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Abstract: Domains such as artificial intelligence, statistical modeling, and signal interpretation. This method aims to
retain the core characteristics of datasets while minimizing their dimensional scope, which contributes to improving
the efficiency of algorithms and enhancing data understanding. The proposed framework relies on the principle of
Level Analysis of Partially Ordered Sets (LAPOS). Instead of treating dimensions as independent entities or searching
for linear projections, this method considers the ordinal relationships between different dimensions. A partial order
structure is constructed that reflects the correlations and interactions between data attributes, allowing for a more accurate
identification of the most influential and frequently occurring dimensions. LAPOS can reveal nonlinear relationships,
better interpretability, and flexibility in dimension selection. Preliminary results have shown that this method surpasses
traditional dimensionality reduction approaches in maintaining data integrity and minimizing information loss in
subsequent tasks (such as classification and clustering). LAPOS, Principal Component Analysis (PCA), and Factor
Analysis (FA) achieve 92.59, 86.1, and 81.02 accuracy respectively, when employing the Support Vector Machine (SVM)
algorithm. This research opens new avenues for using partially ordered set theory to manage the complications arising
from high-dimensional feature spaces.

Keywords: dimensionality reduction, partially ordered sets, artificial intelligence models

MSC: 06A06, 68Q25, 68W40

1. Introduction

High-dimensional datasets, which are frequently encountered in practical and applied fields such as industrial
processes and medical diagnostics, typically encompass a vast number of features, many of which are either redundant or
irrelevant to the task under investigation. These redundant and irrelevant attributes add noise to the dataset, thereby
complicating the learning process for machine learning algorithms and diminishing their predictive accuracy and
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computational efficiency. Consequently, there arises a pressing need to determine and preserve only the most valuable and
informative attributes, while excluding those that do not meaningfully support the classification or prediction objectives.
Feature Selection (FS) emerges as a robust and effective strategy designed to address this dimensionality reduction
challenge by isolating the specific subset of attributes possessing the highest predictive relevance, while eliminating
redundant and irrelevant factors [1]. Lowering the dataset’s dimensionality improves the efficiency of the learning process
and decreases the likelihood of overfitting, resulting in better generalization performance for machine learning models.
Once the essential features are identified and retained, various classification algorithms can be applied to perform the
predictive tasks efficiently using the refined feature space. It is widely acknowledged in the literature that the problem
of FS can be expressed as an optimization task, where the central objective is to enhance model performance, typically
evaluated through accuracy, by selecting the optimal subset of attributes. This setup enables embedding feature selection
into optimization schemes, with classification accuracy or any suitable performance metric—serving as the fitness function
guiding the optimization process [2]. Feature Selection possesses demonstrated effectiveness across numerous practical
domains. This approach finds applications across a variety of domains, including knowledge extraction from large datasets,
identification and analysis of underlying data patterns, retrieval and management of relevant information, pharmaceutical
research and development, optimization of production and scheduling processes, and the extension of operational lifetimes
in wireless sensor networks [3—5].

The following paragraphs present previous studies of 16 methods [6] that can perform dimensionality reduction with
varying efficiencies. Table 1 presents previous studies of 16 methods that can perform dimensionality reduction with
varying efficiencies.

Table 1. Sixteen method for reducing the dimension [6]

Method Input data Method class ci]rilriolli:;fltry
Principal Component Analysis (PCA) Continuous data Unsupervised O(max(n?p, np?))
Correspondence Analysis (CA) Categorical data Unsupervised O(max(n*p, np?))
Multiple Correspondence Analysis (MCA) Categorical data Unsupervised O(max(np, np?))
Principal Coordinates Analysis (PCoA)
(classical Multidimensional Scaling Distance matrix Unsupervised 0(n*p)
(cMDS))
Non-metric Ml(lll\t]ﬁlgse;l sional Scaling Distance matrix Unsupervised O(n’h)
Isomap Continuous Unsupervised v O(n*(p+1logn))
Diffusion map Continuous Unsupervised v o(n*p)
Kernel PCA Continuous Unsupervised v 0(n*p)
t-distri]l::jlrlrtliigéfséle(lts_tiscl\ll\ée))ighbor Continuous/distance Unsupervised v O(n?p+n®h)
Barnes-Hut t-SNE Continuous/distance Unsupervised v O(nhlogn)
Linear Discriminant Analysis (LDA) Continuous (X and Y) Supervised O(np* +p?)
i L Squrs (L9 ORI Comimions (Xand ) Supervisd ot
Neighborhood Component Analysis (NCA) Distance matrix Supervised v O(n’h)
Bottleneck Neural Network (NN) Continuous/categorical Supervised v O(nph)
STATIS Continuous Multidomain O(nP, nP?)
DiSTATIS Distance matrix Multidomain O(n*P, nP?)
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The comparative characteristics of several dimensionality reduction methods are summarized below. Each method
differs in the type of input data it accepts, its methodological class (unsupervised, supervised, or multidomain), its
ability to capture nonlinear relationships, and its computational complexity. Principal Component Analysis (PCA)
operates on continuous data within an unsupervised framework. It is a linear method with computational complexity
of O(max(n?p, np?)). Correspondingly, Correspondence Analysis (CA) and Multiple Correspondence Analysis (MCA)
are also unsupervised linear techniques applied to categorical data, both sharing the same computational complexity as
PCA, namely O(max(n?p, np?)). Principal Coordinates Analysis (PCoA), also known as classical Multidimensional
Scaling (cMDS), is an unsupervised method based on a distance matrix and exhibits a computational complexity of
O(n?p). Non-metric Multidimensional Scaling (NMDS), which is also distance-based and unsupervised, generally has a
complexity of O(n’h), where (k) denotes the number of iterations required for convergence. Among nonlinear methods,
Isomap applies to continuous data in an unsupervised manner and has a complexity of O(n?(p +1logn)). The Diffusion
Map and Kernel PCA are likewise nonlinear, unsupervised approaches for continuous data, each with a complexity of
O(n?p). The t-distributed Stochastic Neighbor Embedding (t-SNE) method handles both continuous and distance-based
inputs in an unsupervised setting, is nonlinear, and requires O(n” p 4 nh) operations, while its optimized version, Barnes-
Hut t-SNE, reduces this to O(nhlogn). In the supervised category, Linear Discriminant Analysis (LDA) operates on
continuous predictor and response variables (X and Y), with computational complexity O(np* + p*). The Partial Least
Squares method using the NIPALS algorithm (PLS-NIPALS) is also supervised, applied to continuous X and Y, and has
complexity O(nph), where (d) represents the number of latent components. Neighborhood Component Analysis (NCA),
a nonlinear supervised approach using a distance matrix, typically requires O(n>h) operations. The Bottleneck Neural
Network (Bottleneck NN) is another nonlinear supervised method applicable to both continuous and categorical data,
with complexity O(nph). Finally, in the multidomain category, STATIS and its distance-based variant DiSTATIS are
both linear methods. STATIS operates on continuous data with complexity O(nzP, an), while DiSTATIS, using distance
matrices, has an identical complexity of O(n*P, nP?).

Essential properties include the required input data, method classification, linearity or nonlinearity, and runtime
complexity, which is expressed as a function of several parameters: Here, n denotes the overall sample size, p denotes
the total number of attributes in the original dataset, k£ specifies the chosen neighborhood size, 4 refers to the number of
iterations, and P represents the aggregate count of features obtained from n samples across various domains.

Isomap generally computes geodesic relationships among data instances through Euclidean metrics. In contrast, the
diffusion-based embedding method and kernel-based principal component analysis apply normal distribution-based kernel
functions in their computations that are primarily applicable to continuous-valued data. However, categorical variables
can also be analyzed by applying alternative kernel functions or dissimilarity measures.

The list of abbreviations used in this study includes CA for Correspondence Analysis patterns, cMDS for classical
Multidimensional Scaling, LDA for Linear Discriminant Analysis, MCA for Multivariate Correspondence Analysis, NCA
for Neighborhood Component Analysis, NIPALS for Non-linear Iterative Partial Least Squares method, NMDS for Non-
metric Multidimensional Scaling, NN stands for Neural Network, PCA denotes Principal Component Analysis, PCoA
refers to Principal Coordinate Analysis, t-SNE represents t-distributed Stochastic Neighbor Embedding, and PLS signifies
Partial Least Squares.

To formally represent relationships among features and to assist in the feature selection process, the mathematical
concept of partially ordered sets (posets) proves highly useful. Collections with hierarchical orderings, denoted by D =
(F, <), consists of a non-empty set F' coupled using a pairwise relational operator < that satisfies transitivity and anti-
symmetry across every constituent. Two elements b; and b; within the poset are considered equivalent in order if the
condition b; < b; holds; otherwise, they are said to be incomparable. A chain in a poset is defined asa non-empty subset
C={ay,ay, ..., a;} C F in which the elements can be organized sequentially where D ifa; < a; < ... < a;. On the other
hand, an antichain is a subset of F' where no two distinct elements are equivalent in order with each other. A cover relation
within a poset refers to a direct connection between elements (m, n) such that m immediately succeeds 7 if no intermediate
element exists between them o in F satisfying o € F such that m < o < n. The structure of a poset can be effectively
visualized using Hasse diagrams, which are graphical representations where each vertex represents an element, and edges
are drawn to indicate direct cover relations while omitting transitive edges for clarity. This ensures that if m < 0 < n, the
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diagram includes edges for m < n and n < o without redundantly displaying the edge for m < 0. A systematic method
for encoding the relationships within a poset involves the use of the zeta ({) matrix, a square matrix where both rows and
columns correspond to the elements of F. Each entry in the { matrix is marked as 1 if the corresponding pair of elements
satisfies the relation m < n, and 0 otherwise. From the { matrix, one can derive the cover matrix by eliminating entries
corresponding to transitive relations, thereby isolating only the immediate cover relations necessary for the construction
of the Hasse diagram. An important property of posets is that the set of elements can always be partitioned into disjoint
chains.

This process, commonly referred to as decomposition, involves dividing a partially ordered set into a collection of
disjoint chains. The minimum decomposition corresponds to the smallest possible partition that can be formed using the
least number of such chains. Based on Dilworth’s Theorem, the number of chains in this minimal. The partitioning of a
poset is equivalent to the cardinality of the largest antichain within the poset [7]. This theorem holds major importance
in combinatorial mathematics and finds practical relevance in multiple optimization-related applications. Building upon
this theoretical foundation, Badr et al. introduced an Integer Linear Programming (ILP) formulation capable of efficiently
computing Dilworth’s decomposition [8]. In addition, they developed an effective algorithm to determine the width of a
poset based on the principles established by Dilworth’s Theorem [9]. Further analytical studies on jump-critical ordered
sets featuring specific jump numbers were also performed, providing deeper insight into the intrinsic properties of partially
ordered structures [10].

This research is chiefly focused on present a new dimensionality reduction framework founded on the concept of
Hierarchical Analysis of Partially Ordered Sets. This proposed technique utilizes the hierarchical characteristics of posets
to systematically guide the feature selection process, ensuring that only the most significant and informative attributes are
retained for classification purposes. The experimental investigations and computational analysis confirm that the LAPOS
approach surpasses many traditional and well-established feature selection methodologies across various datasets when
integrated with advanced predictive modeling algorithms, such as ensemble decision tree model, categorical boosting
model, Logistic-based models, and Margin-based classification models. LAPOS, PCA, and Factor Analysis (FA) achieve
92.59, 86.1, and 81.02 accuracy respectively, when employing the Support Vector Machine (SVM) algorithm. This
research opens new avenues for using partially ordered set theory to tackle the issues associated with large-scale, high-
dimensional datasets.

The rest of this manuscript is organized in the following manner. Chapter 2 explains the data and procedures
utilized in the investigation. Chapter 3 offers an in-depth overview of the feature selection strategies. Chapter 4 describes
the performance measures applied to evaluate the LAPOS approach. Chapter 5 illustrates the experimental design and
interprets the outcomes derived from the study. Lastly, Chapter 6 summarizes the work, highlighting key insights and
proposing avenues for subsequent research.

2. Data and methodological framework

In the following segment, the suggested technique includes its algorithm, an analysis of its time complexity, and a
numerical demonstration.

2.1 LAPOS

This part explains the LAPOS dimensionality reduction method, which uses the structure of partially ordered sets.
For each column, comparable pairs are identified using the < relation. Intersections of these pairs form a relational (zeta)
matrix and a cover matrix. A Hasse diagram is then created to represent the partial order. Based on its levels, k features
are selected from top to bottom and left to right, while all others are excluded, as shown in Stepwise Process 1.

Pseudocode 1: LAPOS

Stage 1: Import the dataset A[m][n].

Stage 2: Data cleaning and transformation

* Conduct data standardization (e.g., Min-Max, Z-score)
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* Determine the transpose of the dataset.

Stage 3: Employ a technique for selecting relevant features

» Compute the pairwise comparisons for every feature by checking the relation (<=) between each pair of instances
in that feature.

» Compute the intersection between the ordered pairs of the features to construct:

* The matrix representing feature relationships.

* The direct relation matrix for partial order representation.

* Construct the Hasse diagram from the cover matrix to graphically represent the partial order relationships among
the features.

* Based on the hierarchical levels of the Hasse diagram, k relevant features are identified sequentially, progressing
from the topmost to bottommost levels and in a horizontal sequence, while disregarding all other features.

Stage 4: Model Construction and Validation Using Selected Features

* The data collection is divided into development and testing subsets, employing exclusively the attributes identified
by the suggested approach.

Stage 5: Develop a predictive classifier

* Train a classifier using the selected features on the training data.

Stage 6: Evaluate the Model

* Evaluate the classifier using metrics.

2.2 Efficiency assessment of the LAPOS approach

In this part, we examine the computational demands of the LAPOS approach across its three main operations outlined
in Algorithm 1. Assume a dataset with size (R, F'), where R represents the number of records (rows) and F specifies
the total number of variables (features). The first procedure has a computational cost of O(R x F'), and the second
procedure exhibits a similar order of complexity. The final procedure incurs a complexity of O(F?), corresponding
to the operations needed for pairwise feature comparisons and selection within the Hasse diagram framework, leading to
an overall complexity of O(R x F?).

Overall efficiency assessment of the proposed LAPOS algorithm takes into account all computational operations
performed across its main procedures, including pairwise feature comparisons and selection within the Hasse diagram
framework O(RF?).

2.3 lllustrative example

This part presents a practical example to illustrate how the LAPOS method, as outlined in Algorithm 1, operates in
practice.

Stage 1: Load the initial dataset into the workspace, which contains three samples and ten attributes, as illustrated
in Table 2.

Table 2. The original data set

El E2 E3 E4 ES5 E6 E7 E8 E9 EI0

01 11 20 14 13 17 13 14 12 14 9
Q2 02 04 03 03 03 04 03 06 04 04
03 31 55 41 63 45 51 41 41 45 29

Stage 2: Data preprocessing: We transposed the original dataset as shown in Table 3.
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Table 3. The transposed original data set

01 02 03
El 11 0.2 31
E2 20 0.4 55
E3 14 0.3 41
E4 13 0.3 63
E5 17 03 45
E6 13 0.4 51
E7 14 0.3 41
E8 12 0.6 41
E9 14 0.4 45

E10 9 04 29

After that, we normalize the transposed original dataset as shown in Table 4.

Table 4. The normalized transposed original data set

o1 o 03
El 0.350649 0 1
E2 0.358974 0 1
E3 0.336609 0 1
E4 0.202552 0 1
E5 0.373602 0 1
E6 0.249012 0 1
E7 0.336609 0 1
E8 0.282178 0 1
E9 0.304933 0 1
E10 0.300699 0 1

Stage 3: Implement the LAPOS method using the following procedure.

Identify all comparable element pairs within each column based on the binary relation (<) used in this example. For
instance, consider Column 1: (E10, E1), (E10, E2), (E10, E3), (E10, E4), (E10, ES), (E10, E6), (E10, E7), (E10, E8),
(E10,E9),(E1,E2),(E1,E3),(E1,E4),(E1,ES),(E1,E6),(E1,ET),(E1,E8),(E1,E9),(E1, E10), (E8, E2),(ES, E3),
(E8, E4), (E8, ES), (E8, EO6), (ES, ET), (ES, E9), (E4, E3), (E4, ES), (E4, E6), (E4, ET), (E4, E2), (E4, E9), (E6, E2),
(E6, E3), (E6, 5), (E6, ET), (E6, E9), (E3, ET), (E3, E9), (E3, ES), (E3, E2), (E7, E9), (E7, E5), (E7, E2), (E9, ES),
(E9, E2), (E5, E2).

After determining the comparable pairs for all columns, compute their intersection and subsequently derive the zeta
matrix, as illustrated in Table 5.

Based on the obtained zeta matrix, the cover matrix can be derived following the procedure outlined in the
introduction section (Table 6).

Co iporary Math tics 1170 | Elsayed Badr, et al.



Volume 7 Issue 1]2026| 1171

Table 5. Zeta matrix

El

E2

E3

E4

ES5

E6

E7

E8

E9

E10

El
E2
E3
E4
E5
E6
E7
E8
E9
E10

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
0.0

0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
1.0
1.0
0.0
1.0
0.0
1.0
0.0
1.0
0.0

0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
1.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0

0.0
1.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0

0.0
1.0
1.0
0.0
1.0
0.0
1.0
0.0
1.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0

0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
0.0

0.0
1.0
0.0
0.0
0.0
1.0
0.0
1.0
1.0
1.0

Table 6. Zeta matrix

El

E2

E3

E4

ES

E6

E8

E9

E10

E1l
E2
E3
E4
ES
E6
E8
E9
E10

0.0
0.0
1.0
1.0
0.0
1.0
1.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
1.0
1.0
1.0
0.0

Figure 1. Final results of Algorithm 1 using a Hasse diagram for example 1

High

Low

B2

B

E4

B

E10
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Ultimately, a Hasse diagram depicting the partially ordered set was created, as shown in Figure 1. Using this diagram,
k features are chosen by moving sequentially from the top to the bottom levels and from left to right, following their relative
importance.

3. Feature selection methods

Techniques for relevant Features Selecting (FS) are commonly divided into three primary categories: independent
feature assessment, predictive model evaluation, and embedded selection frameworks [11]. Each category employs a
distinct strategy to recognize and keep the most informative features while eliminating irrelevant or redundant ones, thus
effectively reducing the dataset’s dimensionality and refining the effectiveness and generalization ability of machine
learning systems.

Filter methods are characterized by their independence from any specific machine learning algorithm during the
feature selection process. These approaches assess the significance of individual attributes by employing statistical
indicators or dependency measures that capture the relationship between predictors and the response variable. By assessing
the strength of association between each feature and the output variable, filter methods can systematically eliminate
irrelevant or redundant features prior to the model development stage. An example of a widely used filter method is
the Pearson Correlation Coefficient, which quantifies the linear association between two variables and assists in detecting
features exhibiting a strong linear connection with the target attribute. The primary advantage of filter methods lies in
their computational performance and adaptability, rendering them appropriate for high-dimensional datasets. However,
these techniques overlook the interdependencies among features, which may limit their effectiveness in capturing complex
feature dependencies.

Wrapper methods, in contrast to filter methods, incorporate the feature selection process within the model
development stage by employing a predictive model to investigate the effectiveness of different feature subsets. These
methods employ an iterative process to search for the chosen attributes that optimizes the performance of the model based
on a chosen evaluation metric, such as accuracy or F1-score. Wrapper methods frame feature selection as a search-based
optimization problem, often leveraging strategies like progressive inclusion, stepwise exclusion, and iterative feature
pruning to determine the subset of features that provides the highest informative value. An example of a wrapper method is
SelectKBest isolates the k most influential features according to the weighting scheme derived from the applied evaluation
measure. While wrapper methods can provide a more accurate and tailored feature selection process by considering feature
interactions, they are computationally intensive, particularly when applied to large-scale datasets with numerous features.

Embedded methods, also known as model-driven feature selection techniques, merge the feature evaluation stage
as an inherent part of the model training routine. These techniques intrinsically conduct feature identification within the
framework of model formation, thus concurrently refining the model parameters while pinpointing the key features that
improve the model’s forecasting performance. Embedded methods benefit from being less computationally demanding
than wrapper methods while still considering the interactions between features during the selection process. Illustrations
of integrated approaches comprise the inherent attribute weighting mechanisms found in ensemble-based classifiers such
as Random Forests, which prioritize variables based on their contribution to model accuracy, as well as L1-penalized
linear models like Lasso, where less significant predictors are constrained toward null values, effectively excluding them
from the analysis. By embedding the selection mechanism within the training framework, these techniques achieve an
optimal compromise between computational economy and selection precision.

In summary, the selection between preprocessing-based, model-evaluation, and integrated feature selection techni-
ques for feature selection is determined by the characteristics and structure of the data collection, the computational
resources available, and the complexity of feature interactions within the data. Filter methods are preferred when
computational efficiency is prioritized, wrapper methods are suitable when a high level of accuracy and feature interaction
analysis is desired, and embedded methods provide an effective middle ground by integrating feature selection within the
model training process to enhance predictive performance while managing computational complexity.
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4. Evaluation metrics

The results derived from the proposed methodology, together with a detailed discussion, are presented in this
section. To facilitate the development, execution, and visualization of the machine learning workflows, the contemporary
Interactive Development Environment (IDE) Jupyter Lab was employed owing to its flexibility and seamless integration
with a wide range of data science libraries.

During the experimental phase of this study, Various classification algorithms—including Logistic-based Model
(LM), Support Vector Machine Classifier (SVMC), k-Nearest Neighbor Method (kNNM), Random Forest Model (RFM),
Linear Discriminant Classifier (LDC), and Decision Tree Model (DTM)—were employed to evaluate the effectiveness and
accuracy of the suggested feature selection methodology. These algorithms were selected due to their proven robustness,
interpretability, and extensive use in classification problems across various data domains.

To comprehensively assess model performance, standard evaluation metrics were adopted, the evaluation framework
employed performance indicators such as accuracy, precision, recall, and the F1-score. Accuracy measures the proportion
of correctly classified samples relative to the total dataset, serving as a general gauge of model effectiveness. Precision,
which expresses the proportion of correctly identified positive cases among all predicted positives, indicates the model’s
ability to reduce false alarms. Recall, defined as the proportion of true positives detected out of all actual positives,
evaluates the model’s capability to capture relevant instances. The F1-score, computed as the harmonic mean of precision
and recall, offers a unified metric that balances the effects of both false positives and false negatives in model evaluation.

Collectively, these performance indicators provide a comprehensive evaluation of the predictive strength and
operational efficiency of the machine learning models developed using the features determined by the proposed method.
The outcomes obtained from this assessment emphasize the effectiveness of the feature selection framework in enhancing
classification accuracy while maintaining computational efficiency and interpretability throughout the learning procedure.

Number of correct predictions
Total number of predictions

Accuracy =

M

. True Positive
Precision = — — 2)
True Positive + False Positives

True Positi
Recall = e “OSTIve . 3)
True Positive + False Negative

2(True Positive)

F1 Score =
core 2(True Positive) + False Positive + False Negative

“)

The Python (3.10), 64-bit Windows 8.1, Core (TM) i5 CPU M 460 @2.53 GHz, and 4.00 GB of memory are the
components of the software environment.

5. Findings and analysis

In this section, the proposed LAPOS framework was tested on medical datasets due to their availability and reliability
for dimensionality reduction evaluation. However, the methodology itself is general and can be applied to other data
domains, such as industrial or environmental data. We have intentionally kept the paper focused on medical datasets to
maintain clarity and coherence. Here, the processes of feature selection and dimensionality reduction utilized several
recognized methodologies aimed at improving the efficiency and accuracy of the classification models. Techniques
applied in this context included Principal Component Analysis (PCA), Independent Component Analysis (ICA), and
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Factor Analysis (FA)—each functioning as a dimensionality reduction strategy aimed at transforming data with numerous
attributes into a lower-dimensional form while preserving the most meaningful and distinguishing structures contained in
the dataset.

Independent Component Analysis (ICA) was specifically applied to isolate mutually independent components,
proving valuable in disentangling composite signals and revealing latent elements underlying the observed data patterns.
Through the extraction of non-Gaussian and statistically independent attributes, ICA strengthens the distinguishing ability
of classification algorithms, allowing them to better model intricate and hidden dependencies within the dataset.

Furthermore, Factor Analysis (FA) was applied to identify latent variables that account for the correlations among
observed features. Through dimensionality reduction based on these latent constructs, FA streamlines the feature domain
by reducing redundancy and preserving the fundamental interconnections among variables, thus enhancing the clarity of
data interpretation and boosting computational effectiveness. To capture the complex nonlinear relationships within high-
dimensional datasets, t-distributed Stochastic Neighbor Embedding (t-SNE) was employed as a nonlinear dimensionality
reduction approach. This method projects the data into a reduced-dimensional space while maintaining the proximity
of neighboring data points, effectively preserving local structural relationships, which facilitates the visualization of
clusters and enhances the separability of different classes. Discriminant Component Analysis (DCA) was incorporated to
maximize class separability by projecting the data onto directions that highlight differences between distinct classes while
reducing variability within each class, thus enhancing the overall effectiveness of the subsequent classification models.
For feature selection, information gain and the Chi-square statistical test were employed to evaluate and prioritize the
most relevant and informative attributes within the dataset. These statistical measures identify attributes that play the
most significant role in enhancing the predictive performance of the models, and were also combined with PCA (Chi-
square + PCA) to obtain a reduced yet highly informative feature set. To mitigate issues arising from class imbalance
in the datasets, the preprocessing workflow incorporated the Synthetic Minority Oversampling Technique (SMOTE)
and Adaptive Synthetic Sampling (ADASYN) were employed. SMOTE tackles class imbalance by producing artificial
samples for the minority category through interpolation between existing minority observations, resulting in a more
balanced dataset while avoiding direct data replication.

Meanwhile, ADASYN extends this concept by dynamically producing artificial samples, with greater emphasis
on minority instances that are more difficult to classify determined by their proximity to majority class samples. This
adaptive approach enables the model to better capture complex decision boundaries and enhances the classifier’s ability
to generalize, particularly in scenarios with severe class imbalance.

The incorporation of these resampling techniques ensures that the training process remains unbiased toward the
majority class, leading to more reliable and equitable model performance across all classes, thereby balancing the
class distribution without merely replicating existing samples. ADASYN, an extension of SMOTE, further enhances
this procedure by concentrating on producing artificial samples for minority instances that are more challenging to
classify, thereby strengthening the model’s capacity to effectively differentiate between categories in imbalanced datasets.
Following the feature selection and data balancing steps, the prepared datasets were utilized to train and evaluate two
widely adopted machine learning algorithms. These classifiers were selected for their proven effectiveness in handling
classification tasks across a range of domains and their ability to provide interpretable results. The integration of these
dimensionality reduction and data balancing techniques with the classification algorithms ensures that the models are
capable of learning from a compact, balanced, and informative set of features, consequently enhancing the overall
predictive accuracy and robustness of the proposed methodology.

Table 7, Figures 2 and 3 illustrate that the suggested LAPOS approach surpasses both PCA and FA when employing
the SVM algorithm. The proposed LAPOS approach surpasses ICA solely when employing the Linear Regression (LR)
algorithm. On the other hand, LAPOS overcomes PCA and ICA when employing the K-Nearest Neighbor (KNN)
algorithm. Finally, LAPOS overcomes FA when employing the Decision Tree (DT) algorithm.
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Table 7. Comparison results of backbone improvements

SVM Logistic regression
PCA [12] FA[12] LAPOS PCA [13] ICA [13] LAPOS
Acc 93.04 89.57 95.61 97.6 75.8 95.61
Prec 93.03 89.64 97.5 96.9 75.6 97.5
Rec 93.11 89.47 90.69 98.5 89.7 90.69
F1 93.04 89.53 93.97 96.4 61.5 93.97
Time (Sc) - - 1.953125 - - 0.1875
LDA KNN
PCA [14] ICA [14] LAPOS FA [15] T-SNE [15] LAPOS
Acc 81.45 84.22 93.85 66.7 73.3 94.73684
Prec - - 92.69 66.7 73.8 90.96573
Rec 79.85 82.97 100 66.7 73.3 96.05263
Fl1 - - 86.39 66.7 73.5 86.3905
Time (Sc) - - 0.453125 - - 0.21875
Rnadom forest Decision tree
Without [16] SMOTE + PCA [16] LAPOS FA [15] T-SNE [15] LAPOS
Acc 96.05 98.32 96.49123 80.00 93.3 91.22807
Prec 96.00 98.00 100 80.8 94.4 100
Rec 95.00 98.00 100 80.00 93.3 100
F1 96.00 98.00 100 79.4 93.3 100
Time (Sc) - - 0.46875 - - 0.234375

Breast cancer SVM-Accuracy
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PCA FA LAPOS
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Figure 2. Accuracies for 3 models (SVM, LR, and LDA) to evaluate LAPOS with other techniques (PCA and ICA) for breast cancer dataset
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Figure 3. Accuracies for 3 models (KNN, RF, and DT) to evaluate LAPOS with other techniques (FA and T-SNE) for breast cancer dataset

Table 8. Run 6 models on heart disease dataset to evaluate LAPOS with other techniques

SVM Logistic regression
PCA [17] FA [17] LAPOS PCA [13] ICA [13] LAPOS
Acc 86.1 81.02 92.59 84.1 80.5 92.59
Prec 81.00 75.00 100 83.7 86.5 100
Rec 90.4 88.89 80.95 87.8 54.2 80.95
F1 86.00 81.00 89.47 80.6 87.7 89.47
Time (Sc) - - 0.218 - - 0.23
LDA KNN
Without [18] PCA [18] LAPOS PCA [19] SMOTE [19] LAPOS
Acc 92.2 96.5 88.88 94.26 80.04 74.07
Prec 92.00 96.4 82.9 91.68 71.02 83.00
Rec 91.8 96.3 85.1 98.30 98.25 82.17
F1 91.9 96.3 80.8 94.88 82.45 83.83
Time (Sc) - - 0.375 - - 0.234375
Rnadom forest Decision tree
SMOTE [19] SMOTE-ENN[19] LAPOS Info-gain [20] Chi-Square + PCA [20]  LAPOS
Acc 89.64 92.16 87.03 89.00 87.00 79.62
Prec 88.52 90.57 100 87.00 81.00 100
Rec 89.94 97.39 100 94.00 99.00 100
F1 89.23 93.85 100 90.00 89.00 100
Time (Sc) - - 0.375 - - 0.203125
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Table 8 and 9 illustrates that the suggested LAPOS approach surpasses both PCA and FA when employing the SVM
algorithm. The proposed LAPOS approach surpasses PCA and ICA when employing the LR algorithm. On the other
hand, Table 8 illustrates that LAPOS overcomes PCA and DCA when employing the KNN algorithm. Finally, Table 10
illustrates that LAPOS overcomes PCA and ICA when employing the LR algorithm.

Table 9. Run 6 models to evaluate LAPOS with other techniques for IONOSPHERE dataset

SVM Logistic regression KNN

SMOTE [21] ADASYN[21] LAPOS PCA[I13] ICA[13] LAPOS PCA[22] DCA [22] LAPOS

Acc 90.88 91.69 80.95 88.9 87.8 83.09 87.89 88.57  88.73239
Prec 88.87 93.1 95.00 89.2 87.8 95.00 - - 95.28796
Rec 85.2 82.88 73.07 76.4 76.9 73.07 - - 91
Fl 86.85 87.62 82.60 91.8 91.00 73.91 - - 100
Time (Sc) - - 0.257 - - 0.25 - - 0.25

Table 10. Run 6 models to evaluate LAPOS with other techniques for SONAR dataset

SVM Logistic regression
PCA [23] ICA [23] LAPOS PCA [13] ICA [13] LAPOS
Acc 82.7 71.7 80.95 75.1 65.6 78.57
Prec - - 95.00 77.5 67.7 90.47
Rec - - 73.07 72.00 62.3 73.07
F1 - - 82.60 76.3 67.4 80.85
Time (Sc) - - 0.234 - - 0.28125

6. Conclusive insights and research outlook

This research introduces a novel dimensionality reduction method referred to as Level Analysis of Partially Ordered
Sets (LAPOS), which is conceptually based on the intrinsic structural characteristics derived from the principles of partial
order theory. The LAPOS framework exploits the hierarchical dependencies among features, offering a structured and
interpretable mechanism for compressing data dimensions while maintaining the highly representative and discriminative
attributes necessary for reliable classification outcomes. To examine the efficiency and reliability of the developed
LAPOS technique, extensive computational experiments were carried out using two well-established predictive supervised
learning techniques, namely—Support Vector Machine (SVM) and Linear Regression (LR)—both of which are widely
esteemed for their robust predictive capability in handling high-dimensional classification tasks. The results obtained from
these experiments demonstrated that LAPOS exhibits superior performance in handling medical datasets when compared
to conventional dimensionality reduction methods. The technique effectively enhanced the predictive capabilities of the
classifiers, confirming its potential in real-world data analysis applications, particularly in the medical and healthcare
domains where high-dimensional data is prevalent. Looking forward, the future direction of subsequent analysis will be
devoted to extending the application of LAPOS across a broader spectrum of datasets and machine learning classifiers to
comprehensively assess its versatility and robustness. Further, an in-depth exploration of the theoretical underpinnings of
LAPOS will be undertaken to refine and optimize its performance, ensuring its adaptability to various data distributions
and complexities. In addition to enhancing the methodological framework of LAPOS, the future work will prioritize
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the integration of LAPOS with advanced artificial intelligence models, including ensemble learning techniques and
deep learning architectures, to harness the combined strengths of interpretable feature selection and powerful predictive
modeling. This integration aims to further improve classification accuracy while maintaining runtime efficiency and
model comprehensibility, thereby expanding the applicability of LAPOS when dealing with extensive and complex
datasets analysis scenarios. Through these future endeavors, LAPOS is expected to evolve into a comprehensive and
efficient dimensionality reduction tool, contributing significantly to the advancement of machine learning pipelines in
both research and practical applications [24-26].
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