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Abstract: We study the well-posedness of the initial value problem for an NLS-type equation with harmonic trapping 
potential and a non-local term under the influence of a nonlinear damping term in R3 which models the formation of 
quantum droplets in a trapped dipolar Bose-Einstein condensate (BEC) and states as follows:

( )2 2 3 4 2 3( | | ) | | | | | | ( | | ) , .i x i K x
t
ψ ψ α ψ ψ ψ γ ψ ψ β ψ ψ∂

= −∆+ + + − + ∗ ∈
∂



Only theoretical predictions and experimental results on the criterion of their self-boundedness were established. So far, 
no rigorous mathematical explanation has been proved. The main objective of this study is to validate these predictions 
and to prove rigourously that the presence of the nonlinear damping prevents the collapse and ensures the existence of 
global in-time solutions (the stability).
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1. Introduction
Dipolar quantum droplets are new quantum objects that are self-bound, i.e: instead of collapsing the system formed 

stable droplets. As mentioned in a seminal paper by Petrov DS [1], ultracold quantum gases can exist in the form of self-
bound droplets. This liquid-like behavior which originates from the interplay of attractive mean-field interactions and 
the repulsive effect of quantum fluctuations (LHY), which was firstly predicted long ago by Lee TD, Huang K, and Yang 
CN [2], was successfully realized by driving a dipolar Bose-Einstein condensate (BEC) into the strongly dipolar regime 
(see [3]) and observed in a number of experiments in other dipolar mixtures (see [4-8] and the references therein).

Since their discovery, many properties of dipolar quantum droplets have been made in recent theoretical predictions 
and experimental works and appear in [6, 7, 9-11] and recently in the good review [12], to which we refer the reader, 
where the authors have summarized the recent results which predict and establish the existence of quantum droplets. 
The most important theoretical prediction is their self-bounded state which, to the best of our knowledge and from 
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mathematical point of view, has not yet been explained rigorously. Only experimental results have been obtained.
Instead of collapsing, which would take place in the mean field approximation, the self-boundedness criterion of 

the droplets in dipolar condensates relies upon the effect of corrections due to quantum fluctuations LHY (see [6, 9, 
13]) which are effectively represented by local quantic self-repulsive terms in a generalized extended non-local Gross-
Pitaevskii equation (eGPE) (see [9]). This equation is given as follows
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is the dipole-dipole interaction potential of polarized particles, with θ being the angle between the polarization direction 
and the external trapping confinement potential is modeled by Vext and supposed to be quadratic.

For the sake of simplicity, we fix the dipole axis as the vector (0, 0, 1). Moreover, in order to simplify the 
mathematical analysis of the equation (1), we consider the dimensionless form of (eGPE) that states as follows
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where the unknown ψ = ψ( t, x) maps R+ × R3 into C is the wave-function of the condensate, the confinement potential 
is harmonic V (x) = | x|2 and the interaction kernel is given by
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The physical parameters α and β, which describe the strength of the nonlinearities belong to R and the damping 
parameter γ > 0.

It should be emphasized that in the conservative case (γ = 0), the equation (2) describes the so-called ‘‘dipolar 
Bose-Einstein condensates”, namely a condensate made out of particles possessing a permanent electric or magnetic 
dipole moment. This resultant equation has been studied by many authors among which we cite [14-17]. In [14], the 
authors established local and global existence results as well as blowup solutions. Either the stability and instability 
criterions of standing waves or the existence of ground state solutions were discussed in [15, 16]. Moreover, the 
Scattering theory for the corresponding equation was studied by Bellazzini J and Forcella L in [17]. They have 
proved that under the energy threshold given by the ground state, all global in time solutions behave as free waves 
asymptotically in time.

In the absence of the nonlocal terms ( β = 0), a nonlinear Schrodinger-type equation augmented by nonlinear 
damping terms was considered in [18, 19]. In recent work, when considering a dependent anisotropic trapping potential 
in (2), Alouini B and Hajaiej H have focused on the asymptotic dynamics of the corresponding solutions.

Furthermore, taking into account thhe three-body loss (α > 0) which describes the tendency of atoms to recombine 
into molecules and to be lost from the condensate, only experimental results have been achieved that I will quote a few, 
including [6, 9, 20].

(1)

(2)
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In what follows, we denote A = −∆ + V the positive self-adjoint operator whose domain in L2(R3) is

{ }2 3 2 3( ) such tha ( ) . tD A Aψ ψ= ∈ ∈L R L R

We supplement (2) with initial data at t = 0

u(0) = u0,

belonging to the phase space

{ }
1

2 3 2 32( ) ( ) such that and ( ) .D A xψ ψ ψ= = ∈ ∇ ∈∑  L L

In this article, we mathematically validate the principal characteristic of these quantum droplets by providing a 
rigorous mathematical analysis through which we prove that the stability of these droplets, which is reflected by the 
existence of global in time solutions for (2), is none other than a consequence of the presence of the nonlinear damping 
term in the extended Gross-Pitaevskii equation under study which acts as a counterbalance against the collapse.

Since not even the existence and uniqueness of solutions to (2) has been established yet, which gives all originality 
to the current work, the study of the corresponding Cauchy problem will be the main task of this paper. The idea is to 
combine different techniques presented either in [18, 19] when studying the Cauchy problem for NLS-type equations 
with nonlinear damping or in [14] where the study of a Bose-Einstein equation with nonlocal nonlinearity was 
established. The main result of this paper states as follows:

Theorem 1.1 Let γ0 ∈ Σ. Then the Cauchy problem (2)-(3) has a unique global in time solution γ belonging to C  (R+, 
Σ). Moreover, γ ∈ L∞(R+, Σ).

This article is organized as follows: in section 2, we introduce some notations and some mathematical tools. 
Section 3 will be dedicated to proving a local in-time solution and finally, in section 4 we establish the global-in-time 
criterion of these solutions throughout some a priori estimates. Finally, the conclusion will be the object of the last 
section.

2. Mathematical background and notations
To begin with, we will be regularly referring to the mixed space-time seminorms
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where T > 0 will be made precise in the sequel. For later use, we denote for a given 1 < p < +∞
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Along with the request, the usual Sobolev spaces denoted by W 1, p = W1, p(R3 ), 1 < p < +∞, are defined as follows

{ }1, 3 3( ) such that ( ) .p p pW ψ ψ= ∈ ∇ ∈ L L

The space Σp defined above endowed with the norm
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which is equivalent (see [21]) to
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is a complete Banach space. The Hilbert space Σ2 = Σ is endowed with the scalar product defined by
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For the sack of simplicity we extensively use, for a given p ∈ [1, +∞] and s ∈ (1, +∞), the notation LT
p Σs for the 

anisotropic space L p([0, T ], Σ s).
In order to prove the well-posedness of (2) we shall rely on the use of Strichartz estimates. Thanks to the Mehler’s 

formula (see [22]) the Schrödinger propagator e−i tA, with A = −∆ + |x |2, is bounded on L2(R3). Moreover, it enjoys the 
following dispersive property (see [19, 22]), for small time, that reads
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This, by interpolation argument, ensures that for all p ∈ [2, +∞] and for all t > 0
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where p' denotes the conjugate exponent of p.
Definition 2.1 A pair (q, r) is admissible if 2 ≤ r ≤ 6 and

2 1 13 .
2q r

 = − 
 

Thanks to the dispersive estimate (11), we have the following Strichartz-type estimates (see [19, 22, 23]).
Lemma 2.2 Let (q, r) be an admissible pair and 0 < T. Then

(8)

(9)

(10)

(11)
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Moreover, for all t ∈ [0, T ]
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for all admissible pair (δ, ρ).
Next, we recall the following Sobolev embedding (see [24]) and the well-known Gagliardo-Nirenberg inequality (see 

[25]).
Lemma 2.3 Let 1 ≤ p < +∞. Then the following statements hold true
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2. 1, 3 3If 3,  ( ) ( ) for all [ , ).p qp W q p= → ∈ +∞ L
3. 1, 3 3If 3,  ( ) ( ) for all [ , ).p qp W q p> → ∈ +∞ L
For the nonlocal term, note that even though the interaction kernel K in (2) is indeed highly singular (like 3

1
x ), it 

defines a rather smooth operator (see [14] for more details) thanks to the Calderón-Zygmund theorem (see [26, 27]).
Lemma 2.4 The operator K : ψ   K ∗ ψ can be extended to a continuous operator on Lp(R3) for all 1 < p < +∞.
In the end of this section it should be noted that throughout this article, the constants Cs are numerical positive 

constants that vary from one line to another and the notation A  B means the existence of C > 0 such that A ≤ CB.

3. Local in time solutions
Let us start with proving that the initial value problem (2)-(3) is locally well-posed.
Proposition 3.1 Let ψ0 ∈ Σ. Then there exist T > 0 depending only on ||ψ0 ||Σ and a unique solution ψ of the 

problem (2)-(3) belonging to
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Proof. The Duhamel’s formulation for (2) states as follows
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Let (q, r) be an admissible pair. Denoting Lψ either ψ, xψ or ∇ψ, we deduce from the Hölder inequality that

(12)
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which, thanks to Lemma 2.3, leads to
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Hence, in accordance with the norm equivalence (9), we have
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Proceeding in an identical manner as before, we obtain
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and then we have
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Independently, applying the Hölder inequality leads to
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Thanks to Lemma 2.3, the Sobolev space W 1, 30
13 (R3)is continuously embedded in L10(R3). Thus
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Consequently,
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For the nonlocal term, applying the Hölder inequality leads to
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from which and in accordance with Lemma 2.4 one has
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Now observe that
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which, thanks again to the Hölder inequality and the Lemma 2.4, leads to
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Hence, in accordance with (19) and (20) it follows that
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Denoting Φ(ψ) the right hand side of (15) and
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where (Ci)1 ≤ i ≤ 4 are nonnegative constants that depend only on α, β and γ.
Now Let η > 0 and R > 0. Then we consider the ball
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According to (25), choosing R = 2C1||ψ0 ||Σ then η > 0 and T > 0 small enough such that
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ensure that Φ maps B  into itself and the result of the current proposition yields by applying a fixed point argument.
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4. Global-in-time solutions
For the purpose of proving the self-boundedness (global-in-time) of the the solutions, we may proceed by 

establishing the uniform (in time) control of the energy throughout some a priori estimates.

4.1 Some a priori estimates

Let [0, T ∗) be the maximal time interval on which the local solution u of (2)-(3), deduced from Proposition 3.1, is 
well-defined.

Lemma 4.1 Let ψ be a solution of (2) defined on the maximal interval [0, T ∗). Then we have
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Now in order to derive some a priori estimates on the energy of the solutions of (2)-(3) and due to the nonlinear 
damping, we follow [19]. For a given  > 0, we consider the following modified energy functional:
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Lemma 4.2 Let α, β ∈ R∗ and let ψ be a solution of (2) defined on the maximal interval [0, T ∗) and 0 <  ≤ 2
γ . 

Then there exists C ( ||ψ0||Σ) > 0 depending only on α, β, γ and ||ψ0||Σ such that
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Moreover, the following estimates hold
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Proof. To begin with, the scalar product of (2) by (ψt + γ |ψ |4ψ) leads to
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By the use of the following inequality
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Now we shall focus on the positive terms in the right hand side of (38):
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For the first one, using interpolation argument we have
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This, with the use of the Young inequality, ensures that on the one hand

8 3 6 3 10 3
8 6 10

0( ) ( ) ( )
|| ||    || ||   || || ,

4 | |
Cψ ψ ψ

α
≤ +

  


L L L

and on the other hand



9 3 6 3 10 3
9 6 10

0( ) ( ) ( )
|| ||    || ||   || || .

4(| | | |)
Cψ ψ ψ

α β
≤ +

+  


L L L

For the second one, thanks to the Hölder inequality,
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which, thanks to Lemma 2.4, leads to
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and then
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Hence, gathering (39), (40) and (41), we deduce from (38) that
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where C = C( γ, α, β ) > 0.
Choosing 0 <  ≤ 2

γ  and in accordance with Lemma 4.1, we deduce from (42) that

*
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Moreover, the estimates (31), (32), (33) and (34) follows immediately and the proof is therefore achieved.
A straightforward consequence of the Lemma 4.2 states as follows.
Lemma 4.3 Let ψ be the solution of the initial value problem (2)-(3) defined on the maximal interval [0, T ∗). Then
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Proof. On the one hand, using interpolation argument, one has
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Then, thanks to the Young inequality, we obtain
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On the other hand, thanks to the Cauchy-Schwarz inequality and the Lemma 2.4, one has
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Gathering (43) and 44, it follows from (29) that

2 3 2 3 6 3

1
2 2 62

( ) ( ) ( )
( )    || ( )( ) ||  || ||  || || ,

6
E t A t Cψ ψ ψ≥ − +

  




L L L

2 3 2 3

1
2 22

( ) ( )
  || ( )( ) ||  || || ,A t Cψ ψ≥ −

 L L

which, thanks to the Lemma 2.3, Lemma 4.1 and the Lemma 4.2, achieves the proof.

4.2 Proof of Theorem 1.1

Let T > 0. Recalling that Lψ either ψ, xψ or ∇ψ and then apply Lemma 2.2 to (15) it follows, thanks to the Hölder 
inequality, that
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similarly,
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Hence, gathering (45), (46), (47) and (48), we obtain that
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Consequently,
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Taking into consideration the results of Lemma 4.2, one can split the time interval [0, T ] as follows
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for a given  > 0 small enough depending only on ||ψ0||Σ.
In accordance with (50),

1 2 1 2

1
22

0 2([ , ], ) ([ , ], )( , ) ( , )
sup || ||    || ||    sup || ||q q

r rt t t tq r q r
tψ ψ ψΣ Σ∈ ∈Σ

+ 
L L


I I

1 2

5
311

2 ([ , ], )( , )
   sup || || q

rt tq r
t ψ

Σ∈
+ 

L
I

1 2

4
([ , ], )( , )

  sup || || ,q
rt tq r

ψ
∈ Σ

+ 
L

I

from which we deduce, by a continuity argument, that

1 2
0([ , ], )( , )

sup || || (|| || ).q
rt tq r

Cψ ψ
∈

ΣΣ
≤

L
I

Similarly, one can obtain for each 1 ≤ k ≤ N, that
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independently of the length of the interval. Therefore we deduce that
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and the unique solution remains global in time. Since this bound is independent of T > 0 the solution is uniformly 
bounded and the main result of this paper yields.

5. Conclusion
In this article we have mathematically succeeded, through some combined technics, to provide a clear 

demonstration to highlight the self-bounded state criterion of these quantum droplets under the LHY effect, modeled 
by the critical nonlinear damping in (2). Despite the difficulty caused by this critical damping, we have proved that, 
under its influence, all the existent solutions for (2) are global in time and uniformly bounded. Hence, the collapse 
phenomenon is arrested and blow-up does not occur. This is consistent with either the theoretical predictions or the 
experimental results in the recent researches under the thematic area ‘‘Quantum Droplets”.

Our work, with its novelty and its originality, opens intriguing perspectives for the exploration of the different 
characteristics of these solutions, namely their asymptotic dynamics under the influence of the confinement potential 
which will be the aim of a future work.
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