptively adjust
the convergence speed according to the residual error. Note that, in the beginning, the value of the varying gain is big to
accelerate the convergence speed for the relative big residual error, and to avoid the oscillation for the small error close
to zero, the value of the presented varying gain would be small automatically.

(2) Different from other varying gain scheme, this error-based gain scheme could be found a balance for the big or
small residual error, since it is adaptively changed by the error. In other words, if the residual error is big, the neural model
needs a big gain to accelerate the convergence speed, and if the error is small, the model needs a small gain to avoid the
oscillation. Then our proposed error-based scheme can satisfied with these requirements.

(3) The theoretical analyses and experimental comparisons further show that the error-based varying scheme can be
achieved a superior convergence performance for the ZNN models, and the application to the robot manipulator is also
validated the effectiveness and exactness of our proposed scheme.

2. Problem formulation and related models

Suppose that the Linear Time-Varying Matrix-Vector Equation (LTVMVE) can be written as follows:

A(0)x(t) = b(r) (1)

where A(r) € R™" is a full-rank time varying matrix with m > n, b(t) € R™ is a time-varying vector, and x(t) € R" is
unknown to be solved. Our main objective is to find the solution x(z) to satisfied with the LTVMVE (1). For analysis
convenience in the latter sections, x*(¢) is supposed to be the theoretical solution of LTVMVE (1), which is used to
compare to the solution x(¢), and it can be computed easily by Matrix Laboratory (MATLAB) tool.

Following by the design method of ZNN models [5, 8, 18, 29], an indefinite (i.e., positive, negative or zero) error
function is defined as

e(t) = A(1)x(t) = b(2), 2

which is corresponding to the problem (1), our goal is to find a neural solution x(¢) € R" to make e(z) € R" equaling zero.
Therefore, let

é(r) = —v(e(t)) f(e(r), 3)

where y(e(t)) is a varying gain based on the error function e(¢), which is exploited to control the convergence rate of the
network model, and f(-) is a non-monotonically increasing activation function, which can make the network model be
able to fit the complex functions. In this article, the following activation functions are used.

(1) The linear activation function:

fu) =u. 4)
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(2) The power-sigmoid function

ub, if |u| >1,
flu) = ©)
1+exp(—e) 1—exp(—eu)
. , other
1 —exp(—¢€) 1+exp(—eu)
with € > 2 and p > 3.
(3) And the sign-bi-power activation function:
Fl) = (jul® +1ul*)sgn(u) /2, & >0 (©)

with sgn(-) denoting the following signum function:

1, ifu>0,

sgn(u){ =0, ifu=0,

=-1

. ifu<o.

Remark 1 The varying gain y(e(z)) can be set as the following different expression under the different environments.
(1) The gain is a constant y(e(¢)) = 7, which is certainly non-relation with the error.

(2) The gain is only relation with time ¢, i.e., y(e(t)) = ¥(¢).

(3) The gain would be related with both time # and error function e(t), i.e., y(e(r)).

Therefore, by the the case (3) of Remark 1, we propose a varying gain based on the residual error as follows

ve) = (+nexp (—2)) (1 +kle)]), ™

where 9 > 0 is a constant initial varying gain, 7, > 0 is a constant used for the adjustment of varying gain, T > 0 is an
attenuation factor on time ¢, which is used to control attenuation speed of 7. If the bigger 7 is, the more slowly the varying
gain attenuates. k is a sensitivity coefficient, which is used to control the effect of error ¢(z) on the varying gain y(e(t)).
The bigger k > 0 is, the more strongly the varying gain responds to changes in error e(z).

Remark 2 As for the proposed error-based varying gain scheme (7), the time attenuation item exp (—%) shows a
downward trend for the varying gain during the whole iteration process, which is expected for a much small varying gain
as the error ||le(¢)||2 decreases. The item 1+ k||e(7)||2 can make the varying gain y(e(¢)) dynamically and adaptively adjust
to a suitable value according to the change of the error ||e(7)||2. The varying gain will automatically be big or small, which
is corresponding to the big or small error, respectively. Therefore, in the early stage, although ¢ is very small, the network
model can still have a relative big varying gain and can accelerate the convergence speed of the network model till the
residual error is relative small. In the later stages, the residual error would be very small, and it requires that the value of
the gain cannot be big, since there are fluctuations in the error if the gain is big. Therefore, by the proposed error-based
scheme (7), although 7 is big, the varying gain will not be too large, and thus the residual error of the network will not
oscillate. The error will smoothly converge to zero.
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By combining problem (1) and Egs. (2)-(7), we can get the ZNN model encapsulated with the error-based scheme
(M

A()x(r) = =y([|A(0)x() = b(1)[12) f(A(1)x(t) = b(r)) — A(0)x(r) + b(1), ®)

where || - ||2 is denoted by the 2-norm.

For comparison with our proposed ZNN model (8), another two gain schemes are also used for the solution of problem
(1), which are presented as follows.

In [5], the authors presented a scheduled-varying-gain-based ZNN model

A()x(t) = — (1 + N exp(—120)) f(A()x() — b(r)) — A(0)i(r) +b (1), ©)

where the scheduled varying gain

Y(t) =Y+ v1exp(—7t) (10)

which is corresponding to the case (2) in Remark 1. 9y and ¥, are the same as that of scheme (7), 7 is the known positive
constant used to adjust the value of the varying gain to improve the network convergence performance.
In [6], Wu et al. presented an adaptive error-related ZNN model

A()x(t) = = (10 + lle(t) [2) f(A@)x(r) — b(1)) — A(e)x(r) + b(r), (1D

where

Y(t) =+ lle()l2 (12)

with the same constant ¥ > 0 as the above-mentioned value. Without loss of generality, the conventional ZNN model is
also presented as follows

At)x(t) = =0/ (A(0)x(t) = b(r)) — A(1)x(t) +b(1) (13)

with the same

() = - (14)

Remark 3 Compared to the four ZNN models (8), (9), (11), and (13), we know that the evident difference is that
their gains are different. But we can use the error-based varying gain (7) to express other three gains, which exhibit that
the gain will be a relation of exponential attenuation on time ¢ to accelerate the convergence speed, and it is relation with
the error feedback to dynamically and adaptively to improve the gain along with the change of error (7).
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Remark 4 Compared with the four gain schemes (7), (10), (12), and (14), Y, 1, 7, T, and k are the positive constants.
Generally speaking, if their values are big, the value of the gain will also be big, and the resultant convergence speed is
big. For example, as for the ZNN model (13), 1 =5 or yp = 10. We can set the different } by the requirements of the
network model. In addition, (14) is the simplest scheme, there is no any adjustable parameters for the convergence. The
scheduled varying gain (10) can get the superior convergence performance for a long deployment. However, this scheme
is nothing to do with the residual error e(t), and thus it lacks an adjustable parameter. Although the scheme (12) is related
to the residual error, it is just used to adjust the value of y, and does not magnify the role of the residual error. Therefore,
the proposed error-based varying gain scheme (7) is a comprehensive embodiment of other three schemes, combining
their advantages to design.

3. Theoretical analysis

In this section, we would like to address the theoretical analysis on the convergence performance of ZNN model (8).

Theorem 1 Consider the problem (1) solved by ZNN model (8). Any non-monotonically increasing activation
function f(-) is used. The neural state x(¢) will globally converge to the theoretical solution x*(7). In addition, if the linear
activation function f(u) = u is used, then the exponential rate is at least 2.

Proof. Define a Lyapunov candidate function /;(t) = e?(¢)/2 for the ZNN model (8), together with e;(t) is denoted
by the element-wise of e(¢) € R". Therefore,

(1) = ei(t)éi(t) = —y(ei(r))ei(t) f (ei(1)).- (15)

Since f(-) is a non-monotonically increasing activation function, it is evident that /;(t) > 0 and [;(t) < 0. By the
Lyapunov stability, the error e;(#) would converge to zero, which means that the neural state x;(t) — x7(¢). Note that, iff
e;(t) = 0, then we have [;(r) = 0. Moreover, from (15), if ZNN model (8) is encapsulated with the linear function, we
have

Ii(r) = —¥(ei(1))ei (1) = ~2¥(ei(1) ) 1i(1).

By substituting (7) into the above equation and when time # — 0, we have

Ii(t) < —2%li(2).

Thus, solving the above inequality, we have

li(r) < 1i(0) exp(=2701)-

The Lyapunov function /;(¢) can be viewed as an energy function on the error function e;(¢). From the above
inequality, we know that the /;(¢) would converge to zero with the exponential rate 27, which also means that the
error ¢;(t) — 0 with the same convergence rate. In other words, A(¢)(x(z) —x*(¢)) would also converge to zero with
the exponential rate 27; that is, x(¢) — x*(¢). The proof is completed. O

Theorem 2 Consider ZNN model (8) solving to the problem (1). A faster convergence speed can be obtained when
the power-sigmoid function (5) is used, compared to the use of linear function (4).
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Proof. Since the rate of change for the Lyapunov function ;(¢) (i.e., [;(t)) can be used to express the convergence
speed of the ZNN model (8), then we can use /;_;;,(¢) and J;_,5(¢) to compare with the convergence speed of the linear
function and the power-sigmoid function, in which, J;_;;,(¢) and J; ps(t) are denoted by the rates of change when linear
function and power-sigmoid function are used, respectively. Therefore, by following (5), the following two cases are
considered.

Case 1: When |e;(t)| > 1, from Theorem 1, we know that ;(t) = —y(e;(t))e;(t) f(ei(t)), thus

lizin(t) = lips(t) = —¥(ei(1))ei(r) (ei(r) —€f (1))

That is, I;_j;,(t) > I;— ps(t), which means that the convergence speed for the use of power-sigmoid is faster than that
of the linear function along with the negative direction.
Case 2: When |e;(¢)] is other value, we have

b tin(t) = s (1) = —Y(es(0))es(t) <e,»(z) L+exp(e) 1 ‘e"p(‘ee"(’”)

~ 1—exp(—e) 1+exp(—eei(t))

(ei(t)+1)exp(—e) (exp (elg(t)> - 1) +(e;i(t) — 1)(1 —exp(—€&(1+¢(2)))
(1 —exp(—¢€))(1 +exp(—eei(t))

= —1(ei(t))ei(t)
. e,-(t) .
Consider |e;(f)| < 1 and € > 2. Therefore, exp —~ ) 1 <0and (e;(r) — 1)(1 —exp(—€&(1+e;(t))) <O0. That s,

li—1in(t) — li—ps(t) > 0. Similarly, we can draw the same conclusion as Case 1. The proof is thus completed. O

4. Experiments and comparisons

In this section, we would like to carried out the experiments for the ZNN models (8), (9), (11), and (13), together
with their comparisons on the convergence performance under the same simulation environment.

Example 1 LTVMVE problem solving.

Consider the LTVMVE problem (1) with the following time varying coefficients

0.5sinz 42 cost sin(4t) sin(3¢)
Alt) = cost 0.5cost+2 cos(4t)|, b(t)=|—cos(3t)
sin(41) cos(41) 0 cos(2r)

To validate the solution exactness of the ZNN models, the theoretical solution x*(z) can be computed by using
MATLAB (MATLAB version: R2016a; MATLAB tool: ODE45) running on the common computer (11th Gen Intel(R),
Core(TM) 17-1165G7, @2.80 GHz, 16 G RAM). Since the theoretical solution is very complex in expression form, and
thus it is ignored for reading convenience.
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Suppose that o = 71 = 1 = k = 10, and 7 = 300. When the power-sigmoid activation function is used for the ZNN
model (8) with p =3 and € = 4, we can obtain the simulation results as shown in Figure 1. The neural state x(¢) is denoted
by the solid blue lines, and the theoretical solution is denoted by the red dash-dotted lines, which can be seen at Figure 1a.
Evidently, x(¢) is coincided quickly with x*(¢), even if the rate of change for this curve is large. It means that the residual
error e(t) = ||A(¢)x(¢) — b(¢)||2 is also fast convergent to zero, as shown in Figure 1b within 1 s. This implies that the
neural state x(¢) is convergent to x*(¢).

(@) (®)
1] ' D ' ] 3
0 4
Ry _ 25+ .
0 2 4 6 8 10
t (second) 2r error 1
| T . TR : 1
0f 1 1.5} 1
-1 i L L 1 1 ]
0 2 4 6 8 10 1 ,
t (second)
4 T . . ‘
2k x13 i 05t i
0 L
2 k 1
4 . . 1 . 0 . . . .
2 4 6 8 10 0 2 4 6 8 10
t (second) t (second)

Figure 1. Online solution of ZNN model (8) with power-sigmoid function (5). (a) Neural state x(r); (b) Norm error ||A(7)x(z) — b(¢)||

(@) ®)
3 T T 3 . .
——ZNN (8) ——ZNN (8)
25t = =ZNN(11)| | 25 e ZNN (11)
. ZNN (9) | ~=-=-ZNN (9) |
—=-—ZNN (13) - - - ZNN(13)
2 error R 2F error 1
0.06
1.5 \ . 1.5 0.1 ,
0.04 1 ™
NN
0.02f, ~ I~ 0.05
g [, e 1 1 :
0
-0.02 0
! / 04 05 06 07 ] 031 /
‘ ‘ ) ) oLt
2 4 6 8 10 0 2 4 6 8 10
t (second) t (second)

Figure 2. Convergence performance of ZNN models (8)-(13) with different activation functions. (a) Activated by linear function (6); (b) Activated by
sign-bi-power function (4)

As shown in Figure 2, if used different activation functions, the ZNN models (8), (9), (11), and (13) would be
achieved different convergence performance. if activated by the same linear function, ZNN model (8) would achieve the
best convergence performance, as shown in Figure 2a. The same conclusion could be drawn from Figure 2. It is noted
that, ZNN (13) get the worst convergence performance among these four ZNN models, this is because its gain value is
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the minimum. Compared to the ZNN model (13), the convergence speed would be slower since the error e(¢) infinitely
closes to zero, its varying gain is also close to the constant Yy used in ZNN model (13), and then it need more compute
time.

Table 1 shows the comparisons on the convergence performance for the four ZNN models. Evidently, as for the
same ZNN model, different activation function can obtain the different convergence performance. For example, when
linear function is encapsulated on the ZNN (8), the time is 0.1191 s when the residual error is 1073 at the first time, while
it is 0.03516 s when the sign-bi-power function is used. The steady state error would almost the same since the final
convergence results would be same as for the same ZNN model. In addition, as for the residual error arriving at 10~ at
first time, ZNN model (8) would get the best convergence effect. This is because the varying gain value is the biggest
among the four schemes, which further validates that the convergence effect is closely related to the varying gain value.
Moreover, as for the steady-state error, (9) would get the best convergence effect. This is because the varying gain value
in this scheme is the biggest among the four varying gain schemes. However, this big gain would take the oscillating
convergence phenomenon.

Table 1. Comparisons on convergence performance of the four ZNN models with the same experimental environment

ZNN model Activation function Time (s) Steady-state error e(t)
Linear function 0.1191 1.652 x 1074
ZNN (8)
Sign-bi-power 0.03516 2.231 x 1074
Linear function 0.45 7.406 x 1073
ZNN (9)
Sign-bi-power 0.212 2.422 %1070
Linear function 0.5789 5.69x 1074
ZNN (11)
Sign-bi-power 0.3072 1.032 x 10~
Linear function 0.5533 6.815x 1073
ZNN (13)
Sign-bi-power 0.2576 2.795 x 107

Note: time (s) is the time when the residual error arrives at 1073 at the first time

Example 2 Application to robot arm.

Robot arm can be used in many engineering fields, e.g., trajectory tracking and repetitive motion [2, 17, 29, 30]. In
this section, we use the PUMAS560 robot arm [29] to track a desired star trajectory with error-free manner. To do this,
the mathematical model of PUMAS560 arm should be built first, which is expressed as the following forward-kinematics
notion equation Cartesian space [17, 29, 30]

r(t) = f(8(1)) (16)

where r(f) € R™ is denoted by the position of the end effector, which is similar to a pen to draw the trajectory in real time
in this simulation. ¥(¢) € R" is denoted by the joint angle space, which shows the angle of the end effector in Cartesian
space. The mapping f(+) is evidently a nonlinear function, which expresses the relationship between the joint angle ¥ (z)
and the position r(¢). Note that, r(¢), ¥(¢), and f(-) could be differentiable, which can promise Eq. (16) to be solved by
using differential technique, since Eq. (16) is difficultly solved directly. Therefore, by differentiating Eq. (16), we can
get the expression of PUMAS60 in velocity level with the following dynamic equation
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F(t) = J(8(1)) D) (17)

where J(0(t)) = df(9(t))/dO(¢) € R™*" is a Jacobian matrix [29, 31]. Similarly, it is not easy to solve the motion
Eq. (17) in velocity level. To ensure the joint angle velocity ©(z) changes smoothly and minimize wear and energy
consumption of the robotic arm, we can take the sum of the squares of joint velocities as the optimization objective.
However, the solution of the optimization problem should be subjected to Eq. (17). In other words, the solution of the
optimization problem is also the solution of the dynamic Eq. (17). Therefore, the dynamic equation in velocity level can
be transformed into the following optimization problem to be solved

. L .
min B0l
(18)

Consider ||d(¢)||3 = D(¢)d7 (¢). By using the replacement technique, Eq. (18) can be further become into the Time
Varying Quadratic Programming (TVQP) problem

(19)

withx:=3(t) R, W(t) : =1 € RV, C(t) : =J(9(t)) € R™",d(t) : = #(t) €R™, and g : = 0 € R". As for the solution
the similar TVQP problem solving, the recent work [5, 6, 29] have already present many solution scheme. Further more,
TVQP problem (19) can be changed into the following LTVMVE problem A(#)x(¢) = b(¢) with the following time varying
coefficients

W) CT()

R(ner) X (n+m)
Ct) O |

)

() : = l:ii))] ER™M. b(r): = l_q((t‘))] e R,

As a result, ZNN model (8) can be used to solve the above time varying problem. To show the solution exactness,
the desired trajectory r4(¢) is given out as follows

0.4(cos(2t)/25) +cos((4t)/3)/10) + r(0) —0.056
ra(t) 1 = 0.4(sin(2¢) /25 — (3sin((4r)/3))/50) +r,(0) )
r2(0)
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which can be viewed as the theoretical solution, and is the trajectory tracking objective of r(z) obtained by ZNN model
(8).

The tracking effect can be seen in Figure 3. When ZNN model (8) is used for the tracking of PUMAS60, all of the
error-wise can be arrived at 10710 in x, y, and z axis; for example, the max value of x-error is about 10 x 10719, as shown
Figure 3a. This experimental result is validated again in Figure 3b. The blue solid line is denoted by the trajectory r(t)
of ZNN model (8), and the red dash-dotted line is denoted by the desired trajectory r,4(¢) (it is also called as theoretical
solution for problem (1)). Evidently, both are coincided with each other perfectly, and thus the robot arm PUMAS560 can
efficiently track the given desired object trajectory r,4(¢), which can be shown in Figure 3c.

@ ®
1 (10 : : 0117
— — Acyual trajectory
)z/ 0.1} |= — Desired trajectory
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Figure 3. Trajectory tracking of PUMAS560 solved by ZNN model (8). (a) Tracking error in x, y, and z axis; (b) Trajectories r(¢) and r,4(z); (¢) Trajectory
of PUMA560

5. Conclusions

Varying gain is a key basic technique to improve the convergence performance for the network models. However, the
traditional varying gain scheme would become bigger and bigger along with the time 7. In this case, the smaller residual
error is, the bigger the value of the varying gain is. Evidently, it is unreasonable because the oscillation of residual error
easily happen. Therefore, in this paper, a dynamically and adaptively error-based varying gain scheme is proposed to
balance the relationship between residual error and time 7. In other words, if the residual error is big, this proposed

Contemporary Mathematics 466 | Chengli Sun, et al.



scheme can provide a relative big varying gain to accelerate the convergence, and also can provide a small varying gain
for the small error to smoothly converge to zero. The theoretical analysis and the experimental results further validate
the effectiveness of this proposed error-based varying gain scheme. In the near future work, we would like to use this
proposed error-based varying gain scheme to many scientific applications (e.g., robot arm control, chaotic control, and
other areas), together with the detailed analysis and the comparisons.
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