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1. Introduction

Numerous natural and engineered diffusion processes including soil contaminant migration, oil movement through
porous media, and groundwater pollutant transport over long distances exhibit anomalous diffusion behavior. In
these cases, particle dispersion occurs at rates that deviate from predictions made by traditional integer-order diffusion
models. Over the past twenty years, researchers have demonstrated that fractional diffusion equations provide effective
mathematical frameworks for modeling these non-standard diffusion phenomena (as documented in sources ranging from
[1=7D.

The expanding applications of fractional calculus and derivatives across applied sciences have spurred a surge in
research on fractional differential equations. There are many numerical methods to solve the fractional differential
equation, for example, finite difference method [8—12], weighted average finite difference method [13], fundamental
solution method [14, 15], matrix transform method [16, 17] and implicit numerical Euler approximation method [18, 19],
etc.

After the first paper on inverse problem for fractional differential equation [20], a lot of articles consider the inverse
problem for fractional differential equation from many aspects, for example, Bondarenko et al. [21, 22] consider the
numerical treatment of boundary value problem, Luchko [23-25] consider maximum principle, uniqueness and existence
result of the solution, Mainardi [26] and Salim et al. [27] consider the fundamental solution, Sakamoto [28] and Xu [29]
discuss inverse source problem, Xu et al. [30] obtain stability result using Carleman estimate, etc.

For diffusion equations involving multiple fractional time derivatives, additional relevant works include Jiang et al.
[31], Gejji et al [32], and Li et al. [33], along with their references. The study in [34] establishes the unique existence
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of solutions, maximum principle, and related properties for cases where the time-derivative coefficients are positive and
spatially dependent. The analysis relies on the Fourier method, specifically separation of variables. In [35], the authors
prove uniqueness and solution regularity for an initial-boundary value problem involving a symmetric two-term time-
fractional diffusion equation, under the assumption of solution existence. Similarly, [33] extends these results to linear
non-symmetric diffusion equations with variable fractional time-derivative coefficients which need not be constant or
positive. The work in [36] demonstrates uniqueness for two inverse problems involving fractional order identification in
multi-term time-fractional diffusion equations using pointwise observations. In [37], the author examines in great detail
a reaction-diffusion model with variable coefficients.

The model in this paper often used to describe solute transport in mobile/immobile region [38], where coefficient
r stands for o the mobile/immobile capacity coefficient and f(x) is the pollutant source. However, r and f(x) are often
unknown and hardly to measure in general, so determination of the two terms is necessary. In this paper, building upon
[36], we prove a uniqueness result for simultaneously determining a coefficient and a space-dependent source term via
eigenfunction expansion and Laplace transform. However, unlike prior studies, we focus on a two-term mobile/immobile
time-fractional diffusion equation, which models total concentration [38]. Another difference is that [36] gives the
uniqueness result of fractional orders and coefficients whereas this paper consider the uniqueness of coefficient and source
function.

The rest of this paper is organized as follows. In section 2, we give the formulation of the problem and some
preliminary result. In section 3, we give the main result and the proof. Finally, concluding remarks are given.

2. Formulation of the problem and some preliminary results

We consider the following problem:

Ju J0%

E+r87_u)“+f(x)’o<x<l’T>t>0 (1)
u(x, 0) = §(x), 0 < x< 1 @)
uy(0, 1) =ux(1,¢)=0,T >t >0, ?3)

where 1 > o > 0 is fractional order, » > 0 is a constant. We suppose that f(x) € L>(0, 1), ¢(x) € L*(0, 1) and supp(f) C
0, 1).

Also, to get the uniqueness result, we assume that the intersection of support of f(x) and ¢(x) is an empty set.

9% denotes the Caputo derivative defined by

% 1 tf(s)
e~ T(1 —oc)/o T Chad

and I'() denotes the usual Gamma function.
We discuss
Inverse Problem: Let xo =0, x| € [0, 1)/suppf lie on the left side of suppf. Determine r and f(x) from additional

measurements u(xo, t), u(xy, t), 0 <t <T.
To prove the main result, we need to introduce a special function named the multinomial Mittag-Leffler function,
which is the natural function that appear in the solutions to multi-term fractional differential equations, playing a role
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analogous to the exponential function in integer-order equations. The definition of the mlutinomial Mittag-Leffler function
is as follows:

oo kj
where0 < o; <1,0< B <2,z;€C, j=1,---, nand (k; ki, ---k,) denotes the multinomial coefficient
k! !
(ks ki, -ky) = P with k = j;k,».
For later use and simplicity, we adopt the abbreviation
E((,{> o), 1oy (t)= E(al, =0, -, 0 —0t), 140y <_7lea'7 —rptM % —”nlalia") .

To reach the main result, we need to use some properties of the multinomial Mittag-Leffler function, we list these
properties in the following Lemma [39]:
Lemma 1 Let A > 0, then

d (n) ~1g(m
dt {talE(rA, o), 1+ (t)} =% E(r, a), ap*

Lemma2 Let0 < <2,and 1 > a; > --- > o, > 0 be given. Assume that o /2 < < oym, U < |arg(z)| < =
and there is K > 0 such that —K < z; <0(j =2, ---n). Then there exists a constant C > 0 depending on u, K, «; (j =
1,2, .-+, n) and B only such that

|E(0617 a—0p, ++, 0 —0), /3(11’ v )l < 1+|z1|

Lemma 2.2 provides an asymptotic bound that ensures the convergence of the series solutions.

3. Main result and the proof

Before we give the main result, we should give the solution to the forward problem (1)-(3).

The solution is nearly identical to the result in [31], except for the boundary condition shift from Dirichlet to Neumann.
This alteration replaces the sine function in [31]’s formula (44) with a cosine. Consequently, we can derive the solution
to (1)-(3) analogously to [31] in the following form:

)

u(x, 1) = Z tE(1, 1—q), 2(—Mat, —rt'"*) (=2, 0 + f, cosnmx)cosnmx + Z(q), COSNTTX) COSNTIX.
n=1

n=1
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Now we state our main result.
Theorem 1 Let u(x, r) be the weak solution to (1)-(3), and let v be the weak solution of (4)-(6) with the same initial
condition and boundary conditions as (1)-(3),

dv 2%

g+rlw=vxx+fl(x),0<x<l7T>t>0 (4)
v(x, 0)=9(x), 0<x <1 (5)
ve(0, 1) =vi(1, 1) =0, T >1 >0, (6)

where 1 > 0 is a constant and f; (x) € L*(0, 1), suppfi C (0, 1).

Then for xo = 0, x; € (0, 1)/(suppf U suppfi) lying on the left side of suppf U suppfi, u(xo, t) =
v(xo, 1), u(x1, 1) =v(xy, t) imply r = r and f(x) = fi(x), 0 <x < 1.

Proof. We assume that x) = 0, and x, lies on the left side of suppf | suppfi and xo < x, then f(x) = f(x) =
0, x € (0, x1).

We split the proof into the following two steps:

Step 1 We will prove r = ry.

Denote u(xo, t) = 0y(z), u(xy, t) = 6;(¢), then u(x, #) and v(x, t) satisfies the following problem respectively

%+r%:um0<x<xl,T>t>0 (7
u(x, 0)=0(x), 0<x<x ®)
uy(0,7) =0, u(xy, 1) =6,(¢), T>t >0 9)
%+r1%=vm70<x<x1,T>t>O (10)
v(x, 0) =¢(x), 0<x<x (11)
ve(0,2) =0, v(x, 1) =6:(¢), T >t >0. (12)

Similar to the method of [31], we can see that

u(x, 1) = ZIE(L 1—a), 2(— At —rt'"*) (=2, 0 + f, cosnmx)cosnmx + Z(gb, COSATX) COSATTX

n=1 n=1

v(x, 1) = Z tE(1, 1—a), 2(—Mat, —rt' ") (=A,0 + f1, cosnmx)cosnmx +

n=1 n=1

(¢, cosnmx)cosnmx.

=
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Denote w = u — v, then w(x, ¢) satisfies

ow  Jd%w %

EJrrata :Wxx+(r1—r)W,0<x<x1,T>t>0 (13)
w(x, 0)=0,0<x<x (14)
wy(0, 1) =0, w(x;, 1) =0, T >t >0, (15)

and w(xp, 1) =0.
Denote F(x, t) = 9%
EETT

Wl 1) = [ F B 1 1 (s =91 = FC 1), 02)ouds,
n=1

where (-, -) denotes the scalar product in L2(0, x1), {4, ¢}, be an eigensystem of the following Sturm-Liouville
problem

X"(x)+AX =0, 0<x<x
X'(0) =0, X(x;) =0.

If we define

=

Ut)f:= ZE(I, 1-a), 1 (=2t _rtlia)(fa On) P

n=1

then

Wi, 1) = (r1—7) /O'U(S)F(-, [ = 5)ds.

By using Lemma (1) and the formulation of v(x, f), there holds
a% 1 dv
F(x, t) =55 = (vxx—at—i—fl(x))

s

1 .
:Z { Z |:(1 _)LntE(l, 1-a), 2(_)~nta _rtlia)) (¢7 ¢n)¢n

n=1
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+ZfE1 ey, 2 (Pt =11 ") (fi, 020+ (fis 0n) 0

_i )LEI 1—a), 1(=Aut, —rt'” )(‘i) ¢n>¢n+E1 1-a), 1(=Aut, —rt'” )(f1»¢n)¢n]}

1 o _ _
{Z —An+ME(1 1—a), 1 (—Aat, —rt! a)+)’nztE(l7 1—a), 2(— At —rt! a)] (@, 0n)On

r n=1

Z [AtE (1, 1-a), 2(—Dat, —"flfa)‘FE(], 1—a), 1 (=2t —rt' =) = 1] (fi, (Pn)‘l)n}v

since the solutions # and v can be analytically extended to ¢ > 0 in view of the analyticity of the multinomial Mittag-Leffler
function [33], we have w(xo, t) =0, ¢ > 0. So by the Laplace transform we obtain

ry—r (Pn xO 1 ln
Z S+ rs%+ A, Z E_s+r1sa+)t s(s+ris®+A,) (A 411, ) (9ns dn)

ZS+¢:S:’C(:-), Z s+r1s0‘+),)( )L¢+f17¢n)(¢na ‘Pn): s

thus there is three possible cases:

()r—r=0;
(i) yo 1 (= + fi, 9n) (@, $n) =0.

s(s+ris®+A,)
Next we will show that only case (i) holds true.

If case (ii) is true, thatis ), % =0.
Denote 1 = s+rs%, then Y, f;”j_x;) = 0 holds for 1 € € {A,},>1. We can take a disk which includes A; and does
n
not include {4, },>2. In the disk, the functions ¢"_§_x;) , n > 2 are analytic and their integrals along the disk are zeros. So
n

along the disk equals to 27i¢ (xp), which is also equal to 0. Thus, we have ¢; (xo) = 0.

integration of )~

On (xo)
N+

Take another disk which includes A, but doesn’t include {4, },>3, we can get ¢»(xp) = O using similar procedure.
Repeating this argument, we can obtain ¢,(xo) = 0, n = 3, 4, -, which is impossible in sake of ¢, being eigenfunction of
Sturm-Liouville problem.

For case (iii):

From Y5 1 (b4 fi, 000, ) =0,

n=1 s(s—i—rls"‘—i—kn) n s Wn ny Yn

Also denote 1 = s+ r;s* and take a disk which includes 4; and does not include {A,},>>. By Cauchy integral

theorem, integrating along the disk, we have
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2xi(—¢ + f1, 1) (01, ¢1)[r15*][p=—2, =0,

considering r1s* =1 —s and (¢, ¢;) > 0, we have

(Mo +f1, 01)=0

Repeating this argument, we can obtain

(=20 + fi, ¢,)=0,n=2,3, ---.

However, we know that fj (x) =0 forx € (0, x;) and (-, -) denotes inner product on the interval (0, x1), so (fi, ¢,) =
0,n=1,2,---,then we can get (¢, ¢,) =0, n=1, 2, --- indicates that ¢ (x) =0, x € (0, x;) for arbitrary initial function
¢ (x). That’s impossible.

so we can conclude that only case (i) holds true, i.e., r = ry.

Step 2 we will prove f(x) = fi(x).

We turn back to (1)-(3) and (4)-(6).

Denote @, =2 [y phi(x)cos(nmx)dx, f, =2 [y f(x)cos(nmx)dx and fi, =2 [y f1(x)cos(nmx)dx.

By analytic continuation we can get u(xo, t) = v(xo, t), ¢t > 0 from u(xo, ¢) = v(xo, ¢), T >t > 0. Then

/ ZEI 1-a), 2 (—Hns, —rst™ )fndscos(nn?xo)
¢ oo

:/0 Y Eq a2 (—Hns, —rs'™%) findscos(nmxy),
n=1

1
where 11, = n*m. Apply Laplace transform on the above equation, considering the property of £ ( [y f(t)dt) = - £ (f(t))
s

of Laplace transform, then we can get

Z facos(nmxg) Z:fl,lcos (n7xo)
S = 177+”1°‘+#n S = 1n+rna+“n

which implies

i 1 COS mrxo)
2+ Un

n=1

where z represents n +rn% and a, = f, — fin.
We can take a disk which includes y; and does not include {n’*n},>>. By Cauchy integral theorem, integrating
along the disk, we have a; cos(mxg) = 0, which gives f; = fi1. Repeating this argument, we can obtain
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fn:flm n:2a 37

Thus we can conclude that f(x) = fi(x).
That’s end the proof. ]

4. Conclusion

In this paper, we consider the two term fractional diffusion equation, which can be used to simulate mobile/immobile
diffusion process in porus media. However, the coefficient r and the source term f(x) may be unknown, so determination
of these two terms is necessary. We prove the uniqueness result of simultaneously determining coefficient and source
term from two points observation, and the proof relies on eigenfunction expansion and the Laplace transform. Actually,
it seems easy to determine r or f(x), however, it is difficult to determine the two terms simultaneously since r and f(x)
may belong to different function space.

We also need to point out that the result can be extended to multi-term time fractional diffusion equations through the
similar technique. In the future work, we may investigate the stability of the inverse problem and the numerical algorithm
based on the presented theory.
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