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Abstract: By employing the inverse Mellin transform and the calculus of residues, we derive the exact null distribution
of the likelihood ratio statistic for testing the homogeneity of covariance matrices of two p-variate Gaussian populations
having compound symmetry. As a practical component of this work, critical values (percentage points) have been
computed for p = 3(1)9.
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1. Introduction
The term intraclass correlation was originally coined by Fisher [1] to describe a multivariate population characterized

by equal variances and equal covariances. This specific structure is commonly encountered in repeated measures designs
which are not time-dependent [2]. When the assumption of interchangeability of order of responses is assumed, the
covariances are said to be exchangeable, a term that is synonymous with compound symmetry. Gaussian models featuring
compound symmetry are frequently applied to study symmetries in animals and plants and have also demonstrated
significant utility in applied fields like medical research and psychometrics.

When the dispersion matrix Σ of a p-variate distribution exhibits compound symmetry, it can be expressed as

Σvc = σ2[(1−ρ)Ip +ρJ],

where Ip denotes an identity matrix of order p, J is a p× p matrix having each element equals to unity; σ2 and ρ are
known scalars, σ2 ∈ (0, ∞) and ρ ∈ (−1/(p−1), 1).

The problem of testing Hvc : Σ = Σvc, for the multivariate Gaussian distribution, was first considered by Wilks [3]
who obtained the likelihood ratio statistic Λvc and computed the distribution p = 2 and p = 3. A Statistical Analysis
System (SAS) program that computes Λvc for testing the compound symmetry was developed by Khattree and Naik [4]
p.158.
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Nagar et al. [5] have tabulated the exact percentage points for p = 4(1)8. The problem of testing Hvc has important
applications in areas such as medical research and psychometrics. Furthermore, such models also emerge in the analysis
of familial data [6]. For more general structures of the covariance matrices, the reader is referred to Votaw [7], Votaw et
al. [8], Szatrowski [9], Olkin and Press [10], Olkin [11], Quereshi [12], Coelho and Marques [13]. For some recent work,
reference may be made to Coelho and Roy [14], Jurková et al. [15], Tsukada [16], and Zhao et al. [17].

Let Π1, . . . , Πq be q independent p-variate normal populations with mean vectors µ1, . . . , µq and positive definite
covariance matrices Σ1, . . . , Σq, respectively. Let samples of sizes N1, . . . , Nq be available from these q populations.

Assume that Σg has intra-class correlation structure. That is

Σg = Σg, vc = σ2
g [(1−ρg)Ip +ρgJ], g = 1, . . . , q,

where, for g = 1, 2, ..., q, σ2
g ∈ (0, ∞) and ρg ∈ (−1/(p−1), 1) are unknown scalars. Consider the hypothesis

Hq(VC|vc) : Σ1, vc = · · ·= Σq, vc = Σvc (1)

against the alternative K which states that Hq(VC|vc) is not true. The modified likelihood ratio statistic for testing
Hq(VC|vc) can be stated as

Λ∗
q(VC|vc) =

npn0/2
0

∏q
g=1 npng/2

g

∏q
g=1

[
[tr((pIp − J)Ag)]

p−1 tr(JAg)
]ng/2

[
[tr((pIp − J)A)]p−1 tr(JA)

]n0/2 ,

whereAg/ng is the sample variance covariancematrix formed from the g-th sample, A=∑q
g=1 Ag, ng =Ng−1, g= 1, . . . , q,

and n0 = ∑q
g=1 ng. The h-th null moment of the modified likelihood ratio statistic Λ∗

q(VC|vc), derived by Han [18], can
be expressed as

E(Λ∗h
q (VC|vc)) =

nn0 ph/2
0

∏q
g=1 nng ph/2

g

Γ(n0/2)Γ [n0(p−1)/2]
Γ [n0(1+h)/2]Γ [n0(p−1)(1+h)/2]

q

∏
g=1

Γ [ng(1+h)/2]Γ [ng(p−1)(1+h)/2]
Γ(ng/2)Γ [ng(p−1)/2]

,

where ng > 0, g = 1, ..., q and Re(h) > −m/2. When n1 = · · · = nq = n, the h-th null moment of V = [Λ∗
q(VC|vc)]2/n

simplifies to

E(V h) = qqph Γ(nq/2)Γ[nq(p−1)/2]
Γ[q(n/2+h)]Γ[q(p−1)(n/2+h)]

Γq(n/2+h)Γq[(p−1)(n/2+h)]
Γq(n/2)Γq[n(p−1)/2]

. (2)

For the univariate case (p= 1), the hypothesis in (1) simplifies to the standard Neyman-Pearson hypothesis for testing
the homogeneity of variances of Gaussian models. Han [18] has shown that the test based on the modified Likelihood
Ratio Criterion (LRC) is better than the test derived by using Roy’s union intersection procedure (see [19, 20]). Gupta and
Nagar [21] derived the asymptotic nonnull distribution of a constant multiple of −2lnΛ∗

q(VC|vc). For p = 2 and p = 3,
the exact distribution and percentage points of [Λ∗

q(VC|vc)]2/n, for n1 = · · · = nq = n, are obtained in Gupta and Nagar
[21] and Gupta et al. [22].
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In this article, we consider the case of two multivariate normal populations. We derive the exact distribution of
[Λ∗

2(VC|vc)]2/n for testing H2(VC|vc) by using the inverse Mellin transform and the residue theorem [5, 23–26]. By using
properties and results on gamma, psi and Riemann zeta functions [27, 28], we give the density for p-even and p-odd in
series form. By using distributional results derived in this article and suitable software such as Mathematica, we obtain
the significance points for the test statistic [Λ∗

2(VC|vc)]2/n.

2. The density of V
Substituting q = 2 in (2) and using Gauss-Legendre multiplication formula for gamma function, namely,

Γ(2z) =
22z−1
√

π
Γ(z)Γ

(
z+

1
2

)
,

and simplifying, the h-th moment of V is

E(V h) =
Γ(n/2+h)Γ[(n+1)/2]
Γ(n/2)Γ[(n+1)/2+h]

p−2

∏
k=0

Γ[n/2+ k/(p−1)+h]Γ[n/2+1/(2(p−1))+ k/(p−1)]
Γ[n/2+ k/(p−1)]Γ[n/2+1/(2(p−1))+ k/(p−1)+h]

.

Now, using the inverse Mellin transform and the above moment expression, the density of V is obtained as

f (v) = K(n, p)(2πı)−1
∫

C

Γ(n/2+h)
Γ[(n+1)/2+h]

p−2

∏
k=0

Γ[n/2+ k/(p−1)+h]
Γ[n/2+1/(2(p−1))+ k/(p−1)+h]

v−1−hdh, (3)

where 0 < v < 1, ı =
√
−1, C is a suitable contour containing poles of the integrand and

K(n, p) =
Γ[(n+1)/2]

Γ(n/2)

p−2

∏
k=0

Γ[n/2+1/(2(p−1))+ k/(p−1)]
Γ[n/2+ k/(p−1)]

.

Substituting n/2+h = t and simplifying, the density (3) is restated as

f (v) = K(n, p)(2πı)−1v(n−2)/2
∫

C1

∆(t)v−tdt, 0 < v < 1,

where the contourC1 encloses the poles of the integrand (for the existence of such a contour the reader is referred to Luke
[29] p.143). For p even

∆(t) =
Γ2(t)∏p−2

k=1 Γ[t + k/(p−1)]

Γ(t +1/2)∏p−2
k=0 Γ[t +1/(2(p−1))+ k/(p−1)]

and for p odd
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∆(t) =
Γ2(t)∏p−2

k(̸=(p−1)/2)=1 Γ[t + k/(p−1)]

∏p−2
k=0 Γ[t +1/(2(p−1))+ k/(p−1)]

.

The poles of the integrand, for p even, are available by equating to zero each factor of∏∞
i=0 ∏p−2

j=0 (t+ i+ j/(p−1))ai j

where ai j gives the order of the pole at t =−i− j/(p−1). The order ai j is given by ai0 = 2 and ai j = 1 for j ≥ 1.
The poles of the integrand, for p odd, are available by equating to zero each factor of ∏∞

i=0 ∏p−2
j(̸=(p−1)/2)=0(t + i+

j/(p−1))ai j where ai j gives the order of the pole at t =−i− j/(p−1). The order ai j is given by ai0 = 2 and ai j = 1 for
j ≥ 1.

Hence, by the residue theorem, the density for p even, is given by

f (v) = K(n, p)(n−2)/2
∞

∑
i=0

p−2

∑
j=0

Ri j, 0 < v < 1, (4)

where Ri j is the residue at t =−i− j/(p−1). From the calculus of residues, the residue at t =−i− j/(p−1), j ≥ 1, is
derived as

Ri j = lim
t→−i− j/(p−1)

[(
t + i+

j
p−1

)
∆(t)v−t

]

= lim
t→−i− j/(p−1)

[
Ai jv−t] , (5)

where

Ai j =
(t + i+ j/(p−1))Γ2(t)∏p−2

k=1 Γ[t + k/(p−1)]

Γ(t +1/2)∏p−2
k=0 Γ[t +1/(2(p−1))+ k/(p−1)]

=
Γ[t + i+ j/(p−1)+1]Γ2(t)∏p−2

k(̸= j)=1 Γ[t + k/(p−1)]

Γ(t +1/2)∏i−1
ℓ=0(t + j/(p−1)+ ℓ)∏p−2

k=0 Γ[t +1/(2(p−1))+ k/(p−1)]
.

Now, by taking t →−i− j/(p−1), the residue Ri j is evaluated as

Ri j = Ai j0vi+ j/(p−1), (6)

where

Ai j0 =
(−1)iΓ2[−i− j/(p−1)]∏p−2

k(̸= j)=1 Γ[−i− ( j− k)/(p−1)]

i!Γ[−i− j/(p−1)+1/2]∏p−2
k=0 Γ[−i− ( j− k)/(p−1)+1/(2(p−1))]

.
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The residue Ri0 is obtained as

Ri0 = lim
t→−i

[
∂
∂ t

(
Ai0v−t)]= lim

t→−i

[
∂
∂ t

(g(t))
]
, (7)

where

Ai0 =
(t + i)2Γ2(t)∏p−2

k=1 Γ[t + k/(p−1)]

Γ(t +1/2)∏p−2
k=0 Γ[t +1/(2(p−1))+ k/(p−1)]

.

Now, writing (t + i)2Γ2(t) = Γ2(t + i+1)/∏i−1
ℓ=0(t + ℓ)2 above, we get:

=
Γ2(t + i+1)∏p−2

k=1 Γ[t + k/(p−1)]

Γ(t +1/2)∏i−1
ℓ=0(t + ℓ)2 ∏p−2

k=0 Γ[t +1/(2(p−1))+ k/(p−1)]

and g(t) = Ai0v−t . Taking logarithm of g(t) and differentiating the resulting expression with respect to t, one gets

∂ lng(t)
∂ t

=
∂
∂ t

(lnAi0 − t lnv)

= Bi0 − lnv.

Further, noting the
∂ lng(t)

∂ t
=

1
g(t)

∂g(t)
∂ t

, we get

∂g(t)
∂ t

= (Bi0 − lnv)g(t) = (Bi0 − lnv)Ai0v−t ,

where ψ(·) is the digamma function [29, 30]. Now, taking limit as t →−i in (7), we obtain

Ri0 = [Bi00 − lnv]Ai00vi (8)

where

Ai00 =
∏p−2

k=1 Γ[−i+ k/(p−1)]

Γ(−i+1/2)(i!)2 ∏p−2
k=0 Γ[−i+1/(2(p−1))+ k/(p−1)]

and
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Bi00 = 2ψ(i+1)+
p−2

∑
k=1

ψ
(
−i+

k
p−1

)
−ψ

(
−i+

1
2

)
−

p−2

∑
k=0

ψ
(
−i+

k
p−1

+
1

2(p−1)

)
.

Finally, substituting (6) and (8) in (4), we obtain

f (v) = K(n, p)v(n−2)/2

[
∞

∑
i=0

p−2

∑
j=1

Ai j0vi+ j/(p−1)+
∞

∑
i=0

[Bi00 − lnv]Ai00vi

]
, (9)

where 0 < v < 1. Similarly, the density for p odd is given by

f (v) = K(n, p)v(n−2)/2

 ∞

∑
i=0

p−2

∑
j=1

̸=(p−1)/2

Ai j0vi+ j/(p−1)+
∞

∑
i=0

[Bi00 − lnv]Ai00vi

 , (10)

where

Ai j0 =
(−1)iΓ2[−i− j/(p−1)]∏p−2

k=1, k/∈{ j, (p−1)/2} Γ[−i− ( j− k)/(p−1)]

i!∏p−2
k=0 Γ[−i− ( j− k)/(p−1)+1/(2(p−1))]

,

Ai00 =
∏p−2

k(̸=(p−1)/2)=1 Γ[−i+ k/(p−1)]

(i!)2 ∏p−2
k=0 Γ[−i+1/(2(p−1))+ k/(p−1)]

and

Bi00 = 2ψ(i+1)+
p−2

∑
k=1

̸=(p−1)/2

ψ
(
−i+

k
p−1

)
−

p−2

∑
k=0

ψ
(
−i+

k
p−1

+
1

2(p−1)

)
.

Substituting p = 4 in (9), the density of V simplifies to

f (v) = K(n, 4)v(n−2)/2

[
∞

∑
i=0

Ai10vi+1/3 +
∞

∑
i=0

Ai20vi+2/3 +
∞

∑
i=0

[Bi00 − ln(v)]Ai00vi

]
, (11)

where

K(n, 4) =
Γ(n/2+1/6)Γ2(n/2+1/2)Γ(n/2+5/6)

Γ(n/2+1/3)Γ(n/2+2/3)Γ2(n/2)
,
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Ai10 =
(−1)iΓ2(−i−1/3)Γ(1/3− i)

i!Γ(−i−1/6)Γ2(1/6− i)Γ(1/2− i)
,

Ai20 =
(−1)iΓ2(−i−2/3)Γ(−i−1/3)

i!Γ(−i−1/2)Γ2(−i−1/6)Γ(1/6− i)
,

Ai00 =
Γ(1/3− i)Γ(2/3− i)

(i!)2Γ(1/6− i)Γ2(1/2− i)Γ(5/6− i)
,

and

Bi00 = 2ψ(i+1)−2ψ
(

1
2
− i

)
+ψ

(
1
3
− i

)
+ψ

(
2
3
− i

)
−ψ

(
5
6
− i

)
.

Further simplification of Ai10, Ai20, Ai00, and Bi00 can be achieved by rewriting gamma and digamma functions with
the help of conversion formulas

Γ(β − j) =
Γ(β )Γ(1−β )
Γ(1−β + j)

and

ψ(β − j) = ψ(β )−ψ(1−β )+ψ(1−β + j).

In continuation, we present a few graphs (Figure 1) of the density function defined by the expression (put the number
of the equation of the density) for n = 5, 10, 15, and 20. By visual observation of shapes that emerge for different values
of n one can appreciate efficient computation of the infinite series.

Figure 1. Graphs of f (v) for p = 4 and different values of n
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3. Computation
The computation of the exact percentage points has been carried out by using F(v, p) =

∫ v
0 f (t)dt where f (t) is

given by (9) and (10). First, f (t) is simplified for p = 4(1)9 using results on gamma and digamma functions. Then, the
Cumulative Distribution Function (CDF) F(v, p) for p = 4(1)9 is obtained by integrating term by term these simplified
density functions. For each p, F(v, p) is computed for various values of v. It is checked formonotonicity and for conditions
F(v, p)→ 0 as v → 0 and F(v, p)→ 1 as v → 1. Then, v is computed for various values of p and F(v, p). These are given
in Tables 1-3. We have used MATHEMATICA 11.0 to carry out these computations. To compute v for a given value
of α = F(v, p), we have used FindRoot which searches for a numerical solution to the given equation using Newton’s
method or a variant of the secant method. A six-place accuracy has been kept throughout. For higher values of p it is seen
that the accuracy is being lost. Hence the tables are given for p = 4(1)9.

Table 1. Percentage points of V for p = 4 and p = 5

p = 4 p = 5

n α = 0.01 α = 0.025 α = 0.05 α = 0.1 n α = 0.01 α = 0.025 α = 0.05 α = 0.1

2 0.0055 0.0150 0.0325 0.0707 2 0.0057 0.0155 0.0334 0.0723

3 0.0346 0.0669 0.1106 0.1832 3 0.0352 0.0679 0.1120 0.1851

4 0.0841 0.1371 0.1986 0.2882 4 0.0850 0.1383 0.2001 0.2898

5 0.1414 0.2083 0.2794 0.3749 5 0.1424 0.2095 0.2807 0.3763

6 0.1988 0.2738 0.3491 0.4451 6 0.1998 0.2750 0.3502 0.4462

7 0.2527 0.3320 0.4083 0.5022 7 0.2536 0.3330 0.4093 0.5031

8 0.3020 0.3830 0.4586 0.5491 8 0.3028 0.3839 0.4595 0.5500

9 0.3465 0.4277 0.5016 0.5883 9 0.3472 0.4285 0.5023 0.5890

10 0.3864 0.4668 0.5386 0.6214 10 0.3871 0.4675 0.5392 0.6220

11 0.4223 0.5012 0.5706 0.6497 11 0.4230 0.5019 0.5712 0.6502

12 0.4546 0.5317 0.5987 0.6741 12 0.4552 0.5323 0.5992 0.6746

13 0.4837 0.5589 0.6234 0.6954 13 0.4842 0.5594 0.6238 0.6958

14 0.5101 0.5831 0.6453 0.7141 14 0.5105 0.5836 0.6457 0.7144

15 0.5340 0.6049 0.6648 0.7307 15 0.5344 0.6053 0.6652 0.7310

16 0.5557 0.6246 0.6824 0.7454 16 0.5562 0.6250 0.6827 0.7457

17 0.5757 0.6425 0.6982 0.7587 17 0.5760 0.6428 0.6985 0.7589

18 0.5939 0.6588 0.7125 0.7706 18 0.5943 0.6591 0.7128 0.7708

19 0.6107 0.6736 0.7255 0.7814 19 0.6110 0.6739 0.7258 0.7816

20 0.6262 0.6873 0.7375 0.7913 20 0.6265 0.6876 0.7377 0.7915

21 0.6405 0.6999 0.7484 0.8003 21 0.6408 0.7001 0.7486 0.8005

22 0.6538 0.7115 0.7585 0.8086 22 0.6541 0.7117 0.7587 0.8087

23 0.6662 0.7222 0.7678 0.8162 23 0.6664 0.7225 0.7680 0.8163

24 0.6777 0.7322 0.7764 0.8232 24 0.6779 0.7324 0.7766 0.8233

25 0.6885 0.7415 0.7844 0.8297 25 0.6887 0.7417 0.7846 0.8299

26 0.6986 0.7502 0.7919 0.8358 26 0.6988 0.7504 0.7920 0.8359

27 0.7080 0.7584 0.7988 0.8414 27 0.7082 0.7585 0.7989 0.8415

28 0.7169 0.7660 0.8053 0.8467 28 0.7171 0.7661 0.8054 0.8468

29 0.7253 0.7731 0.8114 0.8516 29 0.7254 0.7733 0.8115 0.8517

30 0.7332 0.7799 0.8172 0.8562 30 0.7333 0.7800 0.8173 0.8563
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While the methodology presented here can be extended to cases where p ≥ 10, it comes with significant practical
limitations. The series expansions obtained for these higher dimensions become extremely lengthy, posing a major
challenge for computing the percentage points. For this reason, we recommend using an alternative approach, such as the
one described by Coelho and Marques [13], when calculating significance points for higher values of p.

Table 2. Percentage points of V for p = 6 and p = 7

p = 6 p = 7

n α = 0.01 α = 0.025 α = 0.05 α = 0.1 n α = 0.01 α = 0.025 α = 0.05 α = 0.1

2 0.0058 0.0158 0.0340 0.0733 2 0.0059 0.0161 0.0343 0.0739

3 0.0356 0.0686 0.1129 0.1863 3 0.0359 0.0690 0.1135 0.1870

4 0.0855 0.1390 0.2010 0.2909 4 0.0859 0.1395 0.2016 0.2916

5 0.1430 0.2102 0.2815 0.3772 5 0.1434 0.2107 0.2821 0.3777

6 0.2004 0.2756 0.3509 0.4470 6 0.2008 0.2761 0.3514 0.4474

7 0.2542 0.3336 0.4099 0.5037 7 0.2546 0.3340 0.4103 0.5041

8 0.3034 0.3845 0.4600 0.5504 8 0.3037 0.3848 0.4604 0.5508

9 0.3477 0.4289 0.5028 0.5894 9 0.3480 0.4292 0.5031 0.5897

10 0.3876 0.4679 0.5396 0.6224 10 0.3878 0.4682 0.5399 0.6226

11 0.4233 0.5022 0.5716 0.6505 11 0.4236 0.5025 0.5718 0.6507

12 0.4555 0.5326 0.5995 0.6748 12 0.4558 0.5328 0.5997 0.6750

13 0.4846 0.5597 0.6241 0.6960 13 0.4848 0.5599 0.6243 0.6962

14 0.5108 0.5838 0.6459 0.7147 14 0.5110 0.5840 0.6461 0.7148

15 0.5347 0.6056 0.6654 0.7312 15 0.5349 0.6057 0.6656 0.7313

16 0.5564 0.6252 0.6829 0.7459 16 0.5566 0.6254 0.6830 0.7460

17 0.5763 0.6430 0.6986 0.7591 17 0.5764 0.6432 0.6988 0.7592

18 0.5945 0.6593 0.7129 0.7710 18 0.5946 0.6594 0.7130 0.7711

19 0.6112 0.6741 0.7259 0.7818 19 0.6113 0.6742 0.7260 0.7819

20 0.6267 0.6877 0.7378 0.7916 20 0.6268 0.6878 0.7379 0.7917

21 0.6410 0.7003 0.7487 0.8006 21 0.6411 0.7004 0.7488 0.8006

22 0.6542 0.7118 0.7588 0.8088 22 0.6543 0.7119 0.7589 0.8089

23 0.6666 0.7226 0.7681 0.8164 23 0.6667 0.7227 0.7681 0.8165

24 0.6781 0.7325 0.7767 0.8234 24 0.6782 0.7326 0.7767 0.8235

25 0.6888 0.7418 0.7846 0.8299 25 0.6889 0.7419 0.7847 0.8300

26 0.6989 0.7505 0.7921 0.8360 26 0.6989 0.7506 0.7921 0.8360

27 0.7083 0.7586 0.7990 0.8416 27 0.7084 0.7587 0.7991 0.8416

28 0.7172 0.7662 0.8055 0.8469 28 0.7172 0.7663 0.8056 0.8469

29 0.7255 0.7734 0.8116 0.8518 29 0.7256 0.7734 0.8117 0.8518

30 0.7334 0.7801 0.8173 0.8564 30 0.7335 0.7801 0.8174 0.8564
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Table 3. Percentage points of V for p = 8 and p = 9

p = 8 p = 9

n α = 0.01 α = 0.025 α = 0.05 α = 0.1 n α = 0.01 α = 0.025 α = 0.05 α = 0.1

2 0.0060 0.0162 0.0346 0.0744 2 0.0060 0.0163 0.0348 0.0748

3 0.0361 0.0693 0.1139 0.1876 3 0.0362 0.0696 0.1142 0.1880

4 0.0862 0.1399 0.2020 0.2920 4 0.0864 0.1402 0.2023 0.2924

5 0.1437 0.2111 0.2824 0.3781 5 0.1439 0.2113 0.2827 0.3784

6 0.2011 0.2764 0.3518 0.4478 6 0.2013 0.2766 0.3520 0.4480

7 0.2548 0.3343 0.4106 0.5044 7 0.2551 0.3345 0.4108 0.5046

8 0.3040 0.3851 0.4606 0.5510 8 0.3041 0.3853 0.4608 0.5512

9 0.3483 0.4295 0.5033 0.5899 9 0.3484 0.4296 0.5035 0.5901

10 0.3881 0.4684 0.5401 0.6228 10 0.3882 0.4685 0.5402 0.6229

11 0.4238 0.5027 0.5720 0.6509 11 0.4239 0.5028 0.5721 0.6510

12 0.4559 0.5330 0.5999 0.6751 12 0.4561 0.5331 0.5999 0.6752

13 0.4849 0.5600 0.6244 0.6963 13 0.4850 0.5601 0.6245 0.6964

14 0.5112 0.5841 0.6462 0.7149 14 0.5113 0.5842 0.6463 0.7150

15 0.5350 0.6059 0.6657 0.7314 15 0.5351 0.6059 0.6657 0.7314

16 0.5567 0.6255 0.6831 0.7461 16 0.5568 0.6255 0.6832 0.7461

17 0.5765 0.6433 0.6988 0.7592 17 0.5766 0.6433 0.6989 0.7593

18 0.5947 0.6595 0.7131 0.7711 18 0.5948 0.6595 0.7132 0.7712

19 0.6114 0.6743 0.7261 0.7819 19 0.6115 0.6744 0.7262 0.7820

20 0.6269 0.6879 0.7380 0.7917 20 0.6269 0.6880 0.7380 0.7918

21 0.6412 0.7004 0.7489 0.8007 21 0.6412 0.7005 0.7489 0.8007

22 0.6544 0.7120 0.7589 0.8089 22 0.6545 0.7120 0.7590 0.8090

23 0.6667 0.7227 0.7682 0.8165 23 0.6668 0.7228 0.7682 0.8165

24 0.6782 0.7327 0.7768 0.8235 24 0.6783 0.7327 0.7768 0.8236

25 0.6890 0.7420 0.7848 0.8300 25 0.6890 0.7420 0.7848 0.8300

26 0.6990 0.7506 0.7922 0.8361 26 0.6990 0.7507 0.7922 0.8361

27 0.7084 0.7587 0.7991 0.8417 27 0.7085 0.7588 0.7991 0.8417

28 0.7173 0.7663 0.8056 0.8469 28 0.7173 0.7663 0.8056 0.8469

29 0.7256 0.7734 0.8117 0.8518 29 0.7257 0.7735 0.8117 0.8519

30 0.7335 0.7802 0.8174 0.8564 30 0.7335 0.7802 0.8174 0.8565
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