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Abstract: In this paper, we introduce a new linear operator Dr
q(λ , ℓ)f(ζ ) and employ it to define a q-analogue of a

differential operator acting on a newly developed subclass of meromorphic functions in the punctured unit disk. The
subclass, denoted Σ∗, r

q (Θ, λ , ℓ), is examined comprehensively, and several of its key analytic and geometric properties
are established. Specifically, we derive coefficient conditions for functions in this class and study convolution properties,
closure results, convex combination criteria, and the interaction of the class with the q-Bernardi integral operator.
Moreover, we address and resolve the neighborhoods problem associated with this subclass. These findings offer new
insights into meromorphic function theory within the framework of q-calculus operators and underscore the potential for
further development of operator generated function classes in geometric function theory.
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1. Introduction
Let Σ denote the class of meromorphic functions of the form

f(ξ ) =
1
ζ
+

∞

∑
ν=1

aν ζ ν (ζ ∈ U∗), (1)

which are analytic in the punctured unit disc U∗ = {ζ : ζ ∈ C and 0 < |ζ |< 1}. Let f and l be analytic in U. We say that
f is subordinate to l, denoted f(ξ ) ≺ l(ξ ), if there exists an analytic function ω , with ω(0) = 0 and |ω(ξ )| < 1, for all
ξ ∈ U, such that f(ξ ) = l(ω(ξ )), ξ ∈ U. If the function l is univalent in U, f(ξ )≺ l(ξ ) is given as (see [1–3]):

f(0) = l(0) and f(U)⊂ l(U).
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For f given by (1) and ℏ of the form

ℏ(ζ ) =
1
ζ
+

∞

∑
ν=1

bν ζ ν , ζ ∈ U∗,

the well-known convolution product is

(f∗ℏ)(ζ ): = (ℏ∗ f)(ζ ) = 1
ζ
+

∞

∑
ν=1

aν bν ζ ν =: (ℏ∗ f)(ζ ).

A function f ∈ Σ is said to be in the subclass Σ∗(α) of meromorphic starlike functions of order α if it satisfies the
inequality

Re
{
−ζ f′ (ζ )

f(ζ )

}
> α (0 ≤ α < 1, ζ ∈ U) . (2)

As usual, let Σ∗(0) = Σ∗.

q-difference equations are an important aspect of mathematical analysis, particularly in the field known as Geometric
Function Theory (GFT). Quantum calculus is frequently used in mathematical disciplines because its numerous possible
applications in basic hypergeometric functions [4], orthogonal polynomials [5], combinatorics [6], and number theory [7].
Several fundamental ideas in q-calculus and [8, 9] demonstrate how it is integrated into mathematical ideas. Srivastava’s
1989 book chapter [10] offered the appropriate foundation for integrating the concepts of q-calculus into GFT. The study
of GFT is fascinating and relevant since basic (or quantum or q-) derivatives have several applications in diverse areas
of mathematics (see [11] and [12]). Aral and Gupta [13] and Elhaddad et al. [14] have examined a few q-operator
applications. Numerous q-derivative problems are also included in [15–21].

Definition 1 [12, 13] The Jackson derivative of a function f is defined by

(dq) f(ζ ): = dqf(ζ ) =
f(qζ )− f(ζ )
(q−1)ζ

, q ∈ (0, 1), ζ ̸= 0.

If the function f has the form (1) it follows that

(dq) f(ζ ) = dq

(
ζ +

∞

∑
ν=2

aν ζ ν

)
= 1+

∞

∑
ν=2

[ν ]qaν ζ ν−1, (3)

where

[ν ]q: =
1−qν

1−q
= 1+

ν−1

∑
ℓ=1

qℓ, [0]q: = 0, (4)

and
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lim
q→1−

[ν ]q = ν .

The q-difference operator is subject to the following basic laws.

dq (cf(ζ )±dl(ζ )) = cdqf(ζ )±ddql(ζ ) ,

dq (f(ζ ) l(ζ )) = f(qζ )dq (l(ζ ))+ l(ζ )dq (f(ζ )) ,

dq

(
f(ζ )
l(ζ )

)
=

dq (f(ζ )) l(ζ )− f(ζ )dq (l(ζ ))
l(qζ )l(ζ )

, l(qζ )l(ζ ) ̸= 0,

dq (log f(ζ )) =
lnq
q−1

dq (f(ζ ))
f(ζ )

,

where f, l ∈ Σ, and c and d are real or complex constants.
As long ago as 1910, Jackson [13] introduced the q-integral defined by

∫ ζ

0
f(τ)dqτ = (1−q)ζ

∞

∑
k=0

qkf(qkζ ), (5)

provided that the series involved in (5) is convergent. In particular, for a power function f(ζ ) = ζ k, we note that

∫ ζ

0
f(τ)dqτ =

∫ ζ

0
τkdqτ =

1
[k+1]q

ζ k+1 (k ̸=−1),

and

lim
q→1−

∫ ζ

0
f(τ)dqτ = lim

q→1−

1
[k+1]q

ζ k+1 =
1

k+1
ζ k+1 =

∫ ζ

0
f(τ)dτ,

where
∫ ζ

0 f(τ)dτ denotes the ordinary integral.
When f of the form (1), it is clear that

dq[f(ζ )] =− 1
qζ 2 +

∞

∑
ν=0

[ν ]qaν ζ ν−1.

The q-analogue of the multiplier operator is a significant concept in the field of mathematics, particularly in the study
of special functions and combinatorial analysis. In simple terms, a q-analogue is a generalization of amathematical concept
that incorporates a parameter “q” which often takes values between 0 and 1. This concept allows mathematicians to
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explore connections between various areas of mathematics, such as number theory, representation theory, and
combinatorics, by extending traditional ideas into a new framework. The multiplier operator, in various contexts, helps
in transforming functions and sequences, and understanding its q-analogue opens up new avenues for research and
application.

Now, we defined a new operator Dr
q(λ , ℓ)f(ζ ): Σ → Σ for f(ζ ) ∈ Σ, r ∈ N0 = N∪{0} = {1, 2, 3, ...}, ℓ, λ ≥ 0,

0 < q< 1 as followes:

I0, q
ℓ, λ f(ζ ) = Iqℓ, λ f(ζ ) = f(ζ ),

I1, q
ℓ, λ f(ζ ) = (1−λ ) f(ζ )+

λ
[ℓ]qζ ℓ

dq

(
ζ ℓ+1f(ζ )

)
,

I1, q
ℓ, λ f(ζ ) =

1
ζ
+

∞

∑
ν=1

(
[ℓ]q+λ ([ν + ℓ+1]q− [ℓ]q)

[ℓ]q

)
aν ζ ν ,

...

Ir, q
ℓ, λ f(ζ ) = (1−λ )Ir−1, q

ℓ, λ f(ζ )+
λ

[ℓ]qζ ℓ
dq

(
ζ ℓ+1Ir−1, q

ℓ, λ f(ζ )
)
, r ≥ 1,

Ir, q
ℓ, λ f(ζ ) =

1
ζ
+

∞

∑
ν=1

(
[ℓ]q+λ ([ν + ℓ+1]q− [ℓ]q)

[ℓ]q

)r

aν ζ ν ,

(r ∈ N0, ℓ, λ ≥ 0, 0 < q< 1). (6)

We define a new functionDr
q(λ , ℓ)(ζ ) in terms of the Hadamard product (or convolution) by:

Dr
q(λ , ℓ)(ζ )∗Ir

q, λ , ℓ(ζ ) =
1

ζ (1−ζ )
.

Then,

Dr
q(λ , ℓ)(ζ ) =

1
ζ
+

∞

∑
ν=1

(
[ℓ]q

[ℓ]q+λ ([ν + ℓ+1]q− [ℓ]q)

)r

ζ ν .

Motivated essentially by the q-analogue Cătas operator, we defined
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Dr
q(λ , ℓ)f(ζ ) =

1
ζ
+

∞

∑
ν=1

(
[ℓ]q

[ℓ]q+λ ([ν + ℓ+1]q− [ℓ]q)

)r

aν ζ ν , (7)

r ∈ N0, ℓ, λ ≥ 0, 0 < q< 1.

From (7) we get

λqℓ+1ζdq(Dr
q(λ , ℓ)f(ζ )) = [ℓ]qD

r+1
q (λ , ℓ)f(ζ )−

(
λqℓ+[ℓ]q

)
Dr

q(λ , ℓ)f(ζ ), (λ > 0).

We note that:
If we set q→ 1− we get Im

p (λ , ℓ)f(ζ ) it was investigated by Bulboaca et al. [22] and El-Ashwah [23], (with p = 1).
We also observe that:
(i) Dr

q(1, ℓ)f(ζ ) =Dr
q(ℓ)f(ζ )

f(ζ ) ∈ Σ: Dr
q(ℓ)f(ζ ) =

1
ζ
+

∞

∑
ν=2

(
[ℓ]q

[ν + ℓ+1]q

)r

aν ζ ν ,

(r ∈ N0, 0 < q< 1, ζ ∈ U∗);

(ii) Dr
q(1, 1)f(ζ ) =Dr

qf(ζ )

f(ζ ) ∈ Σ: Dr
qf(ζ ) =

1
ζ
+

∞

∑
ν=2

(
1

[ν +2]q

)r

aν ζ ν ,

(r ∈ N0, ℓ > 0, 0 < q< 1, ζ ∈ U∗);

(iii)Dr
q(λ , 1)f(ζ ) =Dr

q(λ )f(ζ )

f(ζ ) ∈ Σ: Dr
q(λ )f(ζ ) =

1
ζ
+

∞

∑
ν=2

(
1

1+λ ([ν +2]q−1)

)r

aν ζ ν ,

(r ∈ N0, λ > 0, 0 < q< 1, ζ ∈ U∗).

Now, we define a subclass Σ∗, r
q (Θ, λ , ℓ) of meromorphic analytic functions on U∗ as follows:

Definition 2 For 0 ≤ Θ < 1 and ℓ, λ ≥ 0. f ∈ Σ as in (1) is said to be in the class Σ∗, r
q (Θ, λ , ℓ) of meromorphic

starlike function of order Θ, if it satisfies
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Re
{−qζdq(Dr

q(λ , ℓ)f(ζ ))
Dr

q(λ , ℓ)f(ζ )

}
≥ Θ, ζ ∈ U∗. (8)

We note that
(i) For r = 0 the class Σ∗, r

q (Θ, λ , ℓ) reduce to the class Σ∗
q(Θ) the class of meromorphic starlike function of order Θ,

(ii) For q→ 1− and r =Θ= 0 the class Σ∗, r
q (Θ, λ , ℓ) reduce to the class Σ∗ the class of meromorphic starlike function

(see [24]).
Let Φ be the class of analytic functions and univalent convex functions inU, with φ(0) = 1, φ(ζ ) = 1+(1−2Θ)ζ

1−ζ , and
ℜφ(ζ )> Θ in U.

Using the subordination principle we can defined the class Σ∗, r
q (Θ, λ , ℓ) as following

−qζdq(Dr
q(λ , ℓ)f(ζ ))

Dr
q(λ , ℓ)f(ζ )

≺ φ(ζ ), (9)

where dq is the q-difference operator.
To illustrate our conclusions, the following lemma is necessary:
Lemma 1 [25] Let υ and ε be complex numbers with γ ̸= 0 and let φ(ζ ) be analytic in U with φ(0) = 1 and

Re{υφ(ζ )+ ε}> 0. If ω(ζ ) = 1+ω1ζ +ω2ζ 2 + .... is analytic in U, then

ω(ζ )+
ζdqω(ζ )

υω(ζ )+ ε
≺ φ(ζ ),

then ω(ζ )≺ φ(ζ ).
In this paper, we construct, coefficient conditions and show some properties for function f belonging to this subclass.

These include the convolution conditions, closure theorem, convex combinations, the q-Bernardi integral operator and the
neighbourhoods problem.

2. Some properties of the class Σ∗, r
q (Θ, λ , ℓ)Σ∗, r
q (Θ, λ , ℓ)Σ∗, r
q (Θ, λ , ℓ)

Unless otherwise mentioned we shall assume throughout the paper that 0 ≤ Θ < 1, λ > 0, ℓ≥ 0 and 0 < q< 1.
Our first result represent a sufficient condition for f ∈ Σ∗, r

q (Θ, λ , ℓ).
Theorem 1 If f ∈ Σ of the form (1). Then f ∈ Σ∗, r

q (Θ, λ , ℓ) iff

∞

∑
ν=1

(q[ν ]q+Θ)

(
[ℓ]q

[ℓ]q+λ ([ν + ℓ+1]q− [ℓ]q)

)r

|aν | ≤ 1−Θ. (10)

Proof. Consider f ∈ Σ∗, r
q (Θ, λ , ℓ) then by the definition (8), we have

Re
{−qζdqDr

q(λ , ℓ)f(ζ ))
Dr

q(λ , ℓ)f(ζ )

}
≥ Θ
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which is equivalent to

Re


1−∑∞

ν=1 q[ν ]q
(

[ℓ]q
[ℓ]q+λ ([ν+ℓ+1]q−[ℓ]q)

)r
aν ζ ν+1

1+∑∞
ν=1

(
[ℓ]q

[ℓ]q+λ ([ν+ℓ+1]q−[ℓ]q)

)r
aν ζ ν+1

≥ Θ

choosing a value of ζ = r ∈ (0, 1) on the real axis such that r → 1−, we have

1−
∞

∑
ν=1

q[ν ]q

(
[ℓ]q

[ℓ]q+λ ([ν + ℓ+1]q− [ℓ]q)

)r

|aν |

≥Θ+Θ
∞

∑
ν=1

(
[ℓ]q

[ℓ]q+λ ([ν + ℓ+1]q− [ℓ]q)

)r

|aν | ,

on simplification we get,

∞

∑
ν=1

(q[ν ]q+Θ)

(
[ℓ]q

[ℓ]q+λ ([ν + ℓ+1]q− [ℓ]q)

)r

|aν | ≤ 1−Θ.

Conversely, suppose that f ∈ Σ of the form (1) and the inequality (10) holds for all ζ ∈ U∗ we will prove that f ∈
Σ∗, r
q (Θ, λ , ℓ), according to definition of the class Σ∗, r

q (Θ, λ , ℓ), and for 0 ≤ Θ < 1, we want to show

Re
{−qζdqDr

q(λ , ℓ)f(ζ ))
Dr

q(λ , ℓ)f(ζ )

}
≥ Θ.

By using Re(ω)≥ Θ if |1−Θ+ω| ≥ |1+Θ−ω| , it suffices to show |ψ(ζ )|− |Θ(ζ )| ≥ 0, where

ψ(ζ ) =−qζdqDr
q(λ , ℓ)f(ζ ))+(1−Θ)Dr

q(λ , ℓ)f(ζ )

and

Θ(ζ ) = qζdqDr
q(λ , ℓ)f(ζ ))+(1+Θ)Dr

q(λ , ℓ)f(ζ ).

Now

|ψ(ζ )|− |Θ(ζ )|=

∣∣∣∣∣2−Θ
ζ

−
∞

∑
ν=1

(q[ν ]q−1+Θ)

(
[ℓ]q

[ℓ]q+λ ([ν + ℓ+1]q− [ℓ]q)

)r

aν ζ ν

∣∣∣∣∣−

Volume 7 Issue 1|2026| 275 Contemporary Mathematics



∣∣∣∣∣Θζ −
∞

∑
ν=1

(q[ν ]q+1+Θ)

(
[ℓ]q

[ℓ]q+λ ([ν + ℓ+1]q− [ℓ]q)

)r

aν ζ ν−1

∣∣∣∣∣ ,

≥

∣∣∣∣∣2−2Θ
ζ

−
∞

∑
ν=1

2(q[ν ]q+Θ)

(
[ℓ]q

[ℓ]q+λ ([ν + ℓ+1]q− [ℓ]q)

)r

aν ζ ν

∣∣∣∣∣ ,

≥2(1−Θ)

|ζ |
(1−

∞

∑
ν=1

(q[ν ]q+Θ)

1−Θ

(
[ℓ]q

[ℓ]q+λ ([ν + ℓ+1]q− [ℓ]q)

)r

|aν |
∣∣ζ ν+1∣∣ ,

≥2(1−Θ)(1−
∞

∑
ν=1

(q[ν ]q+Θ)

1−Θ

(
[ℓ]q

[ℓ]q+λ ([ν + ℓ+1]q− [ℓ]q)

)r

|aν | .

By condition (10) this completes the proof.
Corollary 1 If f ∈ Σ∗, r

q (Θ, λ , ℓ), then

|aν | ≤
(1−Θ)

(q[ν ]q+Θ)
(

[ℓ]q
[ℓ]q+λ ([ν+ℓ+1]q−[ℓ]q)

)r , (ν ≥ 1).

The result is sharp for the function

f(ζ ) =
1
ζ
+

(1−Θ)

(q[ν ]q+Θ)
(

[ℓ]q
[ℓ]q+λ ([ν+ℓ+1]q−[ℓ]q)

)r ζ ν , (ν ≥ 1).

In the next theorem, we show the main result of closure of such functions belonging to the class Σ∗, r
q (Θ, λ , ℓ).

Theorem 2 Let fi(ζ ) be in the class Σ∗, r
q (Θ, λ , ℓ), for every i = 1, 2, ..., β , where

fi(ζ ) =
1
ζ
+

∞

∑
ν=1

aν , iζ ν , (aν , i ≥ 0),

then the function

ξ (ζ ) =
1
ζ
+

∞

∑
ν=1

bν ζ ν , (bν ≥ 0),

is also in the class Σ∗, r
q (Θ, λ , ℓ), where bν = 1

β

β
∑

i=1
aν , i.

Proof. To show that fi(ζ ) ∈ Σ∗, r
q (Θ, λ , ℓ), it is enough to show that condition (10) holds, such that
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∞

∑
ν=1

(q[ν ]q+Θ)

(
[ℓ]q

[ℓ]q+λ ([ν + ℓ+1]q− [ℓ]q)

)r

|bν |

=
∞

∑
ν=1

(q[ν ]q+Θ)

(
[ℓ]q

[ℓ]q+λ ([ν + ℓ+1]q− [ℓ]q)

)r
1
β

β

∑
i=1

|aν , i| ,

=
1
β

β

∑
i=1

∞

∑
ν=1

(q[ν ]q+Θ)

(
[ℓ]q

[ℓ]q+λ ([ν + ℓ+1]q− [ℓ]q)

)r

|aν , i| ,

as fi(ζ ) ∈ Σ∗, r
q (Θ, λ , ℓ) for all i = 1, 2, ..., β , then it satisfies condition (10), therefore

∞

∑
ν=1

(q[ν ]q+Θ)

(
[ℓ]q

[ℓ]q+λ ([ν + ℓ+1]q− [ℓ]q)

)r

|bν |

≤ 1
β

β

∑
i=1

(1−Θ)≤ 1−Θ,

therefore, we have fi(ζ ) ∈ Σ∗, r
q (Θ, λ , ℓ) and this completes the proof.

In next theorem, we proved the class Σ∗, r
q (Θ, λ , ℓ) is closed under convex combination.

Theorem 3 If f ∈ Σ of the form (1). Then f ∈ Σ∗, r
q (Θ, λ , ℓ) iff

f(ζ ) =
∞

∑
ν=0

ϑν fν(ζ ), (11)

where

f0(ζ ) =
1
ζ
,

fν(ζ ) =
1
ζ
+

 (1−Θ)

(q[ν ]q+Θ)
(

[ℓ]q
[ℓ]q+λ ([ν+ℓ+1]q−[ℓ]q)

)r

ζ ν , (ν = 1, 2, ...), (12)

where 0 ≤ ϑν ≤ 1 and
∞
∑

ν=0
ϑν = 1.

Proof. Let
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f(ζ ) =
∞

∑
ν=0

ϑν fν(ζ )

=ϑ0f0 +
∞

∑
ν=1

ϑν fν

=
ϑ0

ζ
+

∞

∑
ν=1

ϑν

 1
ζ
+

 (1−Θ)

(q[ν ]q+Θ)
(

[ℓ]q
[ℓ]q+λ ([ν+ℓ+1]q−[ℓ]q)

)r

ζ ν

 ,

by applying (10), we get

∞

∑
ν=1

(q[ν ]q+Θ)

(
[ℓ]q

[ℓ]q+λ ([ν + ℓ+1]q− [ℓ]q)

)r

×

 (1−Θ)

(q[ν ]q+Θ)
(

[ℓ]q
[ℓ]q+λ ([ν+ℓ+1]q−[ℓ]q)

)r ϑν



(1−Θ)
∞

∑
ν=1

ϑν = (1−Θ)(1−ϑ0)≤ 1−Θ,

then f ∈ Σ∗, r
q (Θ, λ , ℓ).

Conversely, assume that f ∈ Σ∗, r
q (Θ, λ , ℓ). Put

ϑν =
(q[ν ]q+Θ)

(
[ℓ]q

[ℓ]q+λ ([ν+ℓ+1]q−[ℓ]q)

)r

(1−Θ)
aν , 0 ≤ ϑν ≤ 1,

ϑ0 =1−
∞

∑
ν=1

ϑν .

Then, f can be expressed as

f(ζ ) =
1
ζ
+

∞

∑
ν=1

aν ζ ν =
1
ζ
+

∞

∑
ν=1

[(1−Θ)

(q[ν ]q+Θ)
(

[ℓ]q
[ℓ]q+λ ([ν+ℓ+1]q−[ℓ]q)

)r ϑν ζ ν

=
ϑ0

ζ
+

∞

∑
ν=1

1
ζ
+

 (1−Θ)

(q[ν ]q+Θ)
(

[ℓ]q
[ℓ]q+λ ([ν+ℓ+1]q−[ℓ]q)

)r ζ ν

ϑν

=
∞

∑
ν=0

ϑν fν .
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And this completes the proof.
The convolution conditions is obtained in the next theorem.
Theorem4 If f∈Σ of the form (1) and g(ζ )= 1

ζ +
∞
∑

ν=1
cν ζ ν be in the classΣ∗, r

q (Θ, λ , ℓ). Then (f∗g)∈Σ∗, r
q (σ , λ , ℓ),

where

σ = 1− (1−Θ)2 (q[ν ]q+1)

(1−Θ)2 +(q[ν ]q+Θ)2
(

[ℓ]q
[ℓ]q+λ ([ν+ℓ+1]q−[ℓ]q)

)r

Proof. Since f, g ∈ Σ∗, r
q (Θ, λ , ℓ), then

∞

∑
ν=1

(q[ν ]q+Θ)

(1−Θ)

(
[ℓ]q

[ℓ]q+λ ([ν + ℓ+1]q− [ℓ]q)

)r

|aν | ≤ 1,

and

∞

∑
ν=1

(q[ν ]q+Θ)

(1−Θ)

(
[ℓ]q

[ℓ]q+λ ([ν + ℓ+1]q− [ℓ]q)

)r

|aν | ≤ 1.

We have to find the largest σ such that

∞

∑
ν=1

(q[ν ]q+σ)

(1−σ)

(
[ℓ]q

[ℓ]q+λ ([ν + ℓ+1]q− [ℓ]q)

)r

|aν | |cν | ≤ 1, (13)

by using Cauchy-Schwartz inequality, we have

∞

∑
ν=1

(q[ν ]q+Θ)

(1−Θ)

(
[ℓ]q

[ℓ]q+λ ([ν + ℓ+1]q− [ℓ]q)

)r√
|aν | |cν | ≤ 1, (14)

it is enough to show that

∞

∑
ν=1

(q[ν ]q+σ)

(1−σ)

(
[ℓ]q

[ℓ]q+λ ([ν + ℓ+1]q− [ℓ]q)

)r

|aν | |cν |

≤
∞

∑
ν=1

(q[ν ]q+Θ)

(1−Θ)

(
[ℓ]q

[ℓ]q+λ ([ν + ℓ+1]q− [ℓ]q)

)r√
|aν | |cν |.

This is equivalent to
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√
|aν | |cν | ≤

(q[ν ]q+Θ)(1−σ)

(1−Θ)(q[ν ]q+σ)
.

From (14) we have

√
|aν | |cν | ≤

(1−Θ)

(q[ν ]q+Θ)
(

[ℓ]q
[ℓ]q+λ ([ν+ℓ+1]q−[ℓ]q)

)r .

Thus it is enough to show that

(1−Θ)

(q[ν ]q+Θ)
(

[ℓ]q
[ℓ]q+λ ([ν+ℓ+1]q−[ℓ]q)

)r ≤ (q[ν ]q+Θ)(1−σ)

(1−Θ)(q[ν ]q+σ)
,

(1−Θ)(1−Θ)(q[ν ]q+σ)≤ (q[ν ]q+Θ)(1−σ)(q[ν ]q+Θ)

(
[ℓ]q

[ℓ]q+λ ([ν + ℓ+1]q− [ℓ]q)

)r

σ

[
(1−Θ)2 +(q[ν ]q+Θ)2

(
[ℓ]q

[ℓ]q+λ ([ν + ℓ+1]q− [ℓ]q)

)r]

≤ (q[ν ]q+Θ)2

(
[ℓ]q

[ℓ]q+λ ([ν + ℓ+1]q− [ℓ]q)

)r

− (1−Θ)2 q[ν ]q

then

σ ≤
(q[ν ]q+Θ)2

(
[ℓ]q

[ℓ]q+λ ([ν+ℓ+1]q−[ℓ]q)

)r
− (1−Θ)2 q[ν ]q

(1−Θ)2 +(q[ν ]q+Θ)2
(

[ℓ]q
[ℓ]q+λ ([ν+ℓ+1]q−[ℓ]q)

)r

≤1− (1−Θ)2 (q[ν ]q+1)

(1−Θ)2 +(q[ν ]q+Θ)2
(

[ℓ]q
[ℓ]q+λ ([ν+ℓ+1]q−[ℓ]q)

)r .

Theorem 5 If f ∈ Σ of the form (1) and g(ζ ) = 1
ζ +

∞
∑

ν=1
cν ζ ν be in the class Σ∗, r

q (Θ, λ , ℓ). Then

h(ζ ) =
1
ζ
+

∞

∑
ν=1

(|aν |2 + |cν |2)ζ ν ∈ Σ∗, r
q (ρ, λ , ℓ),

where
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ρ = 1− 2(1−Θ)2 (q+1)!

2(1−Θ)2 +(q+Θ)2
(

[ℓ]q
[ℓ]q+λ ([ℓ+2]q−[ℓ]q)

)r .

Proof. We want to find the largest ρ such that

∞

∑
ν=1

(q[ν ]q+ρ)
(1−ρ)

(
[ℓ]q

[ℓ]q+λ ([ν + ℓ+1]q− [ℓ]q)

)r

(|aν |2 + |cν |2)≤ 1. (15)

Since f, g ∈ Σ∗, r
q (Θ, λ , ℓ), then from Theorem 1

∞

∑
ν=1

[
(q[ν ]q+Θ)

(1−Θ)

(
[ℓ]q

[ℓ]q+λ ([ν + ℓ+1]q− [ℓ]q)

)r]2

|aν |2

≤

[
∞

∑
ν=1

(q[ν ]q+Θ)

(1−Θ)

(
[ℓ]q

[ℓ]q+λ ([ν + ℓ+1]q− [ℓ]q)

)r

|aν |
]2

≤ 1 (16)

and

∞

∑
ν=1

[
(q[ν ]q+Θ)

(1−Θ)

(
[ℓ]q

[ℓ]q+λ ([ν + ℓ+1]q− [ℓ]q)

)r]2

|cν |2 (17)

≤

[
∞

∑
ν=1

(q[ν ]q+Θ)

(1−Θ)

(
[ℓ]q

[ℓ]q+λ ([ν + ℓ+1]q− [ℓ]q)

)r

|cν |
]2

≤ 1.

Summing (16) and (17), we get

∞

∑
ν=1

1
2

[
(q[ν ]q+Θ)

(1−Θ)

(
[ℓ]q

[ℓ]q+λ ([ν + ℓ+1]q− [ℓ]q)

)r]2

(|aν |2 + |cν |2)≤ 1.

But, h(ζ ) ∈ Σ∗, r
q (Θ, λ , ℓ) iff

∞

∑
ν=1

[
(q[ν ]q+ρ)
(1−ρ)

(
[ℓ]q

[ℓ]q+λ ([ν + ℓ+1]q− [ℓ]q)

)r]
(|aν |2 + |cν |2)≤ 1.

This true if
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[
(q[ν ]q+ρ)
(1−ρ)

(
[ℓ]q

[ℓ]q+λ ([ν + ℓ+1]q− [ℓ]q)

)r]

≤1
2

[
(q[ν ]q+Θ)

(1−Θ)

(
[ℓ]q

[ℓ]q+λ ([ν + ℓ+1]q− [ℓ]q)

)r]2
(q[ν ]q+ρ)
(1−ρ)

≤ (q[ν ]q+Θ)2

2(1−Θ)2

(
[ℓ]q

[ℓ]q+λ ([ν + ℓ+1]q− [ℓ]q)

)r
(1−ρ)

(q[ν ]q+ρ)

≥ 2(1−Θ)2

(q[ν ]q+Θ)2
(

[ℓ]q
[ℓ]q+λ ([ν+ℓ+1]q−[ℓ]q)

)r = ψ(ν),

where ψ(ν) is decreasing of ν and has a maximum value ψ(ν) = 2(1−Θ)2

(q+Θ)2
(

[ℓ]q
[ℓ]q+λ ([ℓ+2]q−[ℓ]q)

)r attains at ν = 1.

(1−ρ)
(q+ρ)

≥ 2(1−Θ)2

(q+Θ)2
(

[ℓ]q
[ℓ]q+λ ([ℓ+2]q−[ℓ]q)

)r ,

(1−ρ)(q+Θ)2

(
[ℓ]q

[ℓ]q+λ ([ℓ+2]q− [ℓ]q)

)r

≥ 2(1−Θ)2 (q+ρ),

on simplification, we get

ρ ≤ 1− 2(1−Θ)2 (q+1)

2(1−Θ)2 +(q+Θ)2
(

[ℓ]q
[ℓ]q+λ ([ℓ+2]q−[ℓ]q)

)r .

This completes the proof.

3. The qqq-Bernardi integral operator
Bernardi q-meromorphic refers to a class of complex functions that are both meromorphic (analytic except for

poles) and exhibit q-analogue properties, often studied in the context of q-difference equations or q-integral operators
like the generalized q-Bernardi integral operator. Researchers use these operators to define and study new subclasses of
these functions, such as meromorphic q-starlike and q-convex functions, examining their coefficient estimates, inclusion
properties, and other analytical characteristics.

The q-Bernardi integral operator generalizes the classical Bernardi operator into the framework of q-calculus, acting
as a linear coefficient multiplier operator on analytic functions, with wide applications in q-versions of GFT.

For a function f ∈ Σ, we denote by Iρ, q the q-Bernardi integral operator Iρ, q defined by (see [17, 26, 27]).
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Fq(ζ ) = Iρ, q[f(ζ )] =
[ρ]q
ζ ρ+1

∫ ζ

0
τρ f(τ) dqτ (ρ ∈ N). (18)

The q-Bernardi integral operator Iρ, q: Σ → Σ, defined in (18), satisfies the following relationship:

qρ+1ζdqDr
q(λ , ℓ)Fq(ζ ) = [ρ]qDr

q(λ , ℓ)f(ζ )− [ρ +1]qDr
q(λ , ℓ)Fq(ζ ). (19)

We now state and prove the following result.
Theorem 6 If f ∈ Σ defined by (1) is in the function class Σ∗, r

q (Θ, λ , ℓ), and Re{− 1
qφ +

[ρ+1]q
qρ+1 } > 0 then Fq(ζ )

defined by (18) also belongs to the class Σ∗, r
q (Θ, λ , ℓ).

Proof. Let f ∈ Σ∗, r
q (Θ, λ , ℓ), we put

ω(ζ ) =
−qζdq(Dr

q(λ , ℓ)Fq(ζ ))
Dr

q(λ , ℓ)Fq(ζ )
, (20)

where ω(ζ ) is analytic in U with ω(0) = 1.
From (19), we show that

ω(ζ ) =− [ρ]q
qρ

Dr
q(λ , ℓ)f(ζ )

Dr
q(λ , ℓ)Fq(ζ )

+
[ρ +1]q

qρ .

On q-logarithmic differentiation we get

ω(ζ )+
ζdqω(ζ )

− 1
qω(ζ )+ [ρ+1]q

qρ+1

=
−qζdq(Dr

q(λ , ℓ)f(ζ ))
Dr

q(λ , ℓ)f(ζ )
≺ φ(ζ ). (21)

Since f ∈ Σ∗, r
q (Θ, λ , ℓ), we can revise (21) as

ω(ζ )+
ζdqω(ζ )

− 1
qω(ζ )+ [ρ+1]q

qρ

≺ φ(ζ ).

Now, by using Lemma 1, we conclude ω(ζ ) ≺ φ(ζ ). Consequently −qζdq(Dr
q(λ , ℓ)Fq(ζ ))

Dr
q(λ , ℓ)Fq(ζ ) ≺ φ(ζ ). Hence Fq(ζ ) ∈

Σ∗, r
q (Θ, λ , ℓ).

4. Neighborhoods on Σε∗, r
q (Θ, λ , ℓ)Σε∗, r
q (Θ, λ , ℓ)Σε∗, r
q (Θ, λ , ℓ)

In the field of complex analysis, understanding neighborhoods is essential as they play a key role in studying functions
of complex numbers. A neighborhood in this context refers to a set of points surrounding a particular point in the complex
plane. Just like in our physical neighborhood, where we interact with nearby places, in complex analysis, a neighborhood
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allows mathematicians to examine the behavior of complex functions near specific points. This concept helps to explore
important ideas like limits, continuity, and differentiability, which are fundamental to the study of complex systems.

Following the earlier works by Goodman [28], Ruscheweyh [29] and Liu and Srivastava [30], we define the α-
neighborhood of a function f ∈ Σ by

Nα(f) =

{
h ∈ Σ: h(ζ ) =

1
ζ
+

∞

∑
ν=1

γν ζ ν and
∞

∑
ν=1

ν |aν − γν | ≤ α, 0 ≤ α < 1

}
. (22)

For the identity function I(ζ ) = ζ , we have

Nα(I) =

{
h ∈ Σ: h(ζ ) =

1
ζ
+

∞

∑
ν=1

γν ζ ν and
∞

∑
ν=1

ν |γν | ≤ α

}
. (23)

Definition 3 If f ∈ Σ of the form (1) be in the class Σε∗, r
q (Θ, λ , ℓ) if there exist h ∈ Σ∗, r

q (Θ, λ , ℓ) such that

∣∣∣∣ f(ζ )h(ζ )
−1
∣∣∣∣< 1− ε, (ζ ∈ U∗, 0 ≤ ε < 1).

Theorem 7 If h ∈ Σ∗, r
q (Θ, λ , ℓ) and

ε = 1−
α(q+Θ)

(
[ℓ]q

)r

(q+Θ)
(
[ℓ]q

)r
−
(
[ℓ]q+λ ([ℓ+2]q− [ℓ]q

)r
(1−Θ)

, (24)

then Nα(h)⊂ Σε∗, r
q (Θ, λ , ℓ).

Proof. Consider f ∈ Nα(h), then from (22), we have

∞

∑
ν=1

[ν ]q |aν − γν | ≤ α ⇒
∞

∑
ν=1

|aν − γν | ≤ α, (ν ∈ N).

Since h ∈ Σ∗, r
q (Θ, λ , ℓ), then from Theorem 1 we have

(q+Θ)

(
[ℓ]q

[ℓ]q+λ ([ℓ+2]q− [ℓ]q)

)r ∞

∑
ν=1

|γν |

≤
∞

∑
ν=1

(q[ν ]q+Θ)

(
[ℓ]q

[ℓ]q+λ ([ν + ℓ+1]q− [ℓ]q)

)r

|γν |

≤1−Θ
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∞

∑
ν=1

|γν | ≤
1−Θ

(q+Θ)
(

[ℓ]q
[ℓ]q+λ ([ℓ+2]q−[ℓ]q)

)r

∞

∑
ν=1

|γν | ≤

(
[ℓ]q+λ ([ℓ+2]q− [ℓ]q

)r
(1−Θ)

(q+Θ)
(
[ℓ]q

)r ,

and hence

∣∣∣∣ f(ζ )h(ζ )
−1
∣∣∣∣<

∞
∑

ν=1
|aν − γν |

1−
∞
∑

ν=1
|γν |

≤
α(q+Θ)

(
[ℓ]q

)r

(q+Θ)
(
[ℓ]q

)r
−
(
[ℓ]q+λ ([ℓ+2]q− [ℓ]q

)r
(1−Θ)

=1− ε.

Thus, for given ε in (24) and by definition (22) we have f ∈ Σε∗, r
q (Θ, λ , ℓ) , and the proof is complete.

5. Conclusion
This study introduces a new subclass of meromorphic functions in the punctured unit disk U∗ by employing the q-

analogue of a multiplier operator associated with the family of linear operators Σ∗, r
q (Θ, λ , ℓ). The structure of this operator

enables a systematic analysis of the geometric properties of the proposed class. For functions belonging to this class, we
have established coefficient conditions and investigated neighborhood properties, convolution relations, and a closure
theorem involving convex combinations. In several cases, the sharpness of the obtained results has been demonstrated,
underscoring both the theoretical robustness and the applicability of the developed approach.

The flexibility of the operator framework provides a foundation for generating additional subclasses of meromorphic
functions, opening avenues for further research in geometric function theory. The findings presented here are new and
are expected to stimulate continued exploration of related operators and their analytic implications.
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