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Abstract: This manuscript is dedicated to the qualitative analysis of a novel class of nonlinear fractional differential
equations designed to model multi-stage phenomena. The main focus is on a system that is controlled by an advanced
piecewise hybrid fractional derivative and a nested p-Laplacian operator. This operator captures dynamic regime
shifts by successively using the modified Atangana-Baleanu Caputo (ABC) derivatives, and traditional integer-order
derivatives over different time intervals. In order to establish strict requirements for the existence and uniqueness of
the solution, we use the Banach Fixed-Point Theorem to reformulate the issue into an analogous system of Volterra
integral equations. Additionally, the system’s resilience is ensured by a detailed investigation of its Ulam-Hyers (U-H)
stability. An application of this theoretical framework to a multi-stage Susceptible-Exposed-Infected-Recovered (SEIR)
epidemic model demonstrates its usefulness, as the piecewise operator successfully replicates the long-term effects of
public health measures.
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1. Introduction

Modern mathematical modelling now relies heavily on the field of fractional calculus, which extends differentiation
and integration operations to non-integer orders [1, 2]. The main way it differs from conventional calculus is that its
operators are non-local, allowing models to include memory and inherited characteristics [3, 4]. In many disciplines,
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including mathematical biology, control theory, finance, and viscoelasticity, Fractional Differential Equations (FDEs) are
indispensable due to their capacity to represent the influence of previous states on present dynamics [5—-8].

The development of various operators has marked the evolution of fractional calculus, each with unique kernel
properties tailored to specific physical interpretations. While the classical Riemann-Liouville and Caputo operators with
their singular power-law kernels laid the theoretical groundwork, their singularity posed challenges in certain applications.
This led to the advent of operators with non-singular kernels, such as the Caputo-Fabrizio operator, which features a
bounded exponential kernel [9], and the Atangana-Baleanu (AB) operator [10], which employs the generalized Mittag-
Leffler function as its kernel. These types of fractional operators enable the modeling of disease more accurately [11-14].
The Mittag-Leffler function provides a more sophisticated and realistic description of memory effects, capturing both
stretched exponential and power-law behaviors, making it highly suitable for modeling complex relaxation and crossover
phenomena [15, 16]. Piecewise differential and integral operators were recently introduced by Atangana and Araz [17].
By enabling models to adjust to various scenarios or regimes within the same framework, the piecewise fractional operator
increases modelling flexibility by capturing complex behaviours and phenomena that differ in their characteristics across
different regions or time intervals. By dividing a function or system into smaller sub-regions or intervals where more
manageable approximations can be made, it also aids in the development of effective approximation techniques [18-22].

Concurrent with these developments, the p-Laplacian operator has transformed the study of nonlinear partial
differential equations. The study of nonlinear diffusion and non-Newtonian fluid mechanics, namely the flow of fluids
through porous media, is where the p-Laplacian equation first appeared in the 1960s [23]. Since it naturally occurs in
nonlinear potential theory, continuum mechanics, and image restoration, its significance is enormous [24]. The typical
Laplacian is reduced for p = 2, but a strong nonlinearity is introduced for p # 2, which represents complicated processes
where the diffusion rate is dependent on the gradient of the quantity under study. Further extending the applicability
of fixed-point theory, Ayadi and Ege [25] investigated a Dirichlet boundary value problem involving the variable-order
p(x)-Laplacian. We cite [26—29] for further important research on p-Laplacian operators.

The coupling of fractional-time derivatives with the p-Laplacian operator is a strong and intuitive synthesis in
contemporary modelling, resulting in extremely nonlinear and non-local in time models. As aresult, the corpus of literature
is expanding. According to Hasanov [30], early research concentrated on fundamental issues such initial value problems
for fractional p-Laplacian equations with singularities. For example, Ahmadkhanlu et al. [31] used a fixed-point strategy
to analyse a p-Laplacian fractional g-difference equation with an integral boundary condition. This was extended to other
complicated boundary value issues. Li et al. [32] have provided local boundary estimates for weak solutions, whereas
other researchers have concentrated on the analytical characteristics of the solutions themselves. Complexity has been
included in more recent research, such as temporal delays in systems with p-Laplacian operators, as shown by Kaushik et
al. [33]. As examined by Boulaaras et al. [34], these investigations have also taken into account Kirchhoff-type systems
employing the p-Laplacian with variable parameters. By using the y Caputo fractional derivative, Yao and Zhang [35]
examined whether solutions for a p-Laplacian system exist. Khan et al. [36] extended this to non-singular kernels by
investigating a fractional p-Laplacian model with biological applications utilising the Atangana-Baleanu operator. For
example, Saber et al. [37] examined a piecewise system to simulate dynamics with crossover behaviour. This idea of
modelling systems with abrupt changes has also prompted research into piecewise fractional operators. The foundation of
Zhang et al.’s and Khan et al.’s work is a single fractional operator, presuming that the memory structure of the system is
constant throughout time. For systems in the actual world that go through different evolutionary stages, this is frequently an
oversimplification. Conversely, although Saleem et al.’s work presents a piecewise technique, it ignores the complicated
nested derivative structure that arises in many physical models as well as the strong nonlinearities inherent in p-Laplacian
systems.

By presenting and thoroughly analysing a novel fractional hybrid p-Laplacian model intended for multi-stage
dynamics, this study fills this important gap. Three cutting-edge features are simultaneously incorporated into our work,
which sets it apart: (i) a highly nonlinear nested p-Laplacian structure; (ii) a multi-stage piecewise hybrid operator that
switches from the classical derivative to the Atangana-Baleanu Caputo (ABC) and Modified ABC (MABC) operators as
defined by Refai et al. [38]; and (iii) a thorough well-posedness analysis. In particular, we prove the existence of a unique
solution and the theoretical guarantees of Hyers-Ulam stability for the nonlinear piecewise hybrid fractional model:
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2P ® [cp,, (9”@{3@ (U(1) - Z(, U(r))))} =H(r,U(r)), T€J,

U([7]) = Uy €R, €]

Z(t,U(7)) =0.

=

where J : = [a, T], which is partitioned by fixed points a < 7] < 7o < T. The sub-intervals are denoted as J; = [a, 71],
J» = (11, 1], and J3 = (12, T]. The piecewise initial point in each sub-interval denoted by [t] such that

a, if telJ,
[‘L’} =41, if 1€ML,
T, if 1€,

and 7 @[‘H 9 and 7 @ﬁ’ % are piecewise hybrid fractional operators defined below, 0 < p;, §; < 1, i =1, 2. The function

U :J — R. The functions Z, H : / x R — R are continuous and satisfy the Caratheodory assumptions. The nonlinear
- o . 11
operator @, (Z) = |Z|" 27,1 <n <2, and its inverse is &, (Z) = |Z|?2Z with — + — = 1.
q
To achieve this, we first reformulate the problem into an equivalent model of Volterra integral equations. We
then employ the Banach Fixed-Point Theorem to prove the existence and uniqueness of the solution under well-defined
conditions. Finally, we demonstrate the U-H stability of the model, confirming its robustness against small perturbations.
Through this analysis, we provide a solid mathematical foundation for a new and powerful class of models suited for
multi-stage, nonlinear phenomena.

1.1 Novelty and contributions

The present work provides a rigorous mathematical analysis of a sophisticated problem that has not been previously
investigated in the literature. The primary novelty and contributions of this paper are as follows:

* Novel Problem Formulation: We introduce a new class of FDEs characterized by the combination of a piecewise
hybrid operator (Classical - ABC — MABC), a nested derivative structure, and a highly nonlinear p-Laplacian operator.

* Rigorous Qualitative Analysis: We establish the well-posedness of the proposed model by proving the existence
and uniqueness of the solution using the Banach Fixed-Point Theorem in a unified framework.

» Comprehensive Stability Investigation: We prove that the solution is stable in the U-H sense, guaranteeing its
robustness against small perturbations and making it reliable for practical applications.

* Unified and Detailed Proofs: We present the mathematical proofs in a clear, unified manner, providing a robust
template for analyzing similar complex, multi-stage models.

The remainder of this paper is organized as follows. Section 2 provides the necessary preliminaries and formal
definitions of the constituent fractional operators. Section 3 is dedicated to our main results, presenting the unified
theorems for existence, uniqueness, and U-H stability with detailed proofs. Section 4 provides numerical examples to
validate the theory, and Section 5 presents an application to a multi-stage Susceptible-Exposed-Infected-Recovered (SEIR)
epidemic model.
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2. Preliminaries and operator dsefinitions

Definition 1 (ABC Derivative and AB Integral) For p € (0, 1) and U(7) € H! (a, T), the ABC fractional derivative
is given by

SHEE PPU (1) = m/TU’(v)Ep [—1 fp (r—v)p] dv,

where B (p) is the normalization function that satisfies B(p) =1 —p + % , and E,, is the Mittag-Leffler function defined
by

vi
E,(v)= ——, Re >0, v eC.

oo

Its left-inverse, the Atangana-Baleanu (AB) integral, is

Pafu(n = ;z;)l; U+ g (p)pr(p) /ar (=97 U (s)ds.

Definition 2 (MABC Derivative and MAB Integral [39, 40]) For § € (0, 1) and U(t) € L' (a, b), the MABC
fractional derivative is

MARE GSTy (1) = 119_6) [U(r) —Es (—u5 (r—a)‘s) U(a)

—~

=7}

—Us /;(T—S)(LIE&,& (—Hs (T—S)5> U(s) ds] ;

where Ug = T—s Its left-inverse, the MAB integral, is
w02 5305 = L2 () v+ AW -U)
a ~ B(9) B(9) a '

Definition 3 (Piecewise Hybrid Operator) For p, § € (0, 1). The Piecewise Hybrid Operator, denoted by .@[’;j 8,

of a function U is defined as:

QIU(T)7 TEJU

70U = YRR U(T),  Ted,

AATE P (1), TE ],
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where 2'U (1) = U’ (1) is the classical derivative.
Definition 4 The corresponding piecewise integral of a continuous function U is given as

S (1) if TeJ,

@Lﬁ[’;]EU(‘C) — ABijl)U(f) if T €J27

AAD g8 (T) if TE T,

where .U (1) = [T U (s)ds, is the classical integral.
Lemma 1 Let p € (0, 1] and for a given function U € C (J, R). The piecewise integral operator is the left-inverse of
the piecewise derivative operator. That is,

778° 2 9000(1) = U(r) - U([1]).

Lemma 2 The solution of the problem ¥’ 9[’;15[[}(1) = H(r, U(r)) with initial condition U([7]) is given by the
integral equation

U(z) =U([e])+ 775 °H(z, U ().

Explicitly, this is:
U(Cl)—f—f;H(S,U(S))d& 76]17
U(z)= U(T1)+119(_p’;H(r, U(r))—kmﬁl (t— )P H(s, U(s))ds, =
U(n) + ;(‘;;[H(r, U (1)) — H(z, U(2))] + Bfé) RLg3[H (7, U (1)) — H(n, U(w))], 7€

Lemma 3 [41, 42] Let @, be a n-Laplacian operator. Then, the following conditions hold true:
() For1<n <2,X;,X; >0,and |X;|, |X2| > & > 0, we have

[n (X1) —@n (X2)| < (n —DE2 X1 — Xo|.
(2) Forn > 1, and |X;|, |X2| < &* > 0, we have

@y (X1) — @y (Xo)| < (M= 1) (E)17% X1 = Xa .
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3. Main results on well-posedness

This section presents the main theoretical results for the problem (1). To obtain main results, the functions Z, H must
be satisfies the following conditions:

Let Z, H : J x R — R be continuous functions satisfying:

(H1) Lipschitz conditions: There exist constants Lz > 0 and Ly > 0 such that

|Z(Ta U)_Z(T7 V)| SLZHU_V'?
and
|H (7, U)—H(7,v)| < Lg|U—v|,

forallteJand U, v € R.
(H2) Boundedness of H: For any bounded set B C R, there exists a constant Mj; > 0 such that

[H (7, U)] < Mg,

forallteJ,UeB.
Theorem 1 The hybrid fractional p-Laplacian model (1) has solutions of the kind

U(t) = Upg + Z(z, U(e) +7 7 * (@, 7500 M (x, U (1))

Explicitly, this is:
Uy +Z (7, U (7)) + [ Dy ([T H (v, U(v))dv)ds, TEJi,

U(t) =4 U(n)+Z (7, U(1)) +“Z 78 [@, (7% I8 H (s, U(s)))], TE D,

U(n)+Z(t, U(r) + 4% g% [cpq (%Mfglﬂ (s, U@))ﬂ . Teh

Proof. Applying the operator ¥’ J[g]l’ % on both sides of equation (1), we have

27y @ (PO W -2 U) ]| = 7 A (s U (). @

This implies that
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®, (y@ﬁ,az (U (1) -2 (x, U(T)))) - @, (”’@{ﬁ’az (U([7]) —Z([1], U([ﬂ))))

+7. 700 H (7, U (7).

By condition U ([7]) = U}y € R, and Z ([7], U([7])) = 0, we have

y (7703 % (U ()~ 2(x, U(2)))) =77 H(x, U ().

By the n-Laplacian operator, we have

7 9P (U(r) - Z(r, U(r))) = @, 7 70 P H(x, U(1)).

This is equivalent to the following formulation:

9 2 ,0
U(r) = Uy + Z(z, U(e) + 7 7 * (@, 7500 M (x, U (1)) 0

Define an operator & : C(J, R) — C(J, R) such that U = ¥U, where

GU(7) = Upg + Z(1, U (1) + 7 70> (cpq 770 (r, U(r))) .

Or

Uy +Z (7, U(7) + [ @y ([T H (v, U(v))dv)ds, if TeJy,

GU(t) = U(n) +Z(7, U(1)) +487 [@, (“B 7L H (s, U(s)))], if Tel,

U(12) +Z(7, U(t)) + MAB #&2 [cpq (MABﬂgIH(s,U(s)))}, if e

Corollary 1 The operator 4 : C(J, R) — C(J, R) is well-defined. For any continuous function U, the resulting
function 4U is also continuous on the entire interval J. The continuity within each open sub-interval is guaranteed by
the composition of continuous functions and integrals. The continuity at the junction points 7; and 7, is ensured by the
construction of the operator, where the integral terms for the ABC and MABC operators are designed to vanish at their
respective starting points (7] and 7;), and the initial condition for each subsequent interval is defined to be the terminal
value of the solution from the preceding interval. This ensures that lim S 49U (t) =lim_ St “U(7) fork =1, 2, thus
justifying the application of the Banach Fixed-Point Theorem on the space C (J, R).

Theorem 2 (Existence and Uniqueness) Assume the conditions (H1) and (H2) hold. The problem (1) has a unique
solution U (7) on the entire interval J = [a, T] if there exists a ball B, C R such that
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0 < max{Q, O, Q3} < 1,
where
Qi :=Lg+(g—1)((m —a) M) (1 —a)’ Lu,
Q=L+ Ap, (q—1) (Ap, M) " Ap, L,
Qy:=Ly+As, (g—1) (As, M) As, L,

_l-p p(m—mu)

Y = B) VBT (p+ 1)’
-8 (T-w)°
N =55 TBEOITG L)

Proof. We prove the existence of a unique solution by constructing it piece by piece, applying the Banach Fixed-Point

Theorem on each sub-interval.

Part (i): In the interval J; (Classical Case). The problem is equivalent to the fixed point equation U = 4U on

C(J1, R), where
T S
%U(T):UQ+Z(T,U(T))+/ ®, (/ H(U,U(v))dv)ds.
Let Uy, U, € C(J1, R). For T € Jj, consider

(1 U1) (1) = (%1U2) (7)]

< |Z(7, Uy (7)) = Z (7, U2 (1))

+/: ?, (/:Hw’ U (v))dv> -, (/:H(v, [Uz(v))dv)

By using (H1), the first term of (3) is given by

Z(7, Uy) = Z(7, U)| < Lz Uy = Uzlley, my -

For the second term of (3), let X; (s) = [ H(v, U; (v))dv, i = 1, 2. By (H2), we have

Co iporary Math tics

ds.

3)

“)
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1Xi ()| < Myz(s —a) < My (11 —a) =: & )
By the second property of p-Laplacian in Lemma 3, with (5), we have
@, (X1 (5)) =Py (Xa(9)] < (¢ = 1) (1) 21X (s) = Xa()]- (6)
The difference |X; (s) — X>(s)| is bounded by:
[X1(s) = Xa(s)] < /as [H(v, Uy (v)) —H(v, U2 (v))|dv
< Lu(s —a) [[Ur = Uallcg, gy - ™
Substituting (7) in (6), we have

| @y (Xi(5)) = Pg (Xa(s))]| < (g —1) (&) *Lu(s — a) [|U1 = Vsl ¢, ) -

Integrating this from a to :

12405 = @, (o] ds < [ (g = 1) (&) 2Lals ~ s |01~ Vel

a

(t—a)

= (a= 1) (&) L

101 = Ualley, w) - (®)

Combining all terms (4) and (8) and taking the supremum over 7 € J:
901 =9 Vsl 5 < (Lz+ (=) (M (1= ) Lis (11 =) ) U1 = Vol -
This is
1901 =9 Uzl m) < 1 [U1 = U2lley, vy -

As Q) < 1, ¥ is a contraction, yielding a unique solution Uy (7) on J;.
Part (ii): In the interval J, (ABC Case). The operator is U = ¢U on C([11, 1], R):

GU(t) =U(t) +Z (7, U(7)) + 8782 [, ("B 78 H (s, U(s)))].
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C

For Uy, Uy € C([11, &, R):
|(U1) (1) = (9U2) (7)| < Lz U1 = Uall (e, 1))
+ [AP B [0, (Y AEH (s, Ui (5))) — g (P AE H (s, Ua (s)))] |- €]
Let
X, =" 7P H (s, Ui (s)), i=1,2.

Using the operator norm bound, we have

Pl e = | g B D)+ P [ = 0P (o, Ui o)) a

pi(n—n)” .
B(p))T(p1+1) 1

1—p1

= Bloy)

My +
< Ap My =:&5. (10)
Also,

1X1 = Xallc((ey, zy)) < ApiLu [1Un = Uall(igy, 1)) -

By the second property of p-Laplacian in Lemma 3, with (10), we have
94(X1) @400 gy ) < (@ D (ED2 X1~ Xl - (n
Thus, the second term in (9) is bounded by:

HAB]rITZ [q)q(Xl) - qu(Xz)] Hc([n . ))

< (1—P2 p2(T2 —71)P2

B(p2) " B(p2)T(p2+ 1)) 194(X1) — @4 (X2)|c 5, )

SAPz Hq)q(Xl)_q)q(XZ)Hc([rl,rz])' (12)

By (11) and (12), we have
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45782 [@4(X1) = @ (Xo)] [l g, 1) < Apa (@ = 1) (E3)7 2 Ap Lt [1U1 = Uiy, oy - (13)
Combining (9), (13), we have
|9U; —9U,|| < Q,||U; —Uy||.

Since Q; < 1, a unique solution exists on J;.
Part (iii): In the interval J3 (MABC Case). The operator is U= %U on C([1, T], R):

GU(1) = U (1) + Z (7, U(t)) + M8 72 {qu (MABJQI [H])} .

The proof is identical in structure to Part (i), replacing p; with &; and the AB integral bound A,, with the MAB
integral bound Ag,. This leads to the contraction condition

1901 =4 Ualle(poy, 17y < 31Ut = Uallgiey, 79 -

which, given Q3 < 1, guarantees a unique solution on J3.
From the above three parts, we have

1901 =9 Ualley, r) < max{Qi, Q2, Q3}[Us = U2l ¢y, gy -

Thus, the sequential and unique determination of the solution on each sub-interval, where the endpoint of one serves
as the initial condition for the next, ensures that the concatenated function U (7) is the unique continuous solution on the
entire interval J. O

Theorem 3 (U-H Stability) Under the assumptions and conditions of Theorem 2, the problem (1) is U-H stable on J.

Proof. Let¢ >0and let U € C (J, R) be an approximate solution satisfying

‘@@[’%’6‘ {CIDT, (99’%‘82 (@(T)—Z(T,@(T))))} —H(r,@(r))’ <e 1Tl

This implies there exists a function /() with |A(7)| < € for all T € J, such that equality holds with H + % on the
right-hand side. We analyze the stability on each interval.
Part (i): Interval J;. The integral form of the perturbed equation is:

U (1) = Uy + Z(1 / (/ v, 0w )>+h(v)]dv>ds.

A

We estimate the discrepancy U (7) — (%IU)( )’ as follows
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C

Let

Then, we have
)
Mﬂ@—m@ﬂg/|uwwv§e@—@.
a
Using the p-Laplacian property as before:

ey 2 = (7= st 10030) — x|

<(n—a)(g—1)(ENT* X2 —X lew,») -

Since [|X> — Xi|¢(y, r) < €(T1 —a), we have

Hﬁf%Hq (g—1) (&) 2 (n—a)’e: = Pe.

<
Ji,R)

Let U be the unique exact solution (¢ U = U). Using the triangle inequality:

i P L

J1, Ji,

gTw+Qw@—UH .
C(‘II’R)

Rearranging gives

HI[AJ—IUH < ki e =:Cie.
C(

J,R) T 1=Q

Part (ii): Interval J,. The same procedure on J; yields the discrepancy bound:

iporary Math tics

R)+”g®_gU“c(Jl,R)
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H@-%HC([ < Ap, (q—1) (ED)T Ay € 1 = Pae.

71, %))

Applying the triangle inequality gives

[0Vl < 7%

=: (€.
o)~ 11— 928 2¢

Part (iii): Interval J3. The argument is identical, using the MAB integral operator bounds. We find the discrepancy:
@—%@H <A —1) (&)1 %As € - = Wae.
[0-20] ., <Aa@-1DE) P Ase: =¥

This results in the stability bound

_ P
HU—UHC < B3 e G

([22,7) — 1-Q3

Combining the results, the total error over the entire interval J is bounded. By setting the U-H stability constant
Cstap = max{Cy, C2, C3}, we have

HI[AJ_UH < Caap€.
c(J)

This establishes that the problem (1) is U-H stable. O

4. Numerical examples and illustrations

In this section, we provide numerical examples to demonstrate the validity and practical implications of our
theoretical findings. We will choose specific functions and parameters, verify that the conditions of our main theorems
are met, and present graphical results obtained from a suitable numerical scheme (e.g., a piecewise predictor-corrector
method).

Example 1 Consider the following instance of our piecewise p-Laplacian problem (1) on the interval J = [0, 3] with
partitions at 7, = 1 and 7, = 2:

1 s (728 W) -2 (V@) = 8 V().

U(0) =0.5,

with p; = 0.8, p =0.85, §, = 0.7, & = 0.75, n = 1.5, ¢ = 3 and functions
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0.05

Z<T’ U(T)) = 1+T2U(T),
H(T,U(T))—W+COS(T).

The Lipschitz constants for Z and H can be bounded by Lz = 0.05 and Ly = 0.05. We assume the solution remains
in a bounded region, so [H(z, U)| is bounded by Mj; ~ 1.05. The bounds for the integral operators are calculated as:
Ap, ~ 1.058, Ap, ~ 1.049, A, ~ 1.070, and A5, ~ 1.066. We verify the conditions of Theorem 2:

Q:=0.05+(3—1)(1-1.05)*2(1)%(0.05) = 0.05+2(1.05)(0.05) ~ 0.155 < 1,
Q) : =0.05+1.049(2)(1.058 - 1.05)(1.058)(0.05) ~ 0.05+0.123 ~ 0.173 < 1,
Q3 : = 0.05+1.066(2)(1.070- 1.05)(1.070)(0.05) ~ 0.05+0.128 ~ 0.178 < 1.

Since all conditions are satisfied, Theorem 2 guarantees the existence of a unique solution on [0, 3]. The numerical
simulation of this solution is presented in Figure 1. The plot shows a continuous solution whose behavior changes at the
transition points T = 1 and T = 2, reflecting the change in the underlying differential operator.

Unique solution of the piecewise system

——Unique solution U(x i
----1, =1 (Classical — ABC) H
25 __.4,=2 (ABC - MABC) i
2.0 '
=15 ;
1.0 i
/ i
0.5
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time ¢

Figure 1. Numerical simulation of the unique solution for Example 1. The vertical dashed lines indicate the points where the operator changes

To illustrate the U-H stability, we introduce a small perturbation into the model. Let U (1) be the solution to the
perturbed problem:

720 % [@1s (726 (U(0) - 2(x. U ()| =Bz, D () +h(0),
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where the perturbation is /(1) = 0.1sin(277), so € = 0.1. According to Theorem 3, since the conditions are met, the
solution U (7) should remain close to the exact solution U (7). The original and perturbed models are both simulated, and
their solutions are shown together in Figure 2. Because they are nearly identical visually, it is confirmed that the slight
disturbance does not result in a noticeable divergence. Figure 3 plots the absolute error |U (t) — U (7) | over time. For any
T € [0, 3], the error stays modest and constrained, giving a clear numerical confirmation of the model’s U-H stability. The
numerical values of the perturbed solution U (7) and the unique solution U (7) at discrete time points for both examples
are compared in the accompanying table. It also displays the absolute inaccuracy, which stays modest and bounded.

Comparison of unique and perturbed solutions

1 ]
—Unique solution U(z) i
55 ~~Perturbed solution U() g
g 20
<
-
=
2
5 15
S
A
1.0
0.5
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time ¢

Figure 2. Comparison of the unique solution U() and the perturbed solution U(t)

Ulam-Hyers stability: Bounded error

0.10
—— Absolute error |U(7) — I[NJ(I)|
------- Max error bound
0.08
5 0.06
b5}
[
i
S 0.04
kS
<
0.02
0.00
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time ¢

Figure 3. Absolute error |U(7) — U(7)| over time, demonstrating the boundedness predicted by the Ulam-Hyers stability theorem

Table 1 presents the numerical values for the solution and error for Example 1.
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Table 1. Numerical values for the solution and error shown in Figure 1 for Example 1

Time (r)  Unique solution (U(t))  Perturbed solution (U(t))  Absolute error

0.00 0.5000 0.5000 0.0000
0.50 0.7285 0.7791 0.0506
1.00 1.0000 1.0000 0.0000
1.50 1.3812 1.3305 0.0507
2.00 1.6533 1.5519 0.1014
2.50 2.3014 2.1528 0.1486
3.00 2.8000 2.7055 0.0945

Example 2 (A system exhibiting dynamics of saturation and decay) We examine a model with various functional
forms and characteristics to further test our findings. Let the problem be defined on J = [0, 3] with 7; = 1 and 7 = 2:

2 g [q,” (@@gzﬁzw(r)—z@, U(r))))] —H(r, U(z)),

with p; =0.75, p, = 0.7, 8, = 0.9, 8 = 0.95, 1 = 1.7,and g = 1.7/(1.7— 1) ~ 2.43.

Z(t,U(r)) = 0.1 tanh(U (z)),

H(z, U(r)) = lofg((;)z +e2,

Unique solution of the piecewise system (Example 2)
i — Unique solution U(z)
0.6 /—\: —t =1
| 1
el =2
0.5

0.4

0.3

Y(2)

0.2

0.1

0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time ¢

Figure 4. Numerical simulation of the unique solution for Example 2, showing different dynamics due to the new functions and orders
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The Lipschitz constants are Lz = 0.1 (since the derivative of tanh(x) is at most 1) and Ly = 0.2 (since the derivative
of x/(1+x?) is at most 1). The function |H(z, U)| is bounded by M;; ~ 0.2 x 0.5+ 1 = 1.1. The contraction conditions
from Theorem 2 are Q| =~ 0.48 < 1, Q; < 1 and Q3 < 1. With the conditions satisfied, a unique and stable solution is
guaranteed. The numerical simulation is presented in Figure 4. The dynamics are visibly different from the first example,
showing an initial rise followed by a more subdued evolution, influenced by the decaying term in H. Figure 5 illustrates
the U-H stability for this new model, using a perturbation of & () = 0.15cos(377)e~%/2. As predicted by Theorem 3, the
perturbed solution closely tracks the exact one, with the absolute error remaining small and bounded, as shown in Figure 6.
The following table compare the numerical values of the unique solution U () and the perturbed solution U (7) at discrete
time points for both examples. The absolute error, which remains small and bounded, is also shown.

Comparison of solutions (Example 2)

0.7

0.6

0.5

0.4

0.3

Solution value

0.2

0.1 7 . .
N4 —— Unique solution U(7)
0.0 -~ Perturbed solution U(z)
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time ¢

Figure 5. Comparison of the unique solution U(7) and the perturbed solution U(t) for Example 2

Ulam-Hyers stability: Bounded error (Example 2)

—— Absolute error [U(r) — Uz
0.14 U@ — U@

0.12
0.10
0.08

0.06

Absolute error

0.04

0.02

0.00
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time ¢

Figure 6. Absolute error for Example 2, confirming the Ulam-Hyers stability for a different model configuration

Table 2 presents the numerical values for the solution and error for Example 2.
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Table 2. Numerical comparison for Example 2, based on the corresponding figure

Time (r)  Unique solution (U(t))  Perturbed solution (U(t))  Absolute error

0.00 0.0000 0.0000 0.0000
0.50 0.5350 0.4011 0.1339
1.00 0.4817 0.5825 0.1008
1.50 0.5822 0.6130 0.0308
2.00 0.5214 0.5000 0.0214
2.50 0.3711 0.3805 0.0094
3.00 0.2833 0.2550 0.0283

5. An application: modeling a multi-stage epidemic

The utility of fractional operators in epidemiology is well-established, with recent applications including the
modeling of lumpy skin disease using a Caputo-Fabrizio fractional SEIR framework [43]. The piecewise hybrid operator
created in this paper has a complex structure that makes it a perfect tool for simulating intricate, real-world phenomena
that change over time. One of the most relevant uses is in mathematical epidemiology, where government initiatives,
behavioural shifts, and public awareness frequently modify the dynamics of an infectious illness. In order to represent the
multi-stage evolution of an epidemic, we present a SEIR model that is guided by our piecewise operator.

5.1 The piecewise SEIR model formulation

Let the total population be N(7) = S(7) + E(7) +1(t) + R(7). The state of the model at any time 7 is described by the
vector U(7) = [S(7), E(1), I(7), R(t)]". The piecewise SEIR model is formulated as the following model of nonlinear
differential equations:

L@@[ﬁ;j‘ss(r) =A- W —uS(1),
”@[ﬂ]"sE(f) = W —(eFRE(), (14)

7 90°1(t) = eE (v) — (y+ u+d)I (v),

P75 R (1) =¥I(7) - R (2),

subject to non-negative initial conditions S (a) > 0, E (a) > 0, I (a) > 0, R(a) > 0. The parameters are defined as:

A: The recruitment rate into the susceptible population (e.g., births).

Oins: The disease transmission rate.

u: The natural death rate.

€: The rate at which exposed individuals become infectious (inverse of the mean incubation period).

¥: The recovery rate of infected individuals.

d: The disease-induced death rate.

The purpose of the proposed SEIR model is to mimic the dynamics of an acute infectious disease with a long
incubation time that spreads throughout a community. For respiratory viruses, like influenza strains or new coronaviruses
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(like Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)), where a person can get infected and exposed
(the E compartment) before becoming contagious (the / compartment), this structure works very well. The model’s main
strength is its ability to depict the course of an epidemic that triggers a robust and dynamic social reaction, rather than
simulating a particular disease. Therefore, it is a perfect tool for examining how large policy changes, such as vaccination
campaigns, and non-pharmaceutical interventions affect the spread of this disease.

The numerical simulation’s parameter values are chosen based on biological plausibility and established in the
literature on epidemiological modelling, rather than being suited to a particular historical outbreak. This strategy is
used to guarantee that the simulation offers a qualitatively accurate and instructive illustration of the behaviour of the
model. For example, the recovery rate, y = 1/14, corresponds to a mean infectious time of 14 days, but the infectious
rate, € = 1/7, corresponds to a mean incubation period of 7 days. Standard population models serve as the basis for
demographic parameters such as the natural death rate (i) and recruitment rate (A). The most sensitive parameter is the
transmission rate, ,¢, which is selected to create a large initial outbreak that is subsequently managed in the following
stages by the fractional operators’ effects. This approach guarantees that the emphasis stays on showcasing the piecewise
fractional framework’s dynamic capabilities.

5.2 Interpretation of the piecewise dynamics

The primary strength of this model is its ability to map the mathematical structure of the operator to the real-world
phases of an epidemic. We define the time interval J = [a, T| with partitions at 7; and 7.

Phase 1: The Initial Outbreak (7 € J; = [a, 71]).

Operator: Classical integer-order derivative.

Justification: The majority of the people is not aware of the new disease at the start of an outbreak. Neither
government actions nor behavioural improvements are occurring. The classical derivative accurately describes the
memoryless process by which the infection spreads. Similar to chemistry’s rule of mass action, the rate of new infections
is solely determined by the number of susceptible and contagious people present.

Phase 2: The Awareness and Behavioral Response Phase (7 € J, = (71, »)).

Operator: Atangana-Baleanu Caputo (ABC) derivative.

Justification: The public learns of the epidemic after time 7;. Social distancing and mask-wearing are examples of
spontaneous behavioural changes brought on by fear of infection, media coverage, and the memory of a recent increase
in cases and deaths. Additionally, governments may enact initial, minimally invasive policies. The ABC derivative is
ideal for capturing this memory effect because of its non-local and non-singular Mittag-Leffler kernel. The history of
the epidemic during the period [7, 7] has an impact on the rate of transmission at time 7, which is no longer exclusively
reliant on the state at time 7. The strength of this collective memory can be measured by the fractional order p.

Phase 3: The Major Intervention Phase (1 € J3 = (12, T)).

Operator: Modified Atangana-Baleanu Caputo (MABC) derivative.

Justification: A major “game-changing” event that changes the model’s memory’s nature takes place at time 7.
This may be a rigorous, enforced lockdown, the introduction of a new variety, or a widespread vaccination campaign.
This fundamental change in the dynamics of the model is reflected in the transition to the MABC derivative, which has a
different integral structure. This new phase is reflected in the new fractional order 8. A successful immunisation campaign,
for example, may result in dynamics that are less reliant on long-range memory, bringing & closer to 1.

5.3 Connection to theoretical results

A set of nonlinear differential equations is known as the SEIR model (14). The functions on the right-hand side are
continuous and meet the Lipschitz requirements (H1) and (H2) under biologically realistic assumptions (e.g., bounded
population). As a result, the theoretical foundation established in Section 3 is immediately applicable. Theorem 2 and
Theorem 3, our key findings, ensure that this piecewise epidemiological model is well-posed, which means it has a unique
solution that is stable against minor perturbations. This mathematical robustness is essential for the model to be a reliable
tool for forecasting and policy evaluation.
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6. Numerical analysis and simulation

We design a numerical technique to estimate the solution in order to show the behaviour of the suggested piecewise
SEIR model (14) and demonstrate its usefulness.

6.1 The numerical scheme

The piecewise model (14) is solved numerically using a technique that can manage the change between several
differential operator types. A piecewise predictor-corrector scheme based on the Adams-Bashforth-Moulton methodology

is a reliable and popular method for these kinds of issues, and we modify it for every interval.
T—a

Let the time interval J = [a, T'] be discretized into M steps of size h = ,suchthatt, =a+nhforn=0,1,... M.

Let U, ~ U(1,) be the numerical approximation of the solution vector U(t) = [S(7), E(t), I(t), R(7)]", and let ., =
F (14, U,) denote the evaluation of the right-hand side of the model at step n.
Step 1: Classical Interval (1, € J; = [a, 71]). For the initial phase where the governing equation is ¥ 25 Sy (1) =
d
%U(T) = .7 (1, U(7)), we can use any standard Ordinary Differential Equations (ODE) solver. For simplicity and
clarity, we present the forward Euler method, which is a first-order Adams-Bashforth scheme:

Upi1 = Uy +hF (14, Up). (15)

This iterative process is applied forn =0, 1, ..., Ny — 1, where Ty, = 71, to obtain the solution U (1) ~ Uy, .
Step 2: ABC Interval (1, € J, = (71, T2]). On this interval, the model is equivalent to the Volterra integral equation:

1—p p ! -1
U(t)=U(t)+ L7 (e, U() + 7/ (t—0)P~' Z (v, U(v))dv. (16)
B(p) B(p)L(p) Jo
We solve this for n = Ny, Ny + 1, ..., No — 1, where 7y, = 7». To derive the predictor-corrector scheme, we evaluate

(16) at T = T,,41:

U(ths1) = U“I)—F%ﬁ(%ﬂ, U(th1)) + W anlv /Tj+1 (Tpi1 _U)P—lg(v’ U(v))dv.
J=N V%

The integral over [Tj, ‘L'j_,_d is approximated using polynomial interpolation.
Now, we approximate the function .% (v, U(v)) on the interval [7;, Tj;] by a zero-order polynomial (a constant),
Z (7j, Uj). This leads to an explicit scheme.

- n i
Uf,, =Uy, + pp Fn+ p Z jj/ " (Tas1 —0)P ' dv
. .

B(p)" " B(P)T(p) S, '/

1— n
IUNl+B(p’;%+3(p)rp(p+l)]%fj [(r,m — 1)) — (Tu1 — Tjs1) }
l-p phP 1 . by 0P

Wt B P Bpyr ) &, T )]
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This predicted value U? 1 is then used to evaluate FP =7 (Tn+17 ur . 1).
To improve accuracy, we now approximate the integrand .% (v, U (v)) over [r i T j+1} using a first-order polynomial

(a line segment) connecting (7;, .%#;) and (‘L’j+1, F j+1). This yields an implicit one-step scheme. The main correction

comes from the last interval [1,,, T, 1], where we use the predicted value .7 P . The corrected value U, is:

n+1-*

l—p _p
U, =0 — 7,
n+1 Ny + B(p) n+1
hP L
_'_[)7 Z <§ja’;n+9j—1b?n)

B(p)I'(p+2) =,

phP .
+W(Jf+l(p)+...),

where the coefficients aﬁ ,, and b? ,, are derived from the interpolation. A simpler and common corrector form is:

l—-p _p phP ol ) .
U1 =0 +7ﬁn 4+ _ +1p_ Y F
TN By B(p)r(p+1)j§vl =g+ 1" = (=) 7]

phP T i1+ Tn

P

For simplicity, we can use the predicted value U, _

until we reach Uy, .
Step 3: MABC Interval (1, € J3 = (T2, T]). On the final interval, the governing integral equation is:

as the final approximation for the step. The process is repeated

U(E) = () + 3 [ (5, U(8) — (52 U ()
o ‘ 5-1
+W/r2 (r=0)" [# (0, U(v)) = F(r, U(w))]dv. (17)

Let¥ (7, U(7)) =% (7, U(7)) — #(m, Uy,). Evaluating at T = 7,1 gives:

U (5i1) = Uy, + ;(‘5‘;%(% U(tnin) + 3(5)‘}(5)]% / (Tre1— 0519 (0, T (v))dv.

The structure is identical to the ABC case, but with the function ¢ instead of .%# and the initial point 7, instead of 7;.
Now, we approximate ¢ (v, U(v)) on [t}, Tj4+1] by the constant 4; = ¥4 (t;, U;).
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1-6 Sho é N\
Un+l Un, + B(5)%+ FIOINCES)) 21:\/ [n J+1) (n—]):|.

This gives the predicted value UZ, . Using the predicted value U, to find 97, | =% (7,41, U ), we can form a
more accurate implicit scheme. The Adams-Moulton formula adapted for this equation is:

5 5h? 5
Pre =t <5>g“+<6>r<5+z< X () ,,,+g<,-1b,,-,n)),

J=N»

where a , and b5 are the Adams-Moulton coefficients. This scheme is iterated for n = N,, ..., M — 1 to obtain the
complete solutlon over the interval J.

6.2 Simulation results

To visualize the solution, we simulate the model over a period of 150 days. The time interval is partitioned at 7; = 30
days and 17, = 90 days.

* Phase 1 (0 < 7 < 30): Classical derivative. An uncontrolled outbreak begins.

* Phase 2 (30 < 7 < 90): ABC derivative (p =0.9). Represents a period of public awareness and moderate
interventions (e.g., social distancing), leading to a slowdown in transmission. The memory effect captures the sustained
behavioral change.

* Phase 3 (90 < 7 < 150): MABC derivative (6 =0.98). Represents a major intervention like a successful
vaccination rollout, causing a fundamental shift in dynamics, pushing the model behavior closer to classical decay as
the disease is brought under control.

We use the following biologically plausible parameters: A =20, pu = 0.01, &;,y = 0.5, € =1/7, y=1/14, and
d = 0.02. The initial population is N (0) = 100,000, with 7 (0) = 50, E (0) = 100, R(0) =0, and S(0) =N (0) — E (0) —
1(0)—R(0).

SEIR simulation with strong memory effects (p = 0.5, § =0.75)

100,000 \
., 80,000
=
3
=)
= 60.000 //-
E > — Susceptible (S)
5 Exposed (E)
° — Infected (I)
é 40,000 — Recovered (R)
25 - 1= 30 (Classical — ABC)
- 1=90 (ABC — MABC)
20,000
L —
0
0 20 40 60 80 100 120 140

Time (days)

Figure 7. Numerical simulation of the piecewise SEIR model. The vertical dashed lines at # = 30 and # = 90 mark the transitions between the classical,
ABC, and MABC dynamic phases
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In Figure 7, the four compartments’ dynamics are displayed. The number of infected people (I (7), red curve)
increases exponentially during Phase 1. The curve flattens at T = 30 as a result of switching to the ABC operator,
illustrating the impact of interventions and societal memory. Although the infection peaks during this phase, it is far
lower than it would have been in the absence of treatment. The switch to the MABC operator triggers a sharper drop in
infected instances at T = 90, simulating the potent impact of a significant intervention such as vaccination. The model
accurately depicts the multi-stage behaviour that characterises epidemics in the actual world.

6.3 Sensitivity analysis with respect to fractional order

One crucial parameter that measures the strength of the model’s memory is the fractional order p in the ABC phase
(t € J»). In an epidemiological context, a higher memory impact is indicated by a lower value of p, which can be read
as a more effective and persistent public response to the epidemic. When p = 1, the traditional, memoryless situation is
represented.

We simulate the SEIR model (14) for varying values of p throughout the intervention phase (30 < 7 < 90 days) in
order to conduct a sensitivity analysis and examine the effect of this parameter. To compare these fractional possibilities to
the traditional integer-order example (p = 1.0), we choose p € {0.7, 0.8, 0.9}. Every other model parameter is unchanged
from the last simulation.

The results are presented in Figure 8. Each subplot shows the evolution of one compartment (S, E, I, or R) for the
different values of p.

Sensitivity analysis of SEIR dynamics to fractional order p — p=1.0
— p=09
— p=08
Susceptible compartment Exposed compartment p=07
100,000 —— 25,000 | |
S 80,000 = 20,000 i
S S |
= = |
b= =] i
£ 60,000 .8 15,000 i
G G H
S e i
g 2 10,000 ’ ’
S £ | ]
£ 40,000 2 A i i
= = | !
Z Z 1 i
20,000 5,000 \ : 4
0 0—
0 200 400 600 800 1,000 1,200 1,400 0 200 400 600 800 1,000 1,200 1,400
Time (days) Time (days)
Infected compartment Recovered compartment
30,000 | | 80,000 i i
E 25,000 | g 70000 |
< , H <
5 ; S 60,000
2 i 2
E 20,000 | 'g 50,000
3 15,000 i S 40,000 5
z ’ 5 :
| 30,000 i
£ 10,000 ; g 7% '
Z ; Z 20,000
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0 200 400 600 800 1,000 1,200 1,400 0 200 400 600 800 1,000 1,200 1,400
Time (days) Time (days)

Figure 8. Dynamics of the Susceptible (S), Exposed (E), Infected (/), and Recovered (R) compartments for different fractional orders p during the
intervention phase (¢ € (30, 90]). The case p = 1.0 represents the classical derivative
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The Infected (/) compartment plot provides the most important insights. It makes it very evident that a lower
fractional order “flattens the curve”. In comparison to the traditional example (p = 1.0), the infection peak is both delayed
and significantly smaller for p = 0.7 (strongest memory). This closely relates to the public health objective of reducing the
rate of transmission in order to avoid overburdening healthcare systems. The other compartments exhibit a similar pattern:
the Recovered (R) population grows more gradually and the Susceptible (S) pool depletes more slowly for smaller p. This
study demonstrates that the fractional order p is a useful and accessible metric for simulating the impact of long-term
public health initiatives on societal memory.

We now examine the combined influence of the fractional orders in both the ABC and MABC phases to give
a more thorough grasp of the dynamics of the model. We compare the model to the traditional integer-order case
(p = 1.0, 6 = 1.0) by simulating the model for multiple pairs of (p, §), where p € (0,0.5] and 6 € (0.5,0.9]. This
analysis shows how the trajectory of the epidemic is shaped by the interaction of the memory effects in the second and
third phases.

The selected pairs represent a progression from weaker to stronger memory effects across both intervention periods.

Sensitivity to strong memory effects (p € (0, 0.5]) with fixed 6 = 0.8 —p=10
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Figure 9. Combined sensitivity analysis showing the dynamics of each compartment for different pairs of fractional orders (p, 8)

Figure 9 shows the simulation results. The Infected () compartment’s plot is very instructive. The epidemic curve
gradually becomes suppressed as p and & both drop. A lower p flattens the first peak in Phase 2, and a lower & makes
the ensuing decline in Phase 3 sharper and more definitive. The situation where (p, 6) = (0.3, 0.7) produces the greatest
decrease in the overall number of infections, indicating a very successful, long-lasting public health response during
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two different intervention phases. The model’s ability to represent complex, multi-stage control techniques and their
cumulative effect on disease dynamics is highlighted by this combined analysis.

7. Conclusions and future works

We have carried out a thorough qualitative examination of a new class of nonlinear FDEs in this paper. A complex
model with a nested p-Laplacian operator and a multi-stage, piecewise hybrid fractional derivative governing it served
as the central component of this study. With a sequential transition from the traditional integer-order derivative to the
ABC derivative and then to the MABC derivative, this special operator was created to simulate models with dynamic
regime transitions. Determining this complex model’s theoretical well-posedness has been our main goal. This study’s
primary contributions were accomplished with success. Using the Banach Fixed-Point Theorem, we rigorously established
requirements for the existence and uniqueness of the solution by reformulating the problem into an equivalent model of
Volterra integral equations. Additionally, we proved that the model is stable in the U-H sense, which is a crucial finding
that ensures the solution’s resilience to minor perturbations. Numerical examples that corroborated the findings and
demonstrated the behaviour of the solution were provided to support the theoretical results. An application to a multi-
stage SEIR epidemic model showed how useful this framework is in practice. We demonstrated how an epidemic’s
discrete stages: an initial uncontrolled outbreak (classical phase), a period of public awareness and moderate intervention
(ABC phase with memory effects), and a final stage of decisive control, like a vaccination campaign (MABC phase) can
be successfully captured by the piecewise operator. The results of the sensitivity analysis also showed that the fractional
orders p and & are useful and intuitive metrics for measuring the efficacy and long-term effects of public health initiatives.
This study brings up a number of interesting directions for further research. Potential directions include:

* Creation of High-Order Numerical Systems: Although a numerical approach was described, it would be beneficial
to build and thoroughly analyse the convergence of a high-order predictor-corrector scheme for this particular piecewise
model.

» Parameter Estimation and Real-World Data Fitting: An important next step to confirm this model’s useful
forecasting abilities would be to apply it to real-world data from an epidemic (such a particular wave of COVID-19)
in order to estimate the fractional orders and other parameters.

+ Extension to stochastic models: A more accurate depiction of the inherent randomness in disease transmission and
other complex processes would be possible if stochastic effects were included in the model.

* Application to Other Fields: The theoretical framework developed here is general and could be used to model other
multi-stage problems in engineering (analysing material fatigue under changing loads), environmental science [44], and
finance (modelling market behaviour before and after a crisis).

In conclusion, this study offers a flexible and reliable mathematical tool for upcoming research into nonlinear models
with dynamic and piecewise behaviour in addition to resolving a challenging theoretical issue.
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