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Abstract: Clifford’s geometric algebra has enjoyed phenomenal development over the last 60 years by mathematicians, 
theoretical physicists, engineers, and computer scientists in robotics, artificial intelligence and data analysis, introducing 
a myriad of different and often confusing notations. The geometric algebra of Euclidean 3-space, the natural 
generalization of both the well-known Gibbs-Heaviside vector algebra and Hamilton’s quaternions, is used here to 
study spheroidal domains, spheroidal-graphic projections, the Laplace equation, and its Lie algebra of symmetries. The 
Cauchy-Kovalevska extension and the Cauchy kernel function are treated in a unified way. The concept of a quasi- 
monogenic family of functions is introduced and studied.
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1. Introduction
Two main scientific communities utilizing William Kingdon Clifford’s geometric algebra have been in 

development over the last 60 or more years. The Clifford analysis community has developed Clifford algebra primarily 
as the natural generalization to higher dimensions of the ubiquitous complex analysis of analytic functions, which 
underlies much of modern mathematics and theoretical physics. The second community, which I dub the geometric 
analysis community, has stressed the more general development of geometric algebra as the natural generalization of the 
real number system to include the concept of direction. The first community consists of large part of mathematicians, 
whereas the second community consists of a more diverse group of people in mathematics, theoretical physics, and 
computer scientists, and engineers interested in diverse applications such as robotics, artificial intelligence and data 
analysis. Recent work in Clifford-valued recurrent neural networks is found in [1, 2]. Clifford geometric algebra G3 is 
the natural extension of the popular Gibbs-Heaviside vector algebra still universally employed by many engineers and 
scientists today. 

Whereas there is a great deal of overlap between these groups, namely the usage of Clifford algebra, invented 
by W.K. Clifford in the years shortly before his death in 1879, the different symbolisms and notations employed has 
lead to a general lack of communications between the two groups. It is the belief of the present author that greater 
communication between the two groups would be advantageous to both groups. Spheroidal domains, usually studied in 
terms of quaternion analysis, are here reformulated in the geometric analysis of Euclidean space. Spherical domains and 
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spherical harmonics are a limiting case of spheroidal domains and spheroidal harmonics [3-5]. 
Section 2, sets down the basic definitions of both prolate and oblate spheroidal coordinates in a novel way utilizing 

quaternion-like quantities in the associative geometric algebra G3 of Euclidean space R3,

3
3 0 1 2 ( ) [: , , ],= = e e e 

where ek are three orthogonal anti-commuting unit vectors along the respective xk- axis for k = 0, 1, 2. That is

2 1  and  : ,   k jk j k k j kj= − = −==e e e e e e e

for k ≠ j. The notation used is meant to suggest that the real number system R is extended to include the three unit 
orthogonal vectors ek and their geometric sums and products [6-8]. As seen in later sections, spheroidal coordinates find 
their importance in being one of 11 orthogonal separable coordinate systems [9, 10].

Section 3, studies spheroidal-graphic projection of the unit prolate and oblate spheroids onto the two-dimensional 
plane, the natural generalization of more famous stereographic projection. This serves to help unfamiliar readers come 
to grips with the concept of prolate and oblate spheroids, which may be otherwise unfamiliar to them.

Sections 4 and 5, introduce prolate and oblate spheroidal gradients and Laplacians in terms of the quaternion-like 
quantities introduced in Section 2. Quite a number of formulas are included for simplifying calculations involving these 
new quantities. Our approach greatly reduces the clutter of trigonometric identities found in other approaches utilizing 
quaternions in the more traditional way. See for example [11].

Section 6, studies solutions of the Laplace equation, in both the prolate and oblate cases, using the well-known 
method of separation of variables. Instead of using the well-known solutions given in [12], I show that two of the three 
separated differential equations are the same in both the prolate and oblate cases.

Section 7, briefly considers the beautiful theory of the Lie algebra of symmetry operators, which gives insight into 
the century-long history of the subject.

Section 8, shows how Clifford analysis can be incorporated directly into the body of the more comprehensive 
geometric analysis, unifying the otherwise different approaches. The concept of a quaternion arises naturally in the even 
sub-algebra of the geometric algebra G3 of Euclidean 3-space. As an application, the Cauchy kernel function is used 
to generate a monogenic hypercomplex power series [13]. The Cauchy-Kovalevska extension, a method for generating 
higher order monogenic functions, has been treated by many authors [13-15]. By using a simple idea suggested by this 
extension, a family of curl-free quasi-mononogenic functions is generated.

In an Appendix, a Mathematica 5.0 Package is included giving solutions to the separable differential equations 
explored in Section 6. Mathematica is used extensively to check calculations in this paper, but is unable to find the 
classical Legendre function solutions based upon the standard separation of variables that is commonly used.

2. Prolate and oblate spheroidal coordinates
Let G3 := R(e0, e1, e2) be the geometric algebra of 3-dimensional Euclidean space R3. The position vectors x and y 

in prolate and oblate spheroidal coordinates (η, θ, ϕ ) can be defined, respectively, in terms of the complex-number like 
quantity

( )( )1: cosh( ) cosh cos sinh sin
2

 p pI I
p pz e e I Iη θ η θ η θ η θ η θ+ − += + = + = +

where Ip := epe0 has square minus one for ep = e1 cosϕ  + e2sinϕ , and where η ≥ 0, µ > 0, ϕ  ∈ [0, 2π), θ ∈ [0, π].
For x,

0 0 0 0 0: cosh( ) p p px e x e ze e z e Iµ µ µ η θ= + = = = −x

(1)

(2)
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where

2 2
0 1 2cosh cos , : sinh sin ,px x x xµ η θ µ η θ= = + =

1 2cos sinh sin , : sin sinh sin ,x xµ ϕ η θ µ ϕ η θ= =

in the prolate case, and

0 0 0 0 0: sinh( )p p py e y e z e e z I eη ηµ µ µ η θ= + = = = +y

where zη := ∂ηz, so that

2 2
0 1 2sinh cos , : cosh sin ,py y y yµ η θ µ η θ= = + =

1 2cos cosh sin , : sin cosh sin ,y yµ ϕ η θ µ ϕ η θ= =

in the oblate case, [10, 12, 16]. (Different conventions are used for oblate coordinates. The oblate coordinates used here
are the same as in [10, 12], but different than in [5, 11]).

Equations (2) and (3) give a direct relationship between prolate and oblate coordinates, and their expression in 
terms of the quaternion-like quantities z and z̄ . Since the bivector Ip = epe0 has square −1, it behaves the same as the 
imaginary unit i = 1− . Note that

0 1 2 0: ( sin cos ) p p pI I e e eϕ ϕ ϕ= ∂ = = − +e e



also has square −1, as does the quantity Ip İ p = ėpep. Indeed, the bivectors Ip , Jp := İ p, Kp = ėpep obey exactly the same 
rules as Hamilton’s quaternions. The dot over a variable is used to denote the partial derivative with respect to ϕ . Thus ż 
:= zϕ = ∂ϕ z.

We also calculate

2 2
2 2 2 2 (cosh 2 cos 2 ), (cosh 2 cos 2 ),

2 2
zz z zη η

µ µµ η θ µ η θ= = + = = −x y

and define the quantities

2 2 2 2
0 0 0 0: | | | | ( ) ( ) 2 c  oshx p pe e x x x xω µ µ µ µ µ η= + + − = + + + − + =x x   

and

2 2 2 2
0 0 0 0: | | | | ( ) ( ) 2 cos  ,x p pe e x x x xω µ µ µ µ µ θ= + − − = + + − − + =x  x

in the prolate case. In the oblate case,

2 2 2 2: | | | | 2 2 2 cosh  y p p p pe e y y y yω µ µ µ µ µ µ µ η= + + − = + + + + − = y y 

(3)

(4)

(5)

(6)
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and

2 2 2 2: | | | | 2 2 2 si  .ny p p p pe e y y y yω µ µ µ µ µ µ µ θ= + − − = + + − + − = y y 

The proofs of the equations (4)-(7) are very similar. For the prolate case,

2 2 2 2
0| | | 1 | (cosh cos ) ,e zµ µ η θ± = ± = ±x

and for the oblate case,

2 2 2 2| | | | (cosh sin ) .p pe z Iηµ µ η θ± = ± = ±y

Geometrically, ωx defined in (4) and ωy defined in (6) are distances on the bounding unit prolate and oblate 
spheroids between the focal points located at the points (0, ±µ, 0) in the prolate cases 2 & 3, and the focal points located 
at the points (0, 0, ±µ) in the oblate cases 4 & 1 in Figure 1, respectively. Similarly, ω̄x and ω̄y are the distances between 
the foci of the bounding unit hyperbolic spheroids in the prolate and oblate cases, respectively [16].

Since ωx = ωy and ω̄x(θ ) = ω̄y(θ  + 2
π ), it follows that

( )
1
22 2 2 2 2 2 2

02 ( ) ( ) 4x x x xω µ µ µ= + + + −

( )
1
22 2 2 2 2 2 22 ( ) ( ) 4 ,p yy y yµ µ µ ω= + + + − =

and

( )
1
22 2 2 2 2 2 2

02 ( ) (  ( )) 4x x x xµθω µ µ= + − + −

( )
1
22 2 2 2 2 2 2 2 ( ( 4 .)

2
) p yy y πyµ µ µ θω= +  + 


+ −


− =

The equations (8) and (9) define a set of four bounding unit spheroids, pictured in Figure 1.

( )0 0
cosh[ ]3. cos tanh sin , cosh 1 : tanh

co
 

sh p
I e I e e νη θ θ η θ µ η η

η
−+

= + = ⇔ =

( )0 0
cosh[ ]2. coth cos sin ,  cosh 1 : coth

sinh p
I e I e eνη θ η θ θ µ η η

η
+

= + = ⇔ =

( )0 0
sinh[ ]4. tanh cos sin ,  cosh 1 : tanh

cosh p
I e I e e νη θ η θ θ µ η η

η
−+

= + = ⇔ =

( )0 0
sinh[ ]1. cos coth sin ,  cosh 1 : coth

sinh p
I e I e eνη θ θ η θ µ η η

η
+

= + = ⇔ =

(7)

(8)

(9)
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Figure 1. Of the four unit bounding spheroids pictured, two are oblate and two are prolate, and are rotated around the e0-axis. 
For ν ≥ 0, e2ν − µ2 = 1 for Cases 1, 2, and e−ν + µ2 = 1 for Cases 3, 4, respectively

For the coordinates (η, θ, ϕ ), the partial derivatives

: sinh( ), : sinh( ),p p pz z I z z I Iη η θ θη θ η θ= ∂ = + = ∂ = +

2 2: , : , : ,pz z z z z z z z I zηη η θθ θ ηθ η θ= ∂ = = ∂ = − = ∂ ∂ =

and

2sinh sin ( ), sinh sin ,p p p pz z z I I e z z Iϕ ϕ ϕϕ ϕη θ η θ= ∂ = = = ⋅ = ∂ = −x 



and are used to calculate,

0 0 0: , : , : sinh si n pz e z e z e eη η η θ θ θ ϕ ϕ ϕµ µ µ µ η θ= ∂ = = ∂ = = ∂ = =x x x x x x 

for the prolate orthogonal tangent vectors {xη, xθ, xϕ}. The corresponding orthogonal reciprocal frame {xη, xθ, xϕ} is 
defined by

0
0

1,  ,  .x x x

z z
e e

z z z z z e
ηη θ ϕθ

θ
η η θ θ ϕ

η θ ϕ
µ µ µ

= ∇ = = ∇ = = ∇ =x x x

It is easy to show that (x η)2 = (x θ)2 = xη
−2 = xθ

−2, and

2 2

2 2
1 1(cos 2 cosh 2 ) ,  ( cos 2 cosh 2 ) ,
2 2

zz z z z zη η θ θθ η θ η
µ µ

= + = = − + = =
x y

(10)

Oblate
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and zz  = sinhη2sinθ 2. We also have

2 2 2
2 2

coth cot, , 0,x x x
η θη θ ϕ∇ = ∇ = ∇ =

y y

which will be used later.
For the oblate orthogonal tangent vectors, {yη, yθ, yϕ}, and the corresponding orthogonal reciprocal frame {yη, yθ, 

yϕ},

0  : , : , : cosh sin ,p pI z e eη η θ θ ϕ ϕηµ µ η θ= ∂ = = ∂ = = =y y x y y x y 

0 0 0
1 1, , .

cosh s
 

i
 

n
p p

y y

I e
e e e

z z z
η θ ϕ

ϕη

η θ
µ µ µ µ η θ

= ∇ = = ∇ = = =y y y


We also have

2 2 2
2 2

tanh cot,  tanh ,  ,  tan ,   0.y y y
z z
z zη θ

η θη η θ θ ϕ∇ = = = ∇ = = ∇ =
x
yx x




 

 

3. Spheroidal-graphic projection
We now define spheroidal-graphic projection from the point −e0 on the bounding prolate and oblate unit spheroids 

1 and 3 in Figure 1, respectively, to the corresponding vertical (0, x1, x2), (0, y1, y2) planes, shown in Figure 2 as vertical 
lines. Clearly, as the point x moves along the surface of the unit prolate, the projected point tep := sxp moves in the 
interior of the disk bounded by the circle with the points −e−νep and e−νep on its diameter. Similarly, as the point y moves 
along the surface of the unit oblate spheroid, the projected point tep := syp moves in the interior of the disk bounded by 
the circle with the points −eνep and eνep on its diameter.

The spheroidal-graphic projections tep for unit prolate and oblate spheroids are easily defined. We have t = sxp and 
t = syp for

0 0

0 0

1 1
and

1
 

1
x y

t e t e
x y

ν ν− − −
= =

+ +

in the prolate and oblate cases, respectively. Letting m = tep + e0 = s(x + e0),

0 0 0
0

0 0 0 0

| | 1
| | 1 1 1

  
 

p p p

p

t t t
s x

x x t
+ + −+

= = = ⇔ =
+ +

⇔
+ +

e e e e e
x

e
e
x

e e
x

in the prolate case, the mapping (13) relating similar triangles reduces to

0 0 0 1 1 2 2
0

0 0 0

,
1 1 1

 p p
x x xt t

x x x
+ − +

= − ⇔ = =
+ + +

x e x e e ee e e

which implies that t = 1 2

0

cos sin
1

x x
x
ϕ ϕ+

+
. Exchanging x’s for y’s gives a similar result in the oblate case.

Two important relationships for both the oblate/prolate case are

(11)

(12)

(13)

(14)

(15)
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2 22 2 2
2 2 2 0

02 2 2 2
0 0

1 1 and ,
1 1

 
x e te x

x x e t

ν
ν

νµ µ
±

±
±

−− −
= ⇔ = ± = =

− − +
xx

where the “ + ” sign is chosen for the y-oblate case 1, and the “ − ” sign is chosen in the x-prolate case 3, shown in 
Figure 2. Using the last relationship, we can easily invert the mapping in (14) or (15), in both the oblate-prolate cases, 
getting

2 2 2 2
0 0

02 2 2 2

2 ( ) 2 ( )
.p pe t e t e t

e t e t

ν ν ν

ν ν

± ± ±

± ±

+ − +
= ⇔ + =

+ +

e e e e
x x e

Figure 2. The elliptical sections of the circumscribed unit prolate Case 3 and inscribed unit oblate Case 1. 
For ν ≥ 0, e 2ν − µ2 = 1 for Cases 1, 2, and e−2ν + µ2 = 1 for Cases 3, 4 in Figure 1, respectively. 

When µ → 0 and ν → 0, the prolate and oblate spheroids go to the 3-sphere

There is an interesting relationship between spheroidal-graphic projection and the Vekua system of equilibrium 
equations in a spherical shell [17], which will be explored elsewhere.

In both the oblate-prolate cases, when µ → 0, ν → 0, t = 0

0

1
1

x
x

−
+ , the mappings (13) and (17) go to stereographic 

projection tep from the point −e0 to a point in the plane of the bivector e12 passing through the origin,

(16)

(17)

ev

ev

-ev

-ev

X
X

(0, u)

y0

y

-1-1 11

mt

y

X0

m

(0, -u)

Oblate

Prolate



Contemporary Mathematics 196 | Garret Sobczyk

2
0 0

0
0 0 0 0

( ) 2 ,
1 ( 1)( )

 pt
x x

+ +
+ = = =

+ + + +
x e x e

e e
x e x e

with the stereographic inverse mapping

2
0

02
0

2 (1 ) 2 .
1

p

p

t t
tt

+ −
= ⇔ + =

++

e e
x x e

e e

Stereographic projection has been extensively studied in geometric algebra in [7, 18].
The relationships (13) and (18) can easily be expressed in spheroidal coordinates in both the oblate-prolate cases 1 

and 3 in Figure 1. Since we are assuming that for a fixed µ, cosh η = 1
µ

 in equation (13), the spheroidal coordinate form 
of equation (17) in terms of (η, θ, ϕ ) is

0

0

1 1 costan  h
1 1 cosp p p

x
t e

x
ν θη

θ
± − −

= =
+ +

e e e

for ep = e1cosϕ  + e2sinϕ .

4. Spheroidal gradient and Laplacian
In the terms of rectangular coordinates

0 0 1 1 2 2 0 0 1 1 2 2, ,x e x e x e y e y e y e= + + = + +x y

the gradient and Laplacian take the usual forms

0 1 2 0 1 2

2 2 2 2
0 1 2 ,x x x x x x x xe e e∇ = ∂ + ∂ + ∂ ∇ = ∂ + ∂ + ∂

and

0 1 2 0 1 2

2 2 2 2
0 1 2 , ,y y y y y y y ye e e∇ = ∂ + ∂ + ∂ ∇ = ∂ + ∂ + ∂

respectively.
In prolate spheroidal coordinates, the gradient and Laplacian are respectively given by

( ) ( )1 1 10 1
x p p

e
z I z z Iη η θ η ϕ ϕ η θ ϕµ

− − −∇ = ∂ − ∂ + ∂ = ∂ − ∂ + ∂yx
y



( )( )10 cot coth ,p p p
e

z I J Kη η θ ϕθ η
µ

−= ∂ − ∂ − + ∂

2
2

1 1 1 1 1 1 1
x z z z z z zη θ ϕ η θ ϕ

η θ ϕ η θ ϕµ

  
∇ = ∂ + ∂ + ∂ ∂ + ∂ + ∂    

  

(18)
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2 22
2 2 2 2

2 2

( ) ( )( )
( ) ,

( ) ( )
x xx

x
x x

η θ
η θ ϕ

η θϕ
η

η η
∇ ∂ + ∇ ∂∇

= ∇ ∂
 
  


+ ∂ +
∇ 

+ ∂
∇

[19]. In terms of the quaternion z, the Laplacian takes the form

2 2 2 2
2
1 coth cotx

z z
z zz z

η η
η θ ϕ η θ

ϕ ϕη η

η θ
µ

 
∇ = ∂ + ∂ + ∂ + ∂ + ∂  

 

( )( )2 2 2 2 2
2
1 cot coth coth cot ,
z z η θ ϕ η θ

η η

θ η η θ
µ

= ∂ + ∂ + + ∂ + ∂ + ∂

equivalent to the same equation found in [12].
In oblate spheroidal coordinates, the gradient and Laplacian are respectively given by

( ) ( )1 1 10 1
y p p

e
z I zz Iη θ ϕη ϕ η θ ϕµ

− − −∇ = ∂ − ∂ + ∂ = ∂ − ∂ + ∂xy
x



( )( )10 cot tanhp p p
e

z I J Kη θ ϕθ η
µ

−= ∂ − ∂ − + ∂

2
2

1 1 1 1 1 1 1
 y z z z z z zη θ ϕ η θ ϕ

η θ ϕη η θ ϕηµ

  
∇ = ∂ + ∂ + ∂ ∂ + ∂ + ∂    

  

2 2 2
2 2 2 2

2 2

( ) ( ) ( )
( ) .

( ) ( )
y y y

y
y y

η θ
η θ ϕ

ϕ η θ
η

η η

∇ ∇ ∂ + ∇ ∂
= ∇ ∂ +

 
  ∂ + ∂ +

∇ ∇ 


In terms of the quaternion z, the Laplacian takes the form

2 2 2 2
2
1 tanh coty

zz
z zzz η θ ϕ η θ

ϕη ϕη

η θ
µ

 
∇ = ∂ + ∂ + ∂ + ∂ + ∂  

 

( )( )2 2 2 2 2
2
1 cot tanh tanh cot .
zz η θ ϕ η θθ η η θ

µ
= ∂ + ∂ + + ∂ + ∂ + ∂

Note that (∇xη)2 = (∇xθ)2 and (∇yη)2 = (∇yθ )2 in the expressions (19) and (21) above, and that the expressions are the 
same except for the gradients employed with respect to x and y, respectively [19].

5. Quaternion gradient and Laplacian
Both the prolate and oblate gradients and Laplacians can be expressed in terms of a more fundamental quaternion 

gradient and Laplacian, as is explored in this section.
Beginning with the results given in (20) and (22), the quaternion gradient is defined by

(21)

(22)

(19)

(20)
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( )11 1 1 1: ,z pI z z
z z z zη θ ϕ η θ η ϕ ϕ

η θ ϕ η

− 
∇ = ∂ + ∂ + ∂ = ∂ − ∂ + ∂  

 

and

( )11: .z pI zz
zη η θ ϕη ϕ

−∇ = ∂ − ∂ + ∂

Note in the above definitions

1 1 1 ,
sinh sinsinh sin p

p

I
z Iϕ η θη θ

= = − 


20
2

1,  ,x z x z z
e
µ µ

∇ = ∇ ∇ = ∇ ∇

and

20
2

1,  ,y z y z z
e

η η ηµ µ
∇ = ∇ ∇ = ∇ ∇

where

0 0 0 0
1 1 1: , : .z z z ze e e e
z z z η ηη θ ϕ

η θ ϕ

 
∇ = ∇ = ∂ + ∂ + ∂ ∇ = ∇  

 

The prolate quaternion Laplacian is given by

2 2
0 0 ,z z z z x z ze e µ∇ ∇ = ∇ ∇ ≡ ∇ = ∇ ∇

and similarly for the oblate quaternion Laplacian. The quaternion Laplacians are, up to a scalar factor, equivalent to the 
prolate and oblate Laplacians ∇2

x and ∇2
y given in (19) and (21), respectively.

Below is a Table of useful identities:

1. 3 , 1 .z z z zz z z z∇ = = ∇ ∇ = − = ∇

2 21 12. (cosh 2 cos 2 ),  (cosh 2 cos 2 ),  sinh sin .
2 2

zz z z z zη η ϕ ϕη θ η θ η η= + = − =

2 2
2 23. , , 0 .x y z zzz z z z z z zη η η η η ηµ µ

∇ = ∇ = ∇ = = ∇
x y

2 2 2 2

2 24. . , 
x y

zz z z zz z z
z z zz

η η η η

η η

+ ++ +
∇ ⋅ = = ∇ ⋅ = =

x y x yx y y y x y x x
y x

(23)

(24)

(25)
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1 1
2 25. 2 2 2 , 2 .x yi− −⋅ ×

∇ = + = + + ∇ = +
y y y x y x xy y x x x y
x x yy y
  

  

2 2 2 2
2 2 2 2

2 2
6 2 6 26. 0 , , .x y x y

µ µ+ −
∇ = = ∇ ∇ = ∇ =

x yx y y x
y x

 

27. sinh 2 2 ( ),pz z zz I zz z zη η θ θη
µ
⋅

+ = = = −
x y

2sin 2 2 ( ).pzz z z I zz z zθ
θ θ η ηθ

µ
⋅

− = = = −
y y

2 2 2 2
2 2 2 2

coth cot 1 18. , , ( ) ( ) .x x x xz z z z z z z zη η θ θ η η θ θ

η θη θ η θ
µ µ µ µ

∇ = ∇ = ∇ = = = ∇

2
2 2 2 2

2 2 2 2
tanh cot 19. , , ( ) ( ) , tanh .

( )
y

y y y y
yzz zz zz
ηη θη θ η θ η

µ µ µ η

∇
∇ = ∇ = ∇ = = ∇ =

∇

2
2

2

| |
10. tanh tan , coth tan , tanh .

| |
y

p p
x

z zz z I I
z z z z

η η

η η

ϕ
η θ η θ η

ϕ

∇−−
= = =

+ + ∇

The properties of the quaternions Ip := epe0, Jp := ėpe0, and Kp := Ip Jp = ėpep, are given below:

2 2 21. 1, 1.p p p p p pI J K I J K= = = − = −

22. : , , 0.p p p p p p pJ JI I I I Kϕ ϕ= ∂ = = ∂ = − =

3. , , 0.p p
x p x p x p

J I
I J K∇ = ∇ = − ∇ =

x x 

The fact that K̇p = 0 is a consequence of ∂ϕ ėp = −ep.
Clearly the gradients ∇x, ∇y, and ∇z and ∇zη , are all closely related, since

( )1 10 0
x p z

e e
z I z zη η θ η ϕ ϕµ µ

− −∇ = ∂ − ∂ + ∂ = ∇

and

( )1 10 0 .y p z
e e

z I zz
ηη θ ϕη ϕµ µ

− −∇ = ∂ − ∂ + ∂ = ∇



Contemporary Mathematics 200 | Garret Sobczyk

6. Spheroidal solutions to the Laplace equation
Since prolate and oblate coordinates are one of the 11 systems in which the Laplace equation is separable, harmonic 

solutions of the equations (19) and (21) have the form

( , , ) ( ) ( ) ( ),U η θ ϕ η θ ϕ= Θ Φ

where {N (η), Θ(θ ), Φ(ϕ )} ∈ R. In the prolate case, separating (20) leads to the differential equations,

2
2 2

2 coth coth 0,[ ]d d m n
dd

η η
ηη

+ + − + =
 



2
2 2

2 cot cot 0,[ ]d d n m
dd

θ θ
θθ

Θ Θ
+ − + Θ =

and

2
2

2  0.d m
dϕ

Φ
+ Φ =

Separating (22) in the oblate case, only the first equation (27) changes to

2
2 2

2 tanh tanh 0,[ ]d d m n
dd

η η
ηη

+ + − + =
 



while the other two equations (28) and (29) remain the same. Solutions involving hypergeometric functions [20] are 
shown in the Mathematica Package in the Appendix. However, equivalent but much more compact and workable 
solutions have been found in terms of Legendre functions of the first and second kind, see [10] and [12]. An extensive 
discussion of the issues involved in the solutions of the Helmholtz and Laplace equations in terms of their associated 
Lie algebras and symmetry groups are given in [10, 20, 21].

Following Garabedian [22], and Hobson [12], the second order differential equations have the respective interior/
exterior harmonic spheroidal solutions of the form

, ,
cos

[cos ] [cosh ] ( ),
sinn m n mP P mθ η ϕ

 
 
 

and

, ,
cos

(cos ) (cosh ) ( ),
sinn m n mP Q mθ η ϕ

 
 
 

respectively, where Pn, m and Qn, m are symbols for the respective Legendre Polynomials of the first and second kind [16], 
and where

(26)

(27)

(28)

(29)

(30)

(31)

(32)
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[ ]
2

2 1 2

0

( 1)![ ] : cos( ) ( 1) 2 .
!( 2 )!

m

k m k m k
m

k

m kC m m
k m k

α ϕ α− − −

=

− −
= = −

−∑

From the prolate and oblate cases (4)-(6) involving x and and y, by substituting expressions for coshη and cos θ, 
using Hobson’s solutions (31) and (32), we get harmonic polynomial solutions in terms of the variables {x0, x1, x2} in 
the prolate case, and { y0, y1, y2} in the oblate case [12]. The theoretical framework for the study of different separable 
solutions is considered in the next Section.

7. Lie algebra E(3) of symmetry operators
As explained in [10], the six dimensional real Lie algebra E(3) of the Euclidean symmetry group E(3) is generated 

by a basis of six symmetry operators

,  , k k k k= ⋅ = ∂e  

for J x := −x × ∇x and k = 0, 1, 2. The basic theory of this Lie algebra is developed here in a new way utilizing the rich 
structure of the geometric algebra G3.

Let a, b ∈ R3 be arbitrary constant vectors in G 3
1. Define the scalar operator Pa and the vector operator Jb by

: , :    , a x b xP J= ∇∧⋅∇ = ∧a b x

and

: , x x x xi= ∇ = −∧ ×∇ =J x x 

for i := e012. The interesting relationship

2 2 2 2( )  ( ) ,x x xi= ∇ = − ⋅ ∇∧ ∇ − ⋅J x x x x

follows after a rather tricky calculation.
The close relationship between the definitions (33) and (34) is easily found,

, and .
kk e k x k k x k xP i ∧ ∧= = ⋅∇ = ⋅ = ∇e e J e x 

We can now state the basic Lie algebra bracket relationships among the symmetry operators:

[ , ] 0,  [ , ] ,  [ , ] .a b a a a b a b a bP P J P iP J J iJ× ×= = − =

By the symmetry Lie algebra S of symmetry operators Sa, b = Pa + Jb, we mean

3
,: { | , }S= ∈a b a b 

Thus, a general symmetry operator Sa, b is the sum of a scalar and pseudoscalar operator parts. Since i = e012 is in the 
center Z of G3, a symmetry operator will naturally commute with any constant multivector in G3.

The importance of the symmetry Lie algebra S follows from the fact that the subset of symmetry operators L ⊂ 

(33)

(34)

(35)

(36)

(37)

=
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S, with the property that Sa, bΨ is a solution of the Laplace or Helmholtz equation whenever Ψ is an analytic solution, 
make up a Lie sub-algebra of S [10, 21]. Furthermore, as noted by these authors, each of these 11 systems of orthogonal 
coordinates systems in which the Helmholtz equation separates corresponds to a pair of commuting second order 
operators in the enveloping algebra of E(3) of L. Studying properties of the Lie algebra L, of the Helmholtz equation, 
for example, gives insight into how the hypergeometric solutions to the prolate and oblate Laplace equations (19) and (21) 
are related to the equivalent famous solutions given by the Legendre polynomial solutions (31) and (32).

8. Geometric analysis verses Clifford analysis
Clifford analysis [14] is laid down in terms of the more comprehensive geometric analysis, and in such a way that 

it is easy to translate any equation in Clifford analysis into its equivalent expression in the geometric analysis, and vice-
versa [6, 8, 14]. Applications and examples are given.

Let x ∈ G1
n be the real position vector in the geometric algebra Gn + 1 := R [e0, e1, ..., en] of Euclidean space Rn. 

Thus,

1
0 1

0
( , , , ) .

n
n

k k n
k

x x x x +

=

= = … ∈∑x e 

To get the equivalent paravector X ∈ G 0+1
0, n , write

1
0 0 0 0 0 1: ( , , , )  ,  n

nx  x x x +∧= = ⋅ + = + = … ∈X xe x e x e X 

where

2
0 0 0 1 1 0,

1
   : . :

n

i k n n n
k

x +
+ +

=

=∧ = ∈ ⊂ ≅= ∑x e xe X e  

Also defined in Clifford analysis is the complex conjugate X  := x0 − X  = e0x.
Clearly

0 0 0 0   ,X= = = =⇔X xe e x x Xe e

or equivalently,

0 0 0 0 0, and : .X X X= = =e e x e xe e

In the geometric algebra Gn+1 the dot and wedge product are simply defined by

1 1( ) ( ) ,
2 2

= + + − ≡ ⋅ + ∧ab ab ba ab ba a b a b

the symmetric part being the dot-product and the anti-symmetric part the wedge-product. To see how this carries over to 
Clifford analysis, write

( )0 0 0 0
1 1 1( ) ( ) ,
2 2

AB BA
2

⋅ = + = + = +a b ab ba ae e b be e a

=
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and similarly

( )0 0 0 0
1 1 1( ) ( )
2

AB B
2

A
2

∧ = − = − = −a b ab ba ae e b be e a

for the outer product.
To see that the even sub-algebra G+

n +1 is isomorphic to the geometric algebra G0, n, following [7], write

0, 1 10 0 1 0 10 0 1: [ , , ] [ , , ] [ , , , ]  .  n n n n n nf f e e e e e+
+ += … … ⊂ …≅ =≅   

It is now an easy exercise to translate any expression in Clifford analysis to a corresponding expression in the geometric 
analysis as laid down in [6, 8]. Thus for the Clifford paravector X = xe0,

2 2
0 0

0
  .

n

k
k

x
=

= = = ∑XX xe e x x

In Clifford analysis, the operator ∂X and ∂ X∂  are defined by

0 0 0 0
1 1

: , and :
n n

X k k k kX
k k= =

∂ = ∂ + ∂ ∂ = ∂ − ∂∑ ∑e e

which translate to

0 0 .X Xe e∇ = ∂ = ∂x

It follows that the Laplacian 2
0 0 X X∇ = ∇ ∇ ≡ ∂ ∂x x xe e .

One important application is the so called Cauchy-Kovalevska (CK) extension, which is a construction of a higher 
order monogenic function from a given monogenic function [13, 14]. Following [13], as a simple example of the CK 
extension, consider

0 0 0
1

[( ) ] [ ] : ( ) .x x
n

kk k
k k

k
CK CK x x

=

= − = − +∑e e

For k = 2 = n and x = xp,

2 2 2
0 0 0 0 0 0 0[ ] 2 ( ) 2 ( ) ( )p p p pCK x x F f= + − = =X x e x e X e e x e

is monogenic for 2 2
0 0 0( ) 2 2p pf x x= − −x x x e . Checking,

0 0 0[ ] 0 [ ] ( ) .p pF F f∂ = = ∇ = ∇X x xX e X e x e

More generally, it is easy to show that ∇x f (x) = 0 for

0 0
1

( ) : ( ) .i
n

k
k k

k
f x x

=

= +∑x e

(38)

=

= =

=

=
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The idea of a CK extension suggests that the study of quasi-monogenic (QM) functions QM [k], defined in G3 by

0 0 0 0[ ] : ( ) ,k
p pQM k x x= −e e e

is of interest [23, 24]. In cylindrical coordinates, the operator ∇x has the form

0 0 0 0( ) ( ) ( )  ,p
p p p p

p

x x
xϕ ϕϕ∇ = ∇ ∂ + ∇ ∂ + ∇ ∂ = ∂ + ∂ + ∂x x x x

e
e e



[19]. We find that

( )0 0[ ] [ ] [ ]p
p p

p

QM k QM k QM k
x ϕ∇ = ∂ + ∂ ∇ + ∂x

e
e e



( )[ ] [ ] ,p p

p p

QM k QM k
x xϕ ϕ= ∂ = ⋅ ∂
e e 

showing that ∇x ∧ f (x) = 0. Whereas f (x) is not monogenic, it is curl-free and ∇QM[k] rapidly approaches zero in the 
unit disk in the plane of the bivector ep0, see Figure 3. The CK extension has also been studied in Hermitian Clifford 
Analysis [25].

Figure 3. Shown is the graph of ∇x QM [11] = −11x 0
10 + 165x 8

0 x 8
p − 462 x 6

0 x 4
p + 330x 4

0 x 6
p − 55x 2

0 x8
p + x 10

p

(39)

2

1

0

-1
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0
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An interesting property of the quasi-monogenic functions (39) is that for k = 1, 2, 3, the modified functions

3
2 3

0 0 0 0 0 0(1) ,  (2) ,  (3)
4
p

p

x
QM x QM x QM x+ + + −e e e e

are monogenic. Are there other values of k for which the function QM [k] can be suitably modified to be monogenic?
In geometric analysis, the Cauchy kernel is defined by,

0 01 1 1( ) : ,
| | | | | |n n ng + + +

− − −
= = =

− − −
x y X Y X Yx e e

x y X Y X Y

[8]. It is one of the most important examples of a monogenic function, satisfying

0 0( ) 0 ( ) ( ),Xg g G X∇ = = ∇ = ∂x xx x e x

where 

01( ) : ( ) .
| |n

G X g +

−
= =

−
X Yx e

X Y

Another interesting method for generating higher order monogenic functions is by way of the hypercomplex 
generalized geometric series of the Cauchy kernel. Starting with the geometric Cauchy kernel function (40), and 
employing the complimentary methods of Clifford analysis and geometric analysis,

1
0 2

0 0 0 0 01
0

( ) ( ) ( ) ( )
| |

[ ]
n

nf   
+

−

+

−
= = − − −

−
e x

x e x e x e e e x
e x

2 1 1
2 2 2

0 0 0 0 0 0 0( ) ( ) ( )[ ] [ ] [ ]
n n+ +

− −
= − − −e e e x e e x e x e

1 1
2 2

0 0 0 0 0( ) ( )[ ] [ ]
n n− +

− −
= − −e e e x e x e

1 1
2 2

0 0(1 ) (1 ) ( ),[ ] [ ]
n n

F
− +

− −
= − − =e X X e X

where F(X) is the Clifford analysis Cauchy kernel [13]. By expanding each of the expressions defining F(X) in a 
binomial series, the authors of this reference obtain many beautiful results of hypercomplex generalized geometric 
series.
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Appendix: Mathematica package (Prolate case)
(* Prolate case *)

NN =

DSolve[D [Neta[η], η, η] + Coth[η]D [Neta[η], η] 

+ (−m∧2Coth[η ]∧2 + n)Neta[η ] == 0, Neta[η ], η ] 

{{Neta[η ] → (−1)mC [2]Coth[η ]Hypergeometric2F1

( ) ( )2 2 21 1[ 1 2 1 4 4 ,  3 2 1 4 4 ,  1 ,  Tanh[ ] ]
4 4

m m m n m m m n m η+ − + + − + − + + − +

( )
2 21 1 1 11 1 2 1 4 4 3 2 1 4 41 ( 1 )2 2 4 2 4 42Tanh[ ] ( 1 Tanh[ ] )

m m m n m m nm
η η

    − + + − + + − + − + + −   + − +      − +

( )21Hypergeometric2F1 1[1]Coth[ ] 2 1 4 4 ,   
4

m m nC η  − + + −
+ 

( ) ( )
1

2 2 2 21   3 2 1 4 4 , 1 , Tanh[ ] Tanh[ ]
4

m

m m n m η η
− − + + − −  

( )
2 21 1 1 11 2 1 4 4 3 2 1 4 42 4 2 4 41 Tanh[ ]

m m m n m m n
η

    − + + − + + − + − + + −        
− + 



TT =

DSolve[D[T [t], t, t] + Cot[ t ]D [T [ t ], t] 

+ (−m∧2Cot[ t ]∧2 − n)T [ t] == 0, T [t], t] 

(* Same in both prolate x and oblate y cases *)

{{ ( )21[ ] [1]LegendreP 1 1 4 4 , , Cos[ ]
2

T t C m n m t → − + + −  

( ) }}21[2]LegendreQ 1 1 4 4 , , Cos[ ]
2

C m n m t + − + + −  
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Φ = 

DSolve[D [Phi[ϕ ], ϕ , ϕ] 

+ m∧2Phi[ϕ] == 0, Phi[ϕ], ϕ] 

(* Same in both prolate and oblate cases *)

[ ] [ ]{ }{ }1  [ ] [ ] [ ]2Phi C Cos m C Sin mφ φ φ→ +

(* Oblate y case *)

NY =

DSolve[D[Neta[η], η, η] + Tanh[η]D[Neta[η], η]

+ (−m∧2Tanh[η]∧2 + n)Neta[η] == 0, Neta[η], η]

(* Other 2 equations same as the prolate equations *) 

[ ] ( ) ( )1/42 2 21 11 LegendreP 1 2 , 1 4 4 , TN anh[ ] 1 Tanh[ ]  
2 2

eta[ ] C m m n η ηη  − + + − −
  

→ 
 

+
 
 



[ ] ( ) ( )1/42 21 1  2 LegendreQ 1 2 , 1 4 4 , Tanh[ ] 1 Tanh[ ]
2 2

C m m n η η +
  
 − 

 
+ + − − + 

   

BKM =

DSolve[D[Neta[η], η, η] + Tanh[η]D[Neta[η], η]

+ (−lamda + m∧2/(Cosh[η]∧2))Neta[η] == 0, Neta[η], η] 

(* Other 2 equations same as the prolate equations *)

[ ] ( ) ( )1/421 11 LegendreP 1 2 , 1 4lamda , Tanh[ ]Net 1 Tanh[ ]  
2

a
2

[ ] C m η ηη  − + + − +
  

→ 
  

   

[ ] ( ) ( )1/421 1  2 LegendreQ 1 2 , 1 4lamda , Tanh[ ] 1 Tanh[ ]
2 2

C m η η + −
  
 


+ + − +    
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BKM2 = 

DSolve[D[T [t], t, t] + Cot[t]D[T [t], t] 

+ (λ − m∧2/(Sin[t]∧2))T[t] == 0, T [t], t] 

(* Same in both prolate x and oblate y cases *)

{{ ( )1[ ] [1]LegendreP 1 1 4 , , Cos[ ]
2

T t C m tλ → − + +  

( ) }}1[2]LegendreQ 1 1 4 , , Cos[ ]
2

C m tλ + − + +  


