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1. Introduction
Numerous natural and engineered diffusion processes including soil contaminant migration, oil movement through

porous media, and groundwater pollutant transport over long distances exhibit anomalous diffusion behavior. In
these cases, particle dispersion occurs at rates that deviate from predictions made by traditional integer-order diffusion
models. Over the past twenty years, researchers have demonstrated that fractional diffusion equations provide effective
mathematical frameworks for modeling these non-standard diffusion phenomena (as documented in sources ranging from
[1–7]).

The expanding applications of fractional calculus and derivatives across applied sciences have spurred a surge in
research on fractional differential equations. There are many numerical methods to solve the fractional differential
equation, for example, finite difference method [8–12], weighted average finite difference method [13], fundamental
solution method [14, 15], matrix transform method [16, 17] and implicit numerical Euler approximation method [18, 19],
etc.

After the first paper on inverse problem for fractional differential equation [20], a lot of articles consider the inverse
problem for fractional differential equation from many aspects, for example, Bondarenko et al. [21, 22] consider the
numerical treatment of boundary value problem, Luchko [23–25] consider maximum principle, uniqueness and existence
result of the solution, Mainardi [26] and Salim et al. [27] consider the fundamental solution, Sakamoto [28] and Xu [29]
discuss inverse source problem, Xu et al. [30] obtain stability result using Carleman estimate, etc.

For diffusion equations involving multiple fractional time derivatives, additional relevant works include Jiang et al.
[31], Gejji et al [32], and Li et al. [33], along with their references. The study in [34] establishes the unique existence
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of solutions, maximum principle, and related properties for cases where the time-derivative coefficients are positive and
spatially dependent. The analysis relies on the Fourier method, specifically separation of variables. In [35], the authors
prove uniqueness and solution regularity for an initial-boundary value problem involving a symmetric two-term time-
fractional diffusion equation, under the assumption of solution existence. Similarly, [33] extends these results to linear
non-symmetric diffusion equations with variable fractional time-derivative coefficients which need not be constant or
positive. The work in [36] demonstrates uniqueness for two inverse problems involving fractional order identification in
multi-term time-fractional diffusion equations using pointwise observations. In [37], the author examines in great detail
a reaction-diffusion model with variable coefficients.

The model in this paper often used to describe solute transport in mobile/immobile region [38], where coefficient
r stands for o the mobile/immobile capacity coefficient and f (x) is the pollutant source. However, r and f (x) are often
unknown and hardly to measure in general, so determination of the two terms is necessary. In this paper, building upon
[36], we prove a uniqueness result for simultaneously determining a coefficient and a space-dependent source term via
eigenfunction expansion and Laplace transform. However, unlike prior studies, we focus on a two-term mobile/immobile
time-fractional diffusion equation, which models total concentration [38]. Another difference is that [36] gives the
uniqueness result of fractional orders and coefficients whereas this paper consider the uniqueness of coefficient and source
function.

The rest of this paper is organized as follows. In section 2, we give the formulation of the problem and some
preliminary result. In section 3, we give the main result and the proof. Finally, concluding remarks are given.

2. Formulation of the problem and some preliminary results
We consider the following problem:

∂u
∂ t

+ r
∂ α u
∂ tα = uxx + f (x), 0 < x < 1, T > t > 0 (1)

u(x, 0) = ϕ(x), 0 ≤ x ≤ 1 (2)

ux(0, t) = ux(1, t) = 0, T ≥ t ≥ 0, (3)

where 1 > α > 0 is fractional order, r > 0 is a constant. We suppose that f (x) ∈ L2(0, 1), ϕ(x) ∈ L2(0, 1) and supp( f )⊂
(0, 1).

Also, to get the uniqueness result, we assume that the intersection of support of f (x) and ϕ(x) is an empty set.
∂ α

t denotes the Caputo derivative defined by

∂ α f
∂ tα =

1
Γ(1−α)

∫ t

0

f ′(s)
(t − s)α ds,

and Γ(·) denotes the usual Gamma function.
We discuss
Inverse Problem: Let x0 = 0, x1 ∈ [0, 1]/supp f lie on the left side of supp f . Determine r and f (x) from additional

measurements u(x0, t), u(x1, t), 0 < t < T .
To prove the main result, we need to introduce a special function named the multinomial Mittag-Leffler function,

which is the natural function that appear in the solutions to multi-term fractional differential equations, playing a role
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analogous to the exponential function in integer-order equations. The definition of themlutinomialMittag-Leffler function
is as follows:

E(α1, ··· , αn), β (z1, · · · , zn) =
∞

∑
k=0

∑
k1+···+kn=k

(k; k1, · · ·kn)
∏n

j=1 z
k j
j

Γ(β +∑n
j=1 k jα j)

,

where 0 < α j < 1, 0 < β < 2, z j ∈ C, j = 1, · · · , n and (k; k1, · · ·kn) denotes the multinomial coefficient

(k; k1, · · ·kn) =
k!

k1! · · ·kn!
with k =

n

∑
j=1

k j.

For later use and simplicity, we adopt the abbreviation

E( j)
(r, α ′), 1+α1

(t) = E(α1, α1−α2, ··· , α1−αn), 1+α1

(
−λ jtα1 , −r2tα1−α2 · · · , −rntα1−αn

)
.

To reach the main result, we need to use some properties of the multinomial Mittag-Leffler function, we list these
properties in the following Lemma [39]:

Lemma 1 Let λ > 0, then

d
dt

{
tα1E(n)

(r, α ′), 1+α1
(t)

}
= tα1−1E(n)

(r, α ′), α1
.

Lemma 2 Let 0 < β < 2, and 1 > α1 > · · · > αn > 0 be given. Assume that α1π/2 < µ < α1π , µ < |arg(z)| < π
and there is K > 0 such that −K < z j < 0( j = 2, · · ·n). Then there exists a constant C > 0 depending on µ, K, α j ( j =
1, 2, · · · , n) and β only such that

|E(α1, α1−α2, ··· , α1−αn), β (z1, · · · , zn)| ≤
C

1+ |z1|
.

Lemma 2.2 provides an asymptotic bound that ensures the convergence of the series solutions.

3. Main result and the proof
Before we give the main result, we should give the solution to the forward problem (1)-(3).
The solution is nearly identical to the result in [31], except for the boundary condition shift fromDirichlet to Neumann.

This alteration replaces the sine function in [31]’s formula (44) with a cosine. Consequently, we can derive the solution
to (1)-(3) analogously to [31] in the following form:

u(x, t) =
∞

∑
n=1

tE(1, 1−α), 2(−λnt, −rt1−α)(−λnϕ + f , cosnπx)cosnπx+
∞

∑
n=1

(ϕ , cosnπx)cosnπx.
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Now we state our main result.
Theorem 1 Let u(x, t) be the weak solution to (1)-(3), and let v be the weak solution of (4)-(6) with the same initial

condition and boundary conditions as (1)-(3),

∂v
∂ t

+ r1
∂ α v
∂ tα = vxx + f1(x), 0 < x < 1, T > t > 0 (4)

v(x, 0) = ϕ(x), 0 ≤ x ≤ 1 (5)

vx(0, t) = vx(1, t) = 0, T ≥ t ≥ 0, (6)

where r1 > 0 is a constant and f1(x) ∈ L2(0, 1), supp f1 ⊂ (0, 1).
Then for x0 = 0, x1 ∈ (0, 1)/(supp f

∪
supp f1) lying on the left side of supp f

∪
supp f1, u(x0, t) =

v(x0, t), u(x1, t) = v(x1, t) imply r = r1 and f (x) = f1(x), 0 < x < 1.
Proof. We assume that x0 = 0, and x1 lies on the left side of supp f

∪
supp f1 and x0 < x1, then f (x) = f1(x) =

0, x ∈ (0, x1).
We split the proof into the following two steps:
Step 1We will prove r = r1.
Denote u(x0, t) = θ0(t), u(x1, t) = θ1(t), then u(x, t) and v(x, t) satisfies the following problem respectively

∂u
∂ t

+ r
∂ α u
∂ tα = uxx, 0 < x < x1, T > t > 0 (7)

u(x, 0) = ϕ(x), 0 ≤ x ≤ x1 (8)

ux(0, t) = 0, u(x1, t) = θ1(t), T ≥ t ≥ 0 (9)

∂v
∂ t

+ r1
∂ α v
∂ tα = vxx, 0 < x < x1, T > t > 0 (10)

v(x, 0) = ϕ(x), 0 ≤ x ≤ x1 (11)

vx(0, t) = 0, v(x1, t) = θ1(t), T ≥ t ≥ 0. (12)

Similar to the method of [31], we can see that

u(x, t) =
∞

∑
n=1

tE(1, 1−α), 2(−λnt, −rt1−α)(−λnϕ + f , cosnπx)cosnπx+
∞

∑
n=1

(ϕ , cosnπx)cosnπx

v(x, t) =
∞

∑
n=1

tE(1, 1−α), 2(−λnt, −rt1−α)(−λnϕ + f1, cosnπx)cosnπx+
∞

∑
n=1

(ϕ , cosnπx)cosnπx.
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Denote w = u− v, then w(x, t) satisfies

∂w
∂ t

+ r
∂ α w
∂ tα = wxx +(r1 − r)

∂ α v
∂ tα , 0 < x < x1, T > t > 0 (13)

w(x, 0) = 0, 0 ≤ x ≤ x1 (14)

wx(0, t) = 0, w(x1, t) = 0, T ≥ t ≥ 0, (15)

and w(x0, t) = 0.

Denote F(x, t) =
∂ α v
∂ tα .

w(·, t) =
∫ t

0

∞

∑
n=1

E(1, 1−α), 1(−λns, −rs1−α)(r1 − r)(F(·, t − s), ϕn)ϕnds,

where (·, ·) denotes the scalar product in L2(0, x1), {λn, ϕn}∞
n=1 be an eigensystem of the following Sturm-Liouville

problem

X”(x)+λX = 0, 0 < x < x1

X ′(0) = 0, X(x1) = 0.

If we define

U(t) f :=
∞

∑
n=1

E(1, 1−α), 1(−λnt, −rt1−α)( f , ϕn)ϕn,

then

w(·, t) = (r1 − r)
∫ t

0
U(s)F(·, t − s)ds.

By using Lemma (1) and the formulation of v(x, t), there holds

F(x, t) =
∂ α v
∂ tα =

1
r1

(
vxx −

∂v
∂ t

+ f1(x)
)

=
1
r1

{
∞

∑
n=1

[(
1−λntE(1, 1−α), 2(−λnt, −rt1−α)

)
(ϕ , ϕn)ϕ ”

n
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+
∞

∑
n=1

tE(1, 1−α), 2(−λnt, −rt1−α)( f1, ϕn)ϕ ”
n +( f1, ϕn)ϕn

]

−
∞

∑
n=1

[
−λnE(1, 1−α), 1(−λnt, −rt1−α)(ϕ , ϕn)ϕn +E(1, 1−α), 1(−λnt, −rt1−α)( f1, ϕn)ϕn

]}

=
1
r1

{
∞

∑
n=1

[
−λn +λnE(1, 1−α), 1(−λnt, −rt1−α)+λ 2

n tE(1, 1−α), 2(−λnt, −rt1−α)
]
(ϕ , ϕn)ϕn

−
∞

∑
n=1

[
λntE(1, 1−α), 2(−λnt, −rt1−α)+E(1, 1−α), 1(−λnt, −rt1−α)−1

]
( f1, ϕn)ϕn

}
,

since the solutions u and v can be analytically extended to t > 0 in view of the analyticity of the multinomial Mittag-Leffler
function [33], we have w(x0, t) = 0, t > 0. So by the Laplace transform we obtain

r1 − r
sr1

∞

∑
n=1

ϕn(x0)

s+ rsα +λn

∞

∑
n=1

[
1
s
− 1

s+ r1sα +λn
− λn

s(s+ r1sα +λn)

]
(−λnϕ + f1, ϕn)(ϕn, ϕn)

=
r1 − r

sr1

∞

∑
n=1

ϕn(x0)

s+ rsα +λn

∞

∑
n=1

r1sα

s(s+ r1sα +λn)
(−λnϕ + f1, ϕn)(ϕn, ϕn) = 0,

thus there is three possible cases:
(i) r1 − r = 0;

(ii) ∑∞
n=1

ϕn(x0)

s+ rsα +λn
= 0;

(iii) ∑∞
n=1

r1sα

s(s+ r1sα +λn)
(−λnϕ + f1, ϕn)(ϕn, ϕn) = 0.

Next we will show that only case (i) holds true.

If case (ii) is true, that is ∑∞
n=1

ϕn(x0)

s+ rsα +λn
= 0.

Denote η = s+ rsα , then ∑∞
n=1

ϕn(x0)

η +λn
= 0 holds for η ∈ C {λn}n≥1. We can take a disk which includes λ1 and does

not include {λn}n≥2. In the disk, the functions
ϕn(x0)

η +λn
, n ≥ 2 are analytic and their integrals along the disk are zeros. So

integration of ∑∞
n=1

ϕn(x0)

η +λn
along the disk equals to 2πiϕ1(x0), which is also equal to 0. Thus, we have ϕ1(x0) = 0.

Take another disk which includes λ2 but doesn’t include {λn}n≥3, we can get ϕ2(x0) = 0 using similar procedure.
Repeating this argument, we can obtain ϕn(x0) = 0, n = 3, 4, ·, which is impossible in sake of ϕn being eigenfunction of
Sturm-Liouville problem.

For case (iii):

From ∑∞
n=1

r1sα

s(s+ r1sα +λn)
(−λnϕ + f1, ϕn)(ϕn, ϕn) = 0.

Also denote η = s+ r1sα and take a disk which includes λ1 and does not include {λn}n≥2. By Cauchy integral
theorem, integrating along the disk, we have
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2πi(−λ1ϕ + f1, ϕ1)(ϕ1, ϕ1)[r1sα ]|η=−λ1 = 0,

considering r1sα = η − s and (ϕ1, ϕ1)> 0, we have

(−λ1ϕ + f1, ϕ1) = 0.

Repeating this argument, we can obtain

(−λnϕ + f1, ϕn) = 0, n = 2, 3, · · · .

However, we know that f1(x) = 0 for x ∈ (0, x1) and (·, ·) denotes inner product on the interval (0, x1), so ( f1, ϕn) =

0, n = 1, 2, · · · , then we can get (ϕ , ϕn) = 0, n = 1, 2, · · · indicates that ϕ(x) = 0, x ∈ (0, x1) for arbitrary initial function
ϕ(x). That’s impossible.

so we can conclude that only case (i) holds true, i.e., r = r1.
Step 2 we will prove f (x) = f1(x).
We turn back to (1)-(3) and (4)-(6).
Denote φn = 2

∫ 1
0 phi(x)cos(nπx)dx, fn = 2

∫ 1
0 f (x)cos(nπx)dx and f1n = 2

∫ 1
0 f1(x)cos(nπx)dx.

By analytic continuation we can get u(x0, t) = v(x0, t), t > 0 from u(x0, t) = v(x0, t), T > t > 0. Then

∫ t

0

∞

∑
n=1

E(1, 1−α), 2
(
−µns, −rs1−α) fndscos(nπx0)

=
∫ t

0

∞

∑
n=1

E(1, 1−α), 2
(
−µns, −rs1−α) f1ndscos(nπx0),

where µn = n2π2. Apply Laplace transform on the above equation, considering the property ofL (
∫ t

0 f (τ)dτ)=
1
s
L ( f (t))

of Laplace transform, then we can get

1
s

∞

∑
n=1

fn cos(nπx0)

η + rηα +µn
=

1
s

∞

∑
n=1

f1n cos(nπx0)

η + rηα +µn
,

which implies

∞

∑
n=1

an cos(nπx0)

z+µn
= 0,

where z represents η + rηα and an = fn − f1n.
We can take a disk which includes µ1 and does not include {n2π2}n≥2. By Cauchy integral theorem, integrating

along the disk, we have a1 cos(πx0) = 0, which gives f1 = f11. Repeating this argument, we can obtain
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fn = f1n, n = 2, 3, · · · .

Thus we can conclude that f (x) = f1(x).
That’s end the proof. □

4. Conclusion
In this paper, we consider the two term fractional diffusion equation, which can be used to simulate mobile/immobile

diffusion process in porus media. However, the coefficient r and the source term f (x)may be unknown, so determination
of these two terms is necessary. We prove the uniqueness result of simultaneously determining coefficient and source
term from two points observation, and the proof relies on eigenfunction expansion and the Laplace transform. Actually,
it seems easy to determine r or f (x), however, it is difficult to determine the two terms simultaneously since r and f (x)
may belong to different function space.

We also need to point out that the result can be extended to multi-term time fractional diffusion equations through the
similar technique. In the future work, we may investigate the stability of the inverse problem and the numerical algorithm
based on the presented theory.
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