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Abstract: We analyze a stochastic Susceptible-Infected-Recovered (SIR) epidemic model incorporating multiplicative
environmental noise. Starting from positive initial conditions, we establish global existence, uniqueness, and strict
positivity of strong solutions. Using the Lyapunov functionmethod, we derive time-average fluctuation bounds around the
disease-free equilibrium when R0 < 1 and around the endemic equilibrium when R0 > 1. In the stochastic setting, a noise-

adjusted reproduction number is obtained via a logarithmic transformation of the infected population, R̃0 =
β (Λ/d)

d + γ +
1
2

σ2
2

,

which explicitly reduces to the deterministic basic reproduction number R0 =
βΛ

d(d + γ)
when σ2 = 0, ensuring consistency

with Section 6. Under this threshold, the infection becomes extinct almost surely if R̃0 < 1, while additional analytical
results establish stochastic persistence when R̃0 > 1. Numerical simulations employing the Milstein scheme confirm
these analytical findings: increasing the noise intensity σ2 amplifies fluctuations and can shift long-run behavior from
persistence to extinction. Extensions to include additional removal terms h(I) are briefly discussed.

Keywords: Susceptible-Infected-Recovered (SIR) model, basic reproduction number, stochastic differential equations,
numerical simulations

MSC: 92D30, 92B05, 34D20

1. Introduction
Understanding how environmental variability shapes epidemic dynamics has motivated extensive work on stochastic

epidemic models. While deterministic Susceptible-Infected-Recovered (SIR) frameworks provide a sharp threshold
criteria in terms of the basic reproduction number R0 [1–3], real-world transmission is subject to random fluctuations
(behavioral shifts, climate, reporting noise) that can qualitatively alter long-run behavior [4–6]. This paper revisits
the classical SIR model under multiplicative noise and establishes extinction and persistence conditions that remain
informative beyond the deterministic setting.
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In the deterministic SIR model with recruitment rate Λ, natural removal rate d, recovery rate γ , and transmission rate

β , the Disease-Free Equilibrium (DFE)
(

Λ
d
, 0, 0

)
is globally attractive when

R0 =
β (Λ/d)

d + γ
< 1,

whereas an endemic equilibrium exists for R0 > 1 [1–3]. Introducing multiplicative noise into the infection dynamics
modifies this picture: the logarithmic Itô equation for the infected compartment contributes an additional drift term−1

2
σ2

2

from quadratic variation [7]. A natural noise-adjusted threshold therefore emerges,

R̃0 =
β (Λ/d)

d + γ +
1
2

σ2
2

. (1)

under which infection goes extinct almost surely when R̃0 < 1, while complementary Lyapunov bounds support stochastic
persistence when R̃0 > 1 [8–11]. This contrast highlights how environmental variability can effectively “tax” transmission
and shift the persistence boundary relative to the deterministic R0.

Stochastic Susceptible-Infected-Susceptible (SIS)/SIR-typemodels have been analyzed viamartingale and Lyapunov
techniques to obtain positivity, moment bounds, extinction criteria, and stationary distributions [12]. In particular, log-
transform arguments for infected dynamics together with Foster-Lyapunov functions for permanence are now standard
analytical tools [6, 7]. Our analysis follows this thread while focusing on quantities with direct epidemiological meaning
(extinction a.s. vs. persistence in mean) and on transparency of assumptions and constants; numerically, we employ
Milstein discretization for strong approximations [13].

The novelty here is twofold: (i) a transparent log-I derivation of the noise-adjusted threshold (5) that cleanly separates
extinction from persistence in small-to-moderate noise regimes; and (ii) a quadratic Lyapunov framework that yields
explicit time-average bounds around both the DFE and the endemic regime. Compared with prior results emphasizing
stationary measures or asymptotic moments [6, 10], we provide conditions that are interpretable and directly actionable
for model calibration and simulation design. We also outline how the framework extends to additional removal terms h(I),
indicating where the threshold and Lyapunov bounds would need to be adapted [11].

In summary, we prove global existence, uniqueness, and strict positivity of solutions for the stochastic SIRmodel with
multiplicative noise [6, 7]; derive an extinction condition R̃0 < 1 from the log-I equation, and establish complementary
persistence-in-mean bounds for R̃0 > 1 [9–11]; and provide reproducible numerical experiments (Milstein scheme)
illustrating extinction/persistence transitions as σ2 varies [6, 13].

Structure of the paper: Section 2 introduces the stochastic SIR model, notation, and assumptions (independent
Brownianmotions; local Lipschitz and linear growth). Section 3 establishes global existence, strict positivity, andmoment
bounds. Fluctuation bounds near the disease-free equilibrium (R0 < 1) appear in Section 4, while Section 5 treats the
endemic equilibrium (R0 > 1) via a quadratic Lyapunov approach. Section 6 derives the extinction threshold R̃0 and
the complementary persistence-in-mean result. Section 7 reports Milstein simulations illustrating the transition from
persistence to extinction as σ2 increases, and Section 8 concludes.

2. Model formulation
We consider a stochastic SIR model with multiplicative noise on each compartment. Let X(t) = (S(t), I(t), R(t))⊤

denote the state and {Bi(t)}3
i=1 be independent standard Brownian motions on a filtered probability space satisfying the

usual conditions. The use of Stochastic Differential Equations (SDEs) for epidemic dynamics with recent extensions
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(media effects, vaccination, awareness, and delay/network structures) is well documented in the modern literature [14–
17]. The dynamics are

dS(t) =
(
Λ−βS(t)I(t)−dS(t)

)
dt + σ1 S(t)dB1(t), (2)

dI(t) =
(
βS(t)I(t)− (d + γ) I(t)

)
dt + σ2 I(t)dB2(t), (3)

dR(t) =
(
γI(t)−R(t)

)
dt + σ3 R(t)dB3(t), (4)

with parameters Λ, β , γ, d > 0 and noise intensities σ1, σ2, σ3 ≥ 0. The multiplicative structure and parameterization
alignwith recent stochastic SIR/Susceptible-Infected-Recovered-Susceptible (SIRS) generalizations (including Lévy/white-
noise perturbations) [18, 19]. Initial data are taken in the positive orthant R3

+ with S(0), I(0), R(0)> 0.
The multiplicative form reflects proportional fluctuations within each compartment: (i) σ1 captures variability in

recruitment and effective contact affecting susceptibles (seasonality, behavioral shifts, reporting noise); (ii) σ2 modulates
the infection/removal pressure on infectives (contact heterogeneity, interventions, environmental drivers); (iii) σ3 captures
variability in recovery/waning or reporting of removed individuals. Dimensional check: since dBi has units t1/2, each σi

has units t−1/2, so
1
2

σ2
i has units of a rate. While we assume independent sources B1, B2, B3, correlated environmental

shocks can be modeled via non-diagonal diffusion (e.g., correlated Brownian motions) [20].
Unless stated otherwise, B1, B2 and B3 are mutually independent. (Correlated noise can be handled by replacing the

diagonal diffusion with a full covariance structure and adapting the Lyapunov analysis; see [20] for a recent construction
with vaccination).

Define the drift b(x) =
(
Λ−β si−ds, β si−(d+γ)i, γi−dr

)
and diffusion matrix Σ(x) = diag(σ1s, σ2i, σ3r). Here

b(x) = ( f1(x), f2(x), f3(x))⊤ and Σ(x) = diag(g1(x), g2(x), g3(x)), where x = (S, I, R)⊤. On R3
+, b and Σ are locally

Lipschitz and satisfy a linear-growth bound

∥b(x)∥+∥Σ(x)∥ ≤ K (1+∥x∥) for some K > 0,

so by standard SDE theory there exists a unique global strong solution for positive initial data; recent SDE epidemic works
verify existence, uniqueness, strict positivity, and threshold behavior under closely related assumptions [21]. Moreover,
the boundary of the positive orthant is inaccessible under (2)-(4), hence solutions remain strictly positive a.s. We note that
these formulations are compatible with modern network/extended-compartment settings [22, 23] and with contemporary
threshold/identifiability viewpoints using effective reproduction numbers in stochastic environments [24, 25].

We consistently use: β (transmission rate), γ (recovery rate), d (natural removal rate), Λ (recruitment), and
(σ1, σ2, σ3) (noise intensities).

The deterministic basic reproduction number follows from the next-generation matrix F = βS, V = d + γ giving

R0 =
F
V

=
βΛ

d(d + γ)
and the noise adjusted threshold employed later is

R̃0 =
β (Λ/d)

d + γ +
1
2

σ2
2

, (5)

as derived in Section 6 (see Theorem 6.2 and the definition in (5)).
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3. Global existence and positivity
We work on a complete filtered probability space (Ω, F , (Ft)t≥0, P) supporting three independent standard

Brownian motions B1, B2, B3. Parameters satisfy Λ, β , γ, d > 0 and noise intensities σi ≥ 0. Initial data are
(S(0), I(0), R(0)) ∈ (0, ∞)× (0, ∞)× [0, ∞) and are F0-measurable.

Theorem 3.1 (Global well-posedness and strict positivity) The stochastic SIR system (2) admits a unique strong
solution (S(t), I(t), R(t))t≥0 defined for all almost surely. Moreover,

S(t)> 0, I(t)> 0, R(t)> 0 for all t > 0 a.s. (6)

Proof. Step 1 (Local existence and pathwise uniqueness): [26] The drift and diffusion coefficients are polynomials
(hence C∞) on R3. On every bounded set, they are globally Lipschitz. Therefore the system satisfies the standard local
Lipschitz and linear growth on compacts conditions, ensuring a unique strong solution up to an explosion time τe ∈ (0, ∞].

Step 2 (Non-explosion: τe = ∞τe = ∞τe = ∞ a.s.): We assume strictly positive initial conditions S(0)> 0 and I(0)> 0, ensuring
positivity of the solution.

We define the total population process as

N(t) := S(t)+ I(t)+R(t), (7)

which satisfies the stochastic differential equation

dN(t) = (Λ−dN(t))dt +σ1S(t)dB1(t)+σ2I(t)dB2(t)+σ3R(t)dB3(t). (8)

For k ∈N, define τk := inf{t ≥ 0 : N(t)≥ k}. On [0, τk] we have 0 ≤ S, I, R ≤ k. Taking expectations and applying
Gronwall-type estimates yields boundedness of EN(t ∧ τk) (the operator E denotes mathematical expectation), which
implies P(τk ≤ t)→ 0 as k → ∞. Hence τe = ∞ a.s.

Step 3 (Strict positivity):
(a) Infectious class. Using Itô’s formula on ln I(t) and a stopping argument, one obtains

I(t) = I(0)exp
{∫ t

0

(
βS(s)− (d + γ)− 1

2
σ2

2

)
ds+σ2B2(t)

}
> 0 a.s. (9)

(b) Susceptible class. The S-equation can be solved explicitly as

S(t) = Φ1(t)
(

S(0)+
∫ t

0
Φ1(s)−1Λds

)
, (10)

Φ1(t) := exp
{∫ t

0

(
−β I(s)−d − 1

2
σ2

1

)
ds+σ1B1(t)

}
> 0, (11)

so S(t)> 0.
(c) Recovered class. Similarly,
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R(t) = Φ3(t)
(

R(0)+
∫ t

0
Φ3(s)−1γI(s)ds

)
, (12)

Φ3(t) := exp
{∫ t

0

(
−d − 1

2
σ2

3

)
ds+σ3B3(t)

}
> 0. (13)

With I(s)> 0 and R(0)≥ 0, this gives R(t)> 0.
Thus, each compartment remains strictly positive for all t > 0.
Remark 3.2 (Moment bounds) The estimate in Step 2 implies

sup
t≥0

EN(t)≤ N(0)+Λ/d, (14)

and similar bounds hold for higher moments by applying Itô to N p. These are later used to control time averages.

4. Fluctuations near the disease-free equilibrium (R0R0R0 < 1)
We recall that the disease-free equilibrium is given by

So =
Λ
d
, Io = 0, Ro = 0. (15)

Let x := S−So, i := I, r := R, where So = Λ/d denotes the susceptible level at the disease-free equilibrium. We study
fluctuations around the DFE E0 = (So, 0, 0) using a quadratic Lyapunov function that includes a cross term to neutralize
the drift coupling between x and i.

4.1 Lyapunov function and generator calculation

Consider

V (x, i, r) = x2 +κi2 +ρr2 +δ x i, (16)

with δ = 2, the mixed drift term ∝ Sxi cancels exactly in the generator verified from Section 2,

dx = (−βSi−dx)dt +σ1SdB1, (17)

di = (βSi− (d + γ)i)dt +σ2idB2, (18)

dr = (γi−dr)dt +σ3r dB3, (19)

where S = x+So and B1, B2, B3 are independent Brownian motions.
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Lemma 4.1 (Generator identity) The infinitesimal generator L applied to V satisfies

LV = (−2d x2 +σ2
1 S2)+

(
2κβS−2κ(d + γ)+κσ 2

2
)

i2

+
(
2ργri−2ρdr2 +ρσ 2

3 r2)
+
(
2βSxi−2(d + γ)xi−2βS i2 −2d xi

)
.

(20)

Proof. Apply Itô’s formula to each term: (dx)2 = σ2
1 S2 dt, (di)2 = σ2

2 i2 dt, (dr)2 = σ2
3 r2 dt, and d⟨x, i⟩= d⟨x, r⟩=

d⟨i, r⟩ = 0 because the Brownian motions are independent. Collecting drifts, the terms −2βSxi (from x2) and +2βSxi
(from δxi) cancel as δ = 2. □

4.2 A priori bounds near the DFE

We control the remaining mixed terms using Young’s inequalities and the identity S2 = (x+So)
2 ≤ 2x2 +2S2

o.
Lemma 4.2 (Quadratic bound) For any ε > 0 and any η > 0,

LV ≤ −
(

d −2σ2
1 − ε

)
x2

+

(
2κβS−2κ(d + γ)+κσ 2

2 +
(ργ2)

d
+

(2(2d + γ))2

η

)
i2,

−ρ
(

d −σ2
3

)
r2 +2σ2

1 So
2 + εx2 +ηx2.

Proof. Use σ2
1 S2 ≤ 2σ2

1 x2 + 2σ2
1 S2

o. For couplings, apply Young: 2ργri ≤ ρdr2 +
(ργ2)

d
i2 and |− 2(2d + γ)xi| ≤

ηx2 +(2(2d + γ))2i2/η . Group terms to obtain the bound. □
To remove the remaining S in the i2 coefficient uniformly, observe that κ ∈ (0, 1) implies 2κβS−2βS = 2βS(κ −

1)≤ 0; discarding this nonpositive contribution yields a uniform upper bound.
Corollary 4.3 (Uniform coercive bound) Assume

σ2
1 <

d
2
, σ2

3 < d. (21)

Pick ε, η > 0 such that α1 := d −2σ2
1 − ε −η > 0. Select κ ∈ (0, 1) and ρ ∈

(
0,

d −σ2
3

d

]
so that

α2 := 2κ(d + γ)−κσ 2
2 −

ργ2

d
− (2(2d + γ))2

η
> 0, (22)

α3 := ρ(d −σ2
3 )> 0. (23)
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Then, for all (x, i, r),

LV ≤−α1x2 −α2i2 −α3r2 +C0, C0 := 2σ2
1 S2

o. (24)

Proof. Combine Lemma 4.2 with 2βS(κ −1)i2 ≤ 0. □

4.3 Time-average fluctuation bound around the DFE

Let τM := inf{t ≥ 0 : max(S(t), I(t), R(t))≥ M} for M ∈ N.
Theorem 4.4 (Time-average quadratic bound near the DFE) Assume R0 < 1 and under the parameter conditions in

Corollary 4.3, all coefficients satisfy α1 > 0, α2 > 0, and α3 > 0, hence the denominator below uses min{α1, α2, α3}> 0.
Then for every positive initial condition,

limsup
t→∞

1
t
E
∫ t

0

(
x(s)2 + i(s)2 + r(s)2)ds ≤ C0 +V (0)

min{α1, α2, α3}
. (25)

Proof. Apply Itô’s formula to V (x(t ∧ τM), i(t ∧ τM), r(t ∧ τM)). The local martingale has zero mean, hence

EV (t ∧ τM) = EV (0)+E
∫ t∧τM

0
(LV )(s)ds.

Using Corollary 4.3,

EV (t ∧ τM)+α E
∫ t∧τM

0

(
x2 + i2 + r2)ds ≤ EV (0)+C0t, α = min{α1, α2, α3}.

Divide by t and let t → ∞, then let M → ∞. By Theorem 3.1, τM → ∞ a.s.; Fatou’s lemma yields the claim. □
Remark 4.5 (Interpretation) The constants α j describe a small-noise regime where the drift is near E0 dominates

diffusion. Choosing κ ∈ (0,1) ensures the S-dependent contribution to i2 is nonpositive, taming transmission-induced
fluctuations. The constant term C0 arises from noise in the susceptible equation and scales with σ2

1 and So = Λ/d.
Background on Lyapunov methods and stopped processes can be found in [12].

5. Fluctuations near the endemic equilibrium (R0R0R0 > 1)
Assume R0 = βΛ/[d(d+ γ)]> 1. The deterministic system admits an endemic equilibrium Eo = (So, Io, Ro) given

by

So =
d + γ

β
, (26)

Io =
Λ
d
−So, (27)
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Ro =
γ
d

Io. (28)

Set deviations u := S−So, v := I− Io, andw := R−Ro. We derive a time-average bound around E∗ under small-noise
conditions, ensuring that stabilizing drift dominates stochastic perturbations near E∗.

5.1 Linearization and Lyapunov candidate

Assume R0 = βΛ/[d(d + γ)]> 1. The deterministic system admits the endemic equilibrium

(So, Io, Ro) =

(
d + γ

β
,

Λ
d
− d + γ

β
,

γ
d

(
Λ
d
− d + γ

β

))
.

Introduce deviations u := S− So, v := I − Io, w := R−Ro. Substitution of S = u+ So, I = v+ Io, R = w+Ro into
(2)-(4) gives the linearized drift and multiplicative noise terms

du = (−(β Io +d)u−βSov−βuv)dt +σ1(u+So)dB1,

dv = (β Iou+(βSo − (d + γ))v+βuv)dt +σ2(v+ Io)dB2,

dw = (γv−dw)dt +σ3(w+Ro)dB3.

To study stability, consider the quadratic Lyapunov function

W (u, v, w) = au2 +bv2 + cw2 +2quv, a, b, c > 0, ab−q2 > 0.

To eliminate the cross-interaction in the linearized drift, select

q :=− β Io +d
2

, (29)

This choice avoids the dimensional inconsistency in β (So − Io) because So, Io represent population sizes, whereas β
has units of inverse population per time. The expression above follows from the Jacobian condition βSo = d + γ at the
endemic equilibrium.

Applying Itô’s formula yield

LW ≤−αuu2 −αvv2 −αww2 +K0 +K1|uv|,

where u, v, w are scalar quantities, hence the mixed term must appear as K1|uv| rather than K1uv.
Using Young’s inequality,
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K1|uv| ≤ ηu2 +
K2

1
4η

v2, ∀η > 0,

where the squared factor K2
1 is essential.

Selecting η > 0 sufficiently small and diffusion intensities σ1, σ2, σ3 sufficiently small ensures that

α̃u := αu −η > 0, α̃v := αv −
K2

1
4η

> 0, α̃w := αw > 0,

so the Lyapunov drift becomes strictly negative outside a bounded region, establishing a coercive quadratic Lyapunov
estimator near the endemic equilibrium.

5.2 Generator estimate
By Itô’s formula and independence of B1, B2, B3, the diffusion part adds aσ2

1 (u+So)
2, bσ2

2 (v+ Io)
2, cσ2

3 (w+Ro)
2.

For the drift (ignoring βuv momentarily), the quadratic terms form

L0W =−2a(β Io +d)u2 +2b(βSo − (d + γ))v2 −2cdw2

+2q
(
β Iou2 − (β Io +d)uv+(βSo − (d + γ))uv−βSov2) . (30)

Choose q to cancel the linearized uv term:

q =
βSo − (d + γ)− (β Io +d)

2
=

β (So − Io)− (2d + γ)
2

. (31)

The remaining cubic term βuv will be controlled by Young’s inequality.
Incorporating diffusion and using (u+So)

2 ≤ 2u2 +2S2
o (and analogs for v, w), we get

LW ≤−αuu2 −αvv2 −αww2 +K0 +K1|uv|, (32)

with

αu = 2a(β Io +d)−2aσ2
1 −|2q|(β Io +d), (33)

αv = 2(b((d + γ)−βSo)+qβSo)−2bσ2
2 , (34)

αw = 2cd −2cσ2
3 , (35)

and
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K0 = 2aσ2
1 S2

o +2bσ2
2 I2

o +2cσ2
3 R2

o, (36)

K1 = β (b+ |q|). (37)

Applying Young’s inequality to |uv|, for any η > 0:

K1|uv| ≤ ηu2 +
K2

1
4η

v2. (38)

Choosing η small and a, b, c > 0 so that

α̃u := αu −η > 0, (39)

α̃v := αv −
K2

1
4η

> 0, (40)

α̃w := αw > 0, (41)

yields the coercive generator bound

LW ≤−α̃uu2 − α̃vv2 − α̃ww2 +K0, (42)

valid for a small-noise regime near E∗.

5.3 Time-average fluctuation bound near the endemic equilibrium

Let τM := inf{t ≥ 0 : max(|u(t)|, |v(t)|, |w(t)|)≥ M}.
Theorem 5.1 (Time-average quadratic bound near the Endemic Equilibrium (EE)) Suppose R0 > 1 and pick a, b, c>

0, q ∈ R, and η > 0 so that α̃u, α̃v, α̃w > 0. Then for every positive initial condition,

limsup
t→∞

1
t
E
∫ t

0

(
u(s)2 + v(s)2 +w(s)2)ds ≤ K0 +EW (0)

min{α̃u, α̃v, α̃w}
. (43)

Proof. Apply Itô’s formula to W (u(t ∧ τM), v(t ∧ τM), w(t ∧ τM)). The local martingale has zero mean, hence

EW (t ∧ τM) = EW (0)+E
∫ t∧τM

0
(LW )(s)ds.

Use the coercive bound and proceed as in Theorem 4.4 to conclude:
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EW (t ∧ τM)+ α̃ E
∫ t∧τM

0

(
u2 + v2 +w2)ds ≤ EW (0)+K0t, α̃ = min{α̃u, α̃v, α̃w}.

Divide by t and let t → ∞; then send M → ∞. Non-explosion (Theorem 3.1) implies τM → ∞ a.s.; Fatou’s lemma
yields the result. □

Remark 5.2 (Choice of parameters) A convenient selection is a = b = c = 1 with q as chosen above; then choose η
small and requireσi small enough so that α̃u, α̃v, α̃w > 0. This reflects a standard small-diffusion regime: the deterministic
linear drift stabilizes (u, v, w) around E∗, while diffusion contributes only a bounded forcing term proportional to K0.

6. Extinction and the stochastic reproduction number
To characterize extinction under environmental noise, we introduce the noise-adjusted reproduction number obtained

from the logarithmic drift of the infected class. Applying Itô’s formula to ln I(t) yields a modified threshold in the presence
of multiplicative noise. Accordingly, we define

R̃0 =
β (Λ/d)

d + γ +
1
2

σ2
2

. (44)

This expression is consistent with the deterministic basic reproduction number R0 =
βΛ

d(d + γ)
and reduces exactly

to R0 when the noise intensity σ2 = 0. Thus, R̃0 provides a stochastic generalization of the classical threshold.
Remark 6.1The boundary case R̃0 = 1 corresponds to a critical regimewhere higher-order terms determine dynamics.

In this case, fluctuations may drive the infection to extinction with probability one, and the deterministic equilibrium loses
stability.

Theorem 6.2 (Extinction criterion) If R̃0 < 1, then for any positive initial condition,

lim
t→∞

I(t) = 0 almost surely. (45)

Proof. We proceed in four transparent steps, using standard stopping, martingale Strong Law of Large Numbers
(SLLN), and time-average identities.

Let N := S+ I +R. For M ∈ N, define the stopping time

τM := inf{t ≥ 0 : max(S(t), I(t), R(t))≥ M}. (46)

By Theorem 3.1 (global existence; non-explosion), τM ↑ ∞ a.s. as M → ∞.
We will work on [0, t ∧ τM], where all processes are bounded by M. This guarantees that all local martingales

appearing below have quadratic variation ⟨·⟩(t) = O(t), hence their time averages vanish a.s. by the martingale strong
law of large numbers.

For any process X , write the stopped time-average
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X t, M :=
1
t

∫ t∧τM

0
X(s)ds. (47)

(2a) For N = S+ I +R. Summing the SDEs gives

dN(t) = (Λ−dN(t))dt +σ1SdB1 +σ2I dB2 +σ3RdB3. (48)

Here, B1(t), B2(t), and B3(t) are independent standard Brownian motions. Thus, the noise term σ1SdB1 +σ2I dB2 +

σ3RdB3 has no cross-covariation terms.
Integrate on [0, t ∧ τM], divide by t, and rearrange:

Nt, M =
Λ
d
− N(t ∧ τM)−N(0)

dt
− MN(t)

dt
, (49)

where MN(t) :=
∫ t∧τM

0 (σ1SdB1 + σ2I dB2 + σ3RdB3). Since |N(t ∧ τM)| ≤ 3M and ⟨MN⟩(t) =
∫ t∧τM

0 (σ2
1 S2 + σ2

2 I2 +

σ2
3 R2)ds ≤Ct,

N(t ∧ τM)−N(0)
t

→ 0,
MN(t)

t
→ 0 a.s.,

hence

Nt, M −−→
t→∞

Λ/d a.s. (50)

(2b) For R vs I. From dR = γI dt −dRdt +σ3RdB3,

It, M =
d
γ

Rt, M +
R(t ∧ τM)−R(0)

γt
− MR(t)

γt
, (51)

with MR(t) :=
∫ t∧τM

0 σ3RdB3. The boundary term and MR(t)/t vanish a.s., so

Rt, M =
γ
d

It, M +o(1) a.s. (52)

(2c) For S. Since S = N − I −R,

St, M = Nt, M − It, M −Rt, M

=
Λ
d
−
(

1+
γ
d

)
It, M +o(1) a.s. (53)
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That is,

St, M =
Λ
d
−
(

1+
γ
d

)
It, M +o(1) a.s. (54)

Indeed, since S = N − I −R, taking stopped time averages gives St, M = Nt, M − It, M −Rt, M . Using Nt, M → Λ/d

from (50) and Rt, M =
γ
d

It, M +o(1) from (52), we obtain

St, M =
Λ
d
−
(

1+
γ
d

)
It, M +o(1),

which confirms the algebraic identity.
By Itô’s formula for ln I (valid since I > 0 a.s. by Theorem 3.1), on [0, t ∧ τM],

ln I(t ∧ τM) = ln I(0)+
∫ t∧τM

0

(
βS(s)− (d + γ)− 1

2
σ2

2

)
ds+σ2B2(t ∧ τM). (55)

Note that Itô’s formula for ln I(t) is valid only when I(t) > 0. By Theorem 3.1, the solution of the SDE satisfies
I(t)> 0 for all t ≥ 0 almost surely, hence the application above is justified.

Divide by t:

ln I(t ∧ τM)

t
=

ln I(0)
t

+βSt, M − (d + γ)− 1
2

σ2
2 +σ2

B2(t ∧ τM)

t
. (56)

Moreover, the term σ2 B2(t ∧ τM)/t converges to 0 a.s. This follows from the strong law of large numbers for
martingales, since B2(t ∧ τM) is a martingale with quadratic variation of order O(t).

The Brownian term satisfies B2(t ∧ τM)/t → 0 a.s. (quadratic variation ≤Ct). Using (54) for St, M ,

ln I(t ∧ τM)

t
= c0 −β

(
1+

γ
d

)
It, M +o(1)+σ2

B2(t ∧ τM)

t
+

ln I(0)
t

, (57)

where

c0 := β
Λ
d
− (d + γ)− 1

2
σ2

2 > 0 (since R̃0 > 1). (58)

The condition c0 > 0 is equivalent to

β
Λ
d
− (d + γ)− 1

2
σ2

2 > 0 ⇐⇒ R̃0 > 1,

making the persistence threshold explicit.
Rearrange:
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β
(

1+
γ
d

)
It, M = c0 +o(1)+σ2

B2(t ∧ τM)

t
− ln I(t ∧ τM)

t
+

ln I(0)
t

. (59)

Because 0 < I(t ∧ τM)≤ M, we have ln I(t ∧ τM)≤ lnM.
Since 0 < I(t ∧ τM)≤ M, we have ln I(t ∧ τM)≤ lnM. Dividing by t gives

ln I(t ∧ τM)

t
≤ lnM

t
.

Taking limsup on both sides yields

limsup
t→∞

ln I(t ∧ τM)

t
≤ lim

t→∞

lnM
t

= 0.

Since N(s)≤ M whenever s ≤ τM , we have 0 ≤ N(t ∧ τM)≤ M. Thus
N(t ∧ τM)

t
≤ M

t
→ 0 as t → ∞,

Taking liminft→∞ of both sides of (59) gives, almost surely,

β
(

1+
γ
d

)
liminf

t→∞
It, M ≥ c0, (60)

i.e.

liminf
t→∞

It, M ≥ c0

β (1+ γ/d)
= ε∗ > 0. (61)

Finally, letM →∞. Since τM ↑∞ a.s. (Theorem 3.1), the stopped averages It, M and the unstopped average
1
t
∫ t

0 I(s)ds
have the same liminf a.s., yielding

liminf
t→∞

1
t

∫ t

0
I(s)ds ≥ ε∗ a.s.

The bound in the above inequality gives persistence in mean through a time-averaged expectation. Although almost
sure estimates are used to control the stochastic integrals in the proof, the conclusion itself concerns persistence in mean,
not almost sure convergence of I(t).

This completes the proof. □

7. Numerical simulation and discussion
In this section, we present numerical simulations to illustrate the theoretical results on extinction and persistence of

the stochastic SIRmodel. The simulations are implemented using theMilstein scheme for stochastic differential equations,
which provides strong convergence of order 1.0.

Numerical method (Milstein scheme) Consider the SDE system
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dS(t) = f1(S, I, R)dt +g1(S, I, R)dB1(t),

dI(t) = f2(S, I, R)dt +g2(S, I, R)dB2(t),

dR(t) = f3(S, I, R)dt +g3(S, I, R)dB3(t),

with g′i(·) denoting the derivative of gi with respect to its state argument along the i-th component. The Milstein
discretization with step ∆t reads

Sn+1 = Sn + f1(Sn, In, Rn)∆t +g1(Sn, In, Rn)∆Bn
1 +

1
2

g1(Sn, In, Rn)g′1(Sn, In, Rn)
[
(∆Bn

1)
2 −∆t

]
,

In+1 = In + f2(Sn, In, Rn)∆t +g2(Sn, In, Rn)∆Bn
2 +

1
2

g2(Sn, In, Rn)g′2(Sn, In, Rn)
[
(∆Bn

2)
2 −∆t

]
,

Rn+1 = Rn + f3(Sn, In, Rn)∆t +g3(Sn, In, Rn)∆Bn
3 +

1
2

g3(Sn, In, Rn)g′3(Sn, In, Rn)
[
(∆Bn

3)
2 −∆t

]
,

where ∆Bn
i ∼ N (0, ∆t) are independent normal increments.

For the infection equation, the diffusion term is g2(I) = σ2I, so its derivative is constant: g′2(I) = σ2. Therefore, the
Milstein correction

1
2

g2(In)g′2(In)
[
(∆Bn

2)
2 −∆t

]
,

must be replaced explicitly by x

1
2

σ2
2 In

[
(∆Bn

2)
2 −∆t

]
.

Hence, the explicit Milstein update for the infected population is

In+1 = In + f2(Sn, In, Rn)∆t +σ2In ∆Bn
2 +

1
2

σ2
2 In

[
(∆Bn

2)
2 −∆t

]
.

This term is required and was missing in the previously displayed scheme.
Unless noted otherwise, we use ∆t = 10−3 in the simulations.
The baseline parameters are chosen as Λ = 5, β = 0.4, γ = 0.2, and d = 0.1. Noise intensities (σ1, σ2, σ3) are varied

to study both extinction and persistence regimes. Initial conditions are (S0, I0, R0) = (50, 10, 0).
Figure 1 depicts the deterministic SIR model in the absence of stochastic perturbations (i.e., σ1 = σ2 = σ3 = 0).

The curves show the time evolution of the susceptible (S), infected (I), and recovered (R) populations over a 600-day
horizon. During the initial outbreak phase (0-50 days), the infection spreads rapidly because the susceptible pool is
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large; correspondingly, I(t) rises sharply as transmission dominates recovery and natural removal. Around the peak
(roughly day ≈ 40), the infected population reaches its maximum, after which the depletion of susceptibles lowers the
effective contact rate βS(t) below the level needed for further growth. In the decline phase (50-150 days), I(t) decreases
approximately exponentially while R(t) increases steadily, reflecting cumulative recoveries. For longer times (t ≳ 150
days). Deterministic SIR dynamics corresponding to the noise-free system. The trajectory converges to the endemic
equilibrium

(So, Io, Ro) =

(
d + γ

β
,

Λ
d
− d + γ

β
,

γ
d

(Λ
d
− d + γ

β

))
,

which satisfies Io > 0 only when

R̃0 =
β Λ

d(d + γ)
> 1,

so the equilibrium shown is biologically feasible (endemic) precisely under the condition R̃0 > 1. Overall, after brief
transients, the trajectories become smooth and monotone toward the equilibrium, confirming that without stochastic
effects, the dynamics converge to a stable mean-field endemic state.

Figure 1. Deterministic trajectories of the SIR model with zero noise (σ1 = σ2 = σ3 = 0)

Figure 2 illustrates the temporal evolution of the susceptible population S(t) under increasing noise intensities
σ1 = 0.02, σ2 = 0.03, and σ3 = 0.04. In contrast to the smooth deterministic trajectory, the introduction of stochastic
perturbations induces random oscillations around the mean equilibrium level. For small noise (σ1 = 0.02), the susceptible
curve exhibits mild fluctuations with short-term deviations but remains close to the deterministic path, indicating that the
system’s intrinsic stability is largely preserved. As the infection noise (σ2 = 0.03) increases, the fluctuations becomemore
pronounced, producing intermittent excursions both above and below the steady-state value; these correspond to random
surges and declines in the number of susceptibles caused by environmental variability in the infection process. At higher
stochastic intensity (σ3 = 0.04), the amplitude of oscillations increases significantly, and the system displays irregular yet
bounded behavior. This indicates that environmental noise amplifies the variability in S(t) but does not destabilize the
overall population balance. The results highlight that even moderate stochastic effects can create pronounced short-term
variability around the deterministic equilibrium without changing the long-term mean trajectory.
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Figure 2. Stochastic trajectories of the susceptible population S(t) for increasing noise intensities σ1 = 0.02, σ2 = 0.03, and σ3 = 0.04

Figure 3 presents the temporal evolution of the infected population I(t) under different noise intensities σ1 = 0.02,
σ2 = 0.03, and σ3 = 0.04. In all cases, the infection begins with a sharp outbreak as the initially large susceptible pool
drives a rapid increase in new infections. However, after reaching the early peak near t ≈ 20 days, the infected population
decreases steadily due to recovery and the depletion of susceptibles. When σ1 = 0.02, the trajectory remains relatively
smooth, resembling the deterministic decay toward the endemic level. As the stochastic intensity increases (σ2 = 0.03 and
σ3 = 0.04), random environmental fluctuations become more prominent, generating irregular oscillations and transient
rebounds of I(t) throughout the simulation period. These fluctuations reflect random perturbations in transmission and
recovery rates, leading to short-lived epidemic resurgences. Despite the variability, the infection remains bounded, and
the mean level of I(t) stays low, indicating that stochasticity primarily modulates amplitude rather than causing instability.
This behavior confirms that moderate noise intensities enhance the variability of epidemic outcomes while preserving the
long-term stability of the infected population.

Figure 3. Stochastic trajectories of the infected population I(t) for noise intensities σ1 = 0.02, σ2 = 0.03, and σ3 = 0.04

Figure 4 illustrates the temporal dynamics of the recovered population R(t) under varying noise intensities σ1 =

0.02, σ2 = 0.03, and σ3 = 0.04. The recovered class exhibits a typical epidemic pattern: an initial rapid rise due to
accumulated recoveries following the infection peak, followed by a gradual decline toward an equilibrium level as recovery
andmortality balance the inflow of new infections. For low noise intensity (σ1 = 0.02), the trajectory ofR(t) is smooth and
closely follows the deterministic curve, displaying only minor deviations. As stochastic effects increase (σ2 = 0.03 and
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σ3 = 0.04), noticeable fluctuations appear, corresponding to random surges and drops in the recovered population. These
fluctuations arise from noise acting multiplicatively on the recovery process, producing variability in the rate at which
individuals transition from the infected to the recovered class. Despite this irregularity, the general trend of convergence
toward a boundedmean value remains evident. The system thus demonstrates robustness: stochastic perturbations amplify
short-term variability but do not alter the long-term equilibrium behavior ofR(t). Overall, the results confirm thatmoderate
environmental noise perturbs the recovery trajectory without destabilizing the global epidemic dynamics.

Figure 4. Temporal trajectories of the recovered population R(t) under different noise intensities: σ1 = 0.02, σ2 = 0.03, and σ3 = 0.04

8. Results and conclusion
Results summary. The analytical results demonstrate that the stochastic SIR model with multiplicative noise admits

a unique, globally positive solution for all admissible initial conditions. By constructing appropriate Lyapunov functions,
we established the extinction and persistence conditions in terms of the noise-adjusted basic reproduction number

R̃0 =
β (Λ/d)

d + γ +
1
2

σ2
2

.

When R̃0 < 1, the infected population I(t) tends to zero almost surely, and the system converges to the disease-free
equilibrium (S∗, I∗, R∗) = (Λ/d, 0, 0). Conversely, when R̃0 > 1, the infection persists stochastically, fluctuating around
a positive endemic level. The derived criteria extend the deterministic threshold R0 = β (Λ/d)/(d+ γ) by accounting for
the influence of environmental randomness through σ2.

9. Numerical confirmation
Simulations conducted via the Milstein scheme confirm the theoretical predictions. For weak noise intensity,

trajectories of S(t), I(t), and R(t) closely follow their deterministic counterparts, exhibiting small-amplitude fluctuations
around the endemic equilibrium. As the noise amplitude increases, stochastic effects generate irregular oscillations and
short-term variability, yet the population processes remain bounded and biologically meaningful. At sufficiently large σ2,
the infection component decays to zero, validating the analytical extinction condition.
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10. Biological interpretation
The results highlight the critical impact of environmental fluctuations on epidemic persistence. While deterministic

models predict persistence whenever R0 > 1, the stochastic formulation reveals that randomness in infection or recovery
rates can suppress the disease even under favorable deterministic conditions. Hence, noise plays a stabilizing role by
reducing the effective reproduction potential of the infection.
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