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Abstract: With the objective of considering evolution algebras as Banach algebras, we show in this paper new results 
on normed evolution algebras obtained after the introduction of an evolution algebras operator, which generalizes the 
one introduced by Tian. The properties of this operator which let evolution algebras be endowed with a Banach space 
structure are shown.
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1. Introduction
Tian was the researcher who introduced evolution algebras, in his Ph.D. Thesis in 2004 [1]. Two years later, 

Vojtechovsky and himself published a paper on them [2], and finally, Tian published a book dealing extensively with 
these algebras in 2008 [3]. In that book, Tian showed several applications of these algebras, not only to different 
mathematical branches, as Algebra, Discrete Mathematics, and Statistics, for instance, but to other scientific disciplines, 
like Biology, Physics, or Engineering. Since those dates, evolution algebras have been deeply studied, respectively.

At present, there exist also several papers in the literature linking these algebras with different objects characteristic 
of other disciplines, like graphs, combinatorial structures, Markov chains and algebraic varieties, for instance. For 
examples, papers [4-7] and [8] can be cited. See also [9-10] and [11] for analysis concerning dynamical systems 
modeling chemotaxis and moment problems, respectively.

This paper continues with this last research line cited and tries to endow evolutions algebras with a norm. From 
a scientific point of view, this idea can be considered novel because there is practically no approach for the evolution 
algebras as Banach algebras and this subject has had no continuity in the form of papers, unlike what has happened with 
other types of algebras, such as Lie algebras, for instance (see [12]). Moreover, all results obtained could be considered 
a valuable starting point for a more in-depth study of this topic in Functional Analysis.

Let us recall that an n-dimensional evolution algebra is that algebra in which the relationships between its 
generators {e1, …, en} are given by
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Graphicable algebras, which were also introduced by Tian in [3], constitute a particular subclass of evolution 
algebras. They are defined as follows: an n-dimensional graphicable evolution algebra is a commutative, nonassociative 
algebra, with a set of generators V = {e1, e2, …, en} endowed with relations
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Thus, it is obvious that a graphicable algebra is an evolution algebra, although the converse is not true in general.
Moving on now to Graph Theory, the most basic concepts, as simple graph, vertices, edges, adjacency, incidence, 

and adjacency matrix are assumed to be known ([13] can be consulted for details). Regarding the concept of the graph, 
Tian showed in [3] how to associate a given graph with an evolution algebra. He gave the following

Definition 1.1 Let G = (V, E) be a graph, V be the set of vertices of G, E be the set of edges of G. We define an 
algebra A(G) = 〈V | R〉 as follows: taking V = {e1, e2, …, er} as the generator set and
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as the set of defining relations, where Γ(ei) is the set of neighbours of ei.
The algebra A(G) is an evolution algebra as it can be checked straightforwardly. However, for the converse, there 

is no definition in [3] of the graph associated with an evolution algebra A. That association was introduced by Núñez, 
Silvero and Villar in [8] as follows

Definition 1.2 Given an n-dimensional evolution algebra A, the matrix associated with A is that matrix L(A) whose 
elements are, in columns, the coefficients of the fields ej of the basis of A in the expressions of the brackets e2

j for 1 ≤ j ≤ n.
From this last definition, a given evolution algebra A has associated a weighted directed graph, possibly with 

loops, G(A) = (V, E), as follows: V is the set of generators of the algebra and E is the set of edges linking ei with vertices 
in Γ(ei) for each ei.The weight of each edge represents the coefficient in the corresponding bracket in the law of the 
algebra. Moreover, in the particular case of graphicable algebras, all of these weights are equal to 1 and they are omitted 
in the graph. Therefore, for a graphicable algebra, A, the associated graph to A, G(A), has a binary adjacency matrix.

2. Previous results on normed evolution algebras
With the objective of describing the evolution flow quantitatively in an evolution algebra, Tian defined a norm on 

these algebras in [3].
Indeed, if E is an evolution algebra with a generator set {ei | i ∈ Λ} over a field K (it can be supposed that K = R 

without loss of generality), Tian defined a norm as follows.
In the first place, he considered the function N from E to the underlying field K given by

: ,  ( ) | ,|i
i
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for all element x of the evolution algebra E, expressed as x = Σiaiei.
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Then, he proved that this function was a norm because it verified the properties of non-negativity: N(x) ≥ 0 and 
N(x) = 0 if and only if x = 0, linearity: N(ax) = |a|N(x), for all a ∈ K and triangle inequality: N(x + y) = N(x) + N(y), for 
all x, y ∈ E.

Therefore, an evolution algebra is a normed algebra. He denoted N(x) = ||x|| and obtained some results on this 
function N(x), which can be checked in [3].

Next, with the objective of getting some advances in this topic, we define in the next section an evolution algebras 
operator and we use it to endow these algebras with a new norm.

3. A new evolution algebras operator
In this section, we define a novel evolution operator of evolution algebras and we obtain its main properties.
Definition 3.1 Let E be an evolution algebra. The operator Nw(E) is defined as

(1)
2( ) ( ).i

i
Nw E N e

∈Λ
= ∑

Starting from this definition and by using techniques similar to others that have proven to be efficient (see [15-17], 
for instance), the following properties of this operator are obtained.

Proposition 3.2 Let E be an evolution algebra whose structure constant are nonnegative integer and G its 
associated graph (may be a multigraph). Then,

(2)( ) ( ) .Nw E A G=

Proof. Since E is graphicable, N(ei) represents the numbers of vertices adjacent with the generator ei. Then, N(ei) 
= δ(vi) where δ(vi) is the number of edges adjacent to vi and vi is the induced vertex of the graph G by ei. Now, result 
(2) is an immediate consequence of the fact that in a direct graph G = (V, A) (or multigraph) it is verified that Σv∈V δ(v) 
= |A(G)| (let us recall that the first fundamental theorem of Graph Theory states that the sum of the degrees of all its 
vertices coincides with twice its size, that is, with twice its number of edges, while if the graph is directed, then the 
double word is canceled in the statement, and the same occurs in multigraphs [13]).

Note 3.3 It is important to distinguish between the δ(ei) of evolution algebras, which represents the number of 
vertices adjacent to ei and the δ(v) in a directed graph, which is the number of edges adjacent to v. It is easy to see that 
both notions coincide in a graphicable evolution algebra, since the corresponding graph is simple.

Proposition 3.4 Let E be an n-dimensional evolution algebra. Then

(3)( 1)( )
2
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≤

is an upper bound of N(E), where aij are the structure constants of E, where h = maxij|aij|.
Proof. Let us denote Ē the evolution algebra whose structure constants are bij = h, if aij =/ 0 and 0 otherwise. Let us 

also denote by B(Ē) to the skeleton algebra of Ē and by G its associated graph (recall that according to Theorem 15 of 
Chapter 3 in [3], every evolution algebra E can be reduced to a unique evolution algebra Er such that its evolution sub-
algebras in its hierarchy are all one-dimensional subalgebras. Tian calls such a unique evolution algebra Er the skeleton 
of E.)

Proposition 3.2 implies that
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It completes the proof.

4. The operator Nw(E) is a norm
Definition 4.1 Let V be a K vector space and {e1, …, en, …} be a set ofgenerators of V.
Let us call AE(V) to the space of all possible evolution algebras which can be defined by the laws 2

i ik k
k

e a e= ∑  
over V.

In this space we define the following operations. Let E, Ē be evolution algebras and λ ∈ K:
• E + Ē is the evolution algebra defined by the structure constants bik such that bik = aik + āik.
• λE is the evolution algebra defined by the structure constants bik = λaik.
Note that it is very easy to check that AE(V) is a vector space with respect to both operations.
Proposition 4.2 (AE(V), +, ·) is a normed vector space under Nw(·).

Proof. Let E ∈ AE(V) be an evolution algebra defined by the laws 2 .i ik kke a e= ∑  Then

,
( ) ( ) 0,i ik ik

i i k i k
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and the equality is only reached if and only if |aik| = 0, for all i, k.
Let us consider λ ∈ K. We have that

(5)
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Let now Ē ∈ AE(V) be given by the products 2 .i ik kke b e= ∑  Then, we have
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It completes the proof.
Proposition 4.3 If V is an R-vector space of finite dimension, then (AE(V), Nw(·)) is a Banach space.
Proof. Since V is of finite dimension, then AE(V) is also of finite dimension and is defined over R. So, AE(V) is 

complete under its norm.

5. Certain conclusions
As we pointed out in the introduction, in this paper we have introduced an algebras operator, which generalizes 

the evolution operator introduced by Tian. Some properties of this new operator have been obtained and it allows us to 
consider evolution algebras as Banach algebras.

Indeed, through the previous section of the paper we have defined sets and operations, which, joint with this new 
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operator Nw, form a Banach space. These results confirm and increase the ones by Mellon and Velasco, who recently 
proved that every evolution algebra is a normed algebra, for a determined norm defined in terms of a fixed natural basis. 
They gave a necessary and sufficient condition for a normed evolution algebra to be Banach and showed that every 
non-degenerate Banach evolution algebra is finite-dimensional [14]. Note that, in general, the completion of a normed 
evolution algebra is not an evolution algebra.

As problems which remain open in this study, authors think, in the first place, that the results here shown, taken 
over R, could be extended in the future over other fields in which evolution algebras could be defined.

Apart from that and although it was already implicitly used when Tian proved that any evolution operator is a 
bounded linear operator (see [3]), it is noteworthy how in a graph-icable evolution algebra (a concept that we have 
intuitively extended when the structure constants are non-negative integers) N(ei)

2 coincides with the number of adjacent 
edges of ei or of the corresponding vertex ei in the graph that it induces. As a second possibility, it would be appropriate 
that this research could be continued to find results that connect the algebraic properties of evolution algebras with those 
of the graphs that they induce.
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