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Abstract: The applicability of two competing efficient sixth convergence order schemes is extended for solving
Banach space valued equations. In previous works, the seventh derivative was used, even though it did not explicitly
appear in the schemes. But we use only the first derivative that appears on the scheme. Moreover, bounds on the error
distances and results on the uniqueness of the solution are provided not given in the earlier works based on w-continuity
conditions. Our technique extends other schemes analogously, since it is so general. Numerical examples complete this
work.
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1. Introduction

In [1], a multistep class of iterative methods is considered for approximating a solution x. of the equation
G(x)=0, @)

where G : Q & B, — B, is nonlinear operator between the Banach spaces B,, B, and Q is a nonempty and open set. The
solution x, is sought in closed form. But this is achieved only on special occasions. That is why iterative schemes are
developed generating sequences converging to x, under suitable convergence criteria [2-6]. By G’ we denote the Frechet
derivative of operator G (see Definition 2.1 that follows).

We are concerned with the following three-step schemes developed for x, € Qand alln=0, 1, 2, ... by

yn = xn _%g'(xn)*lg(xn)
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z, =X, —%(39'(yn)—g'(xn N % (3G (1) + G (x,))G (x,) ' G(x,)

Xyl =2, —(%(39'@”) ~G' () % BG () + G (%)) G (x,) 1 G(z,) )

and

Vo= —%g'(xnrlg(xn)

Z, =X, —%(3g'<yn)—g'(xn N xBG (1) + G (x))G (x,) T G(x,)

Xpi1 = 2y =236 (1) —G'(x,)) ' G(z,)- 3)

The sixth convergence order of scheme (2) and scheme (3) is shown in [1, 7], respectively using Taylor series
expansions and hypotheses up to the seventh derivative of G not appearing on these schemes. These hypotheses limit the

applicability of scheme (2). As a motivational example, consider function. Let f : [—%,%] — R defined by

3 2 5 4 .
t”"logt” +¢t —t ift#0
F={"1¢ 7
0 if t=0.

. . . 1 .
Then, we obtain f"'(t) = 6logt2 + 607 — 241+ 22. So, function f""is not bounded on [—5,%]. Hence, the results in [7]

cannot be used to solve equation (1) using scheme (2) or scheme (3). Moreover, no upper bounds on [[x, — x.|| or results
on the uniqueness of x, were presented either. In this article, we develop a technique using only the derivatives of order
one (that appears on the schemes) and provide upper bounds on ||x, — x.|| and uniqueness results. This way, we extend
the applicability of these schemes. We have used, the Computational Order of Convergence (COC) and Approximate
Computational Order of Convergence (ACOC) to determine the convergence order which does not require the usage
of higher-order derivatives or divided differences (see Remark 2.2) [8-12]. This is done in Section 2 and Section 3.
Numerical examples appear in Section 4. This technique can be used on other methods [13-16].

Similar work has been done in [6]. But the relations do not imply each other and are hard to determine the ones in
this paper based on [6].

2. Convergence

Some standard definitions and results are restated in order to make the paper as self-contained as possible. More on
this topic can be found in [4, 9-11, 17]. The set L(X, Y) denotes the space of bounded linear operators from X into Y.

Definition 2.1 The operator F': Q < X — Y is Fréchet-differentiable at x € Q if there exists an 4 € L(X, Y) such
that

lim L

G(x+h)—G(x)— A(x)| =0.
i T I I

Volume 2 Issue 4(2021| 247 Contemporary Mathematics



The linear operator 4 is denoted by G'(x) and is called the Fréchet derivative of F at x.
Next, we present the celebrated Banach Lemma on invertible operators.
Lemma 2.2 Let 4, B € L(X, Y) with A ' e L(Y, X)and ||[4"|||[4 — B||< 1. Then B_' € L(Y, X) and

15l LA
1=l 47!l Il 4-BI

Next, we develop parameters and scalar functions. Let M = [0, «).
Assume equation:

(@)
So(H)—1=0, “4)

has a least positive solution p, for some function ¢, : M — M nondecreasing and continuous. Let M, = [0, p,).

(i)
h(t)-1 =0 )

has a least solution R, € (0, p,) for functions ¢ : M, — M, ¢, : M, — M nondecreasing and continuous such that for

Jost@=emde+ [ cionae
1=6o(0) .

(1) =

(iif)
1-p()=0 (6)
has a least solution p, & (0, p,) for p(r) = %(3g0(h1(t)t) +y(0). Set M, = [0, p,).
(iv)
hy (1) =0 and ¢y (hy (1)) ~1=0 (7

has least solutions R,, p, € (0, p,), respectively for functions 4, : M, — M defined by

[os@=00d0 3co(m(@0)+5 ()] (0010
+ .
1=50(0) 1=, (0)1- p(1)

hy (1) =

Let p =min{p,, p,} and M, = [0, p).
)

has a least solution R; € (0, p), where
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I;g((l—e)hz(f)t)de (Go(hz(f)f)Jrgo(f))LlQ (O (D1)do
+

ha(t) =
O = T T oD (g0 (D)1 —co (1)

1
3 (3@ ()0 +5o (r)jx (1 REESTCIOOET (t))ﬂ Jos1 @1 (0010 (8)
4 (1-p(@) 4(1-p() 1=¢o(0)
Notice that the preceding multiplications are well defined as products between real functions.
We shall show that
R=min{R;},j=1,23 ©)
is a radius of convergence for scheme (2). By these definitions, we have that for each ¢ € [0, R)
0<gp()<1 (10)
0<p(t)<], 0<& (M (D)) <0 (11)
and
0<h;(r)<l. (12)
Moreover, define B(x., &) = {x € X : ||x —x.|| <&} and B(x., &) = {x € X : |lx —x.|| <&}, &> 0.
The conditions (A) shall be used in the local convergence analysis of scheme (2) that follows.
(A,) There exists a simple solution x. of equation (4)
(A,) There exists function ¢, : M — M nondecreasing and continuous such that for all x € Q
I G'(x) NG (%) = G' () < o (Il x = xal).
Set Q, = Q N B(x., py).
(A,) There exists function ¢ : M, — M, ¢, : M, — M nondecreasing and continuous such that for each x, y € Q,
1G'(x) (@' =G (DI < gl x =yl
and
I G'(x) LG (0l < gy (Il x = xel).
(A,) B(x., R) € Q, where R to be determined later, and
(A;) There exists p. > R such that
1
Iogo(p*e)dﬁ <l.
Set Q, =Q N B(x., p).
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Next, based on the conditions (.4) and the preceding notation, we show the main local convergence analysis for
scheme (2).

Theorem 2.3 Assume conditions (A) hold with R = R, and starter X, € B(x«, R) — {x.}. Then, sequence {x,}
developed by scheme (2) is well defined in B(x., R), remains in B(x., R) and converges to x.. Moreover, x, is the only
solution of equation (4) in the set Q, given in (A;)

Proof. Let e, = ||x, — X.||. Choose u € B(x., R) — {x.}. By using (A,), (9) and (10)

1 G'(e) MG () - G () < o (Il u—xell) < g (R) <1,

which together with the Banach lemma on invertible operators given in Lemma 2.2 and scheme (2) give

' ~1 ;
16w G e T2l "

and that y, exists. So, we can write by the first substep of scheme (2) for n = 0 and (A, ) that

Yo — Xk =Xo =% —G'(x9) " G(xp) +%g'(x0)‘1 G(xp). (14)

Then, in view of (9), (12) (forj = 1), (A;), (13) (for u = x,)), (14), and the triangle inequality, we have in turn

||y0 — X || < on — X —Q’(xo)*lg(xo)“+%“g'(x0)*1g'(x*)

oo G|

ng'(xo)‘lgxx*)

y j; “g'(x*)‘l(g'(x* +0(xg —x4))— G'(x ))H dbe,

Joc(1=0)e0)d0+ [ 61 (000 e
- 1=¢o(eg) 0

< hy(ep)ey
Seo <R, (15)

S0y, € B(x., R).
Next, we show (3G'(y,) — G'(x,))) is invertible. Using (A,), (9), (11) and (15), we get in turn that

“"Hgl(x*)_l(g'(xo)— G'(x+))

20/ 30/ () -G (x0)~20 ()

g%[3”g’<x*)‘l(g'<yo)—9'(x*))

< %(39'0("% —x[) +50(e)) < pleg) < p(R) <1,
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so, again by Lemma 2.2

' _ “lor
“(39 (70)=G'(x0)) " G'(xx) T 2(1- pley))’

and z, x, exist. Then, by (9), (12) (forj = 2, 3), (13) (for u = x,), (15), and (16), we obtain in turn

xo—xe —G'(xg) " g(xo)[l —%(39'@0) ~G'(x0)) " (3G (39) + G'(xo ))}g'uo)‘lg(xo)

70 ]| =

| sta-010)a0 5 (6ot vo v+ coteo i (6e )
< +=
I—cole) 4 (1-50(e0))(1 - pley)) ’

Shz(@o)@o Seo, (17)

and

20 =% = G'(20) " G(20) +G'(20) (G (x0) ~ G'(20 )G (x0) " G(2p)

DENE

+(1—(%(39'0/0)—g'(xo))_l(3g'(J/0)+g'(x0)))2)g'(xo)_lg(zo)

0
l—go(H Zp —)C*”) " (1 —go(” Zy —X*H))(l—go(eo))

E [[s@=0) 29 ~x)d6 (ol 29—l + G e) jol (6l zg — xsl)d@
<

+(3(3§0(||y0 —x*|)+§0(€0)]x[1+3(3§0(| Yo —x*ll>+gl<eo>]
4(1- p(ep)) 4(1- pley))

1

j (0l zg — x:l)d @

+ 0 ZO—X*"
1-¢o(ep)

Sh_?,(eo)eo Se(), (18)

S0, z, X, € B(x., R), where we also used that the large parenthesis can be written as

[1 - (%(39’(3/0) ~G'(x)) ' 39" (o) + Q'(Xo)))] X (1 + (%(39'@0) ~G'(x0)) "~ (3G (y9) + G'(xo )))J

and
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z,, X, replaced by x,,, y,.,

Contemporary Mathematics

[1 =260/ () G )™ (G () + T g ))}
= (36'(70) -G () '[BG'0) =G (30)) -5 3G )+ G ()]
=2(36'(r0) - (i)™ (G'(r0) -G (o))

(1 ~ (60 0) -G () (BT () + 6 (g )))j
= %(3g'( 70) =G (x0)) 1 (6G'(v9) —2G'(x0) ~3G"(g) — G'(x0))
=2(36'(0) -G (o)™ (G 30) -G o))
3o (1 v =l + co )

1 ' ’ - ! ! 3
(1= (6G'(r9) =G (x0)) ' 3G (r0)+ G (x| <5 1= plep) ’

+§3§0(” yo — )+ 6o (ep)
4 1-p(ey)

(+ (% (3G'(50) =G (x0)) ™' 3G' () + G (x| <1

Hence, so far we have shown estimates (15), (17) and (18), for n =0 and y,, z,, x, € B(x., R).
Next, we suppose estimates

Iy = xell < Iy (e ey,

Iz, —xll < 1y (e ey

I X1 — Xl < B3 (e ey

X, respectively, we complete the induction and get

m’>

I x00 — 2l <l x,, —xell < R
m+1 m

where y = h;(e,) € [0, 1), so lim x,=x.andx, ., € B(x., R).

m—0o0 “"m

1
Finally, let ¢ € Q, with G(¢g) = 0. Consider S = .[0 G'(x« +0(q — x+))d . Tt follows by (A,) that

(19)

hold form =0, 1, 2, ..., n. We shall show that they hold for m = + 1. Then, by repeating these calculations with x, y,,

(20)
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“g'(x* LS —G'(x)

1 1
‘SIOgO(HH 5 —ql)d0 < [ 6o(6p) <1,

S0 X, = ¢, since S is invertibile and 0 = G(q) — G(x.) = S(g — x.).
Remark 2.4 1. In view of (4,) and the estimate

“F'(x*)_l F’(x)“ - “F'(x*)‘1 (F'(x)= F'(x")) + 1”

<1+ “F'(x* )y LF ()= F'(x"))

‘Sl+g0(|\ x—x*l)

the second condition in (.A;) can be dropped and ¢, can be replaced by

a1 =1+¢4()
or
i) =1+5p(R), org(t) =2,
since t € [0, p,).

2. The results obtained here can be used for operators F satisfying autonomous differential equations [3] of the
form

F'(x) = P(F(x))

where P is a continuous operator. Then, since F '(x*) = P(F(x*)) = P(0), we can apply the results without actually
knowing x . For example, let F(x) = " — 1. Then, we can choose: P(x) =x + 1.

3. Let (1) = Lt, and ¢(7) = Lt. In [5], we showed that 74 =

is the convergence radius of Newton’s method:
2Ly +L

Xyi1 =X, —F'(x,)” F(x,) foreachn=0, 1, 2, --- 1)
under the conditions (A,)-(A;). It follows from the definition of r,, that the convergence radius R of the method (2)

cannot be larger than the convergence radius 7, of the second order Newton’s method (21). As already noted in [5] 7 is
at least as large as the convergence radius given by Rheinboldt [15]

2
VR :3—L, (22)

where L, is the Lipschitz constant on D. The same value for r, was given by Traub [16]. In particular, for L, < L, we
have that

rp <I"A

and
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That is the radius of convergence 7, is at most three times larger than Rheinboldt
4. We can compute the computational order of convergence (COC) defined by

A= ln[MJ/ln[ d ]
dn dn—l
or the approximate computational order of convergence
A= h{e”—“J/ln (e—”J
€n €n-1

Next, we develop analogously the local convergence analysis of scheme (3).

But this time

JoSA=0 @040 00+ 3600 (00) + 26 (D) ]y 51 @00 | o
21-go (N1~ p(1)) o

IO = T o

LetR = min{R , R,,R,}, where R, is the least zero in D, — {0} of equation /,(#) — 1 (assuming it exists). Denote by
(A)’ conditions (A) but R =R. The definition of %, is motivated by the estimate

oy =l <1 zg = = G'(2) ' G(20) +G'(20) ' (3G (vp)

~2G'(29)~G'(x0) x 3G (v9) —G'(x) ' G(zo)
(23)

< ]’73(60)60 < €y < E

Hence, we arrived at the corresponding local convergence result for scheme (3).
Theorem 2.5 Suppose conditions (A)’ for R =R hold. Then, the conclusions of Theorem 2.3 hold for scheme (3)

with R, h, replacing R, hj, respectively.

Table 1. Radius for example 3.1

Radius g=1 g =1+¢, 0
R, 0.44444 0.4
R, 0.277466 0.259201
R, 0.0938063 0.0896749
R, 0.250116 0.234502
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3. Numerical examples

We use examples to find the radius of convergence for the schemes. Conditions (A) are used and Definition 2.1 to
determine the scalar functions. The radii are found by solving the “A” equations.

Example 3.1 Let B, = B, = Q = R. Define G(x) = sin x. Using conditions (A) and Definition 2.1 we get G'(x) = cos
x. Moreover, notice that x, = 0. By plugging these on conditions (A,)-(A;), we see that they are satisfied provided we
choose ¢,(f) = ¢(¥) = ¢ and ¢,(¢) = 1. Then, by (9) we have the following radii (Table 1).

Example 3.2 Let B, = B, = ([0, 1], the space of continuous functions defined on [0, 1] with the max norm. Let Q
= U(0, 1). Define function F on Q by

Gp)) = ¥ () =5, 300 (0) do. 24

We have by Definition 2.1 that

G'(w(w)(x) = u(x) —15[01 xOw (0)% u(6)d0, for each u € D.

Moreover, notice that x, = 0. By plugging these on conditions (A,)-(A;), we see that they are satisfied provided

1 . .
that ¢y (1) =61 (1) = ?St, 61(t) = 2. Then, by (9) we have the following radii (Table 2).

Table 2. Radius for example 3.2

Radius (=2 () =1+¢,®
R, 0.0296296 0.0727273
R, 0.0231907 0.0533333
Ry 0.00330118 0.0119567
§3 0.0199532 0.0312669

Example 3.3 Let B, = B, = R’, Q = U(0, 1), x, = (0, 0, 0)", and define F on Q by
-1
G0 = Gl t,1) = € ~1 b ) @

For the points u = (u,, u,, u3)T, the Fréchet derivative is given because of Definition 2.1 by

et 0 0
Gw)y=| 0 (e-Duy+1 0.
0 0 1

Using the norm of the maximum of the rows and since G'(x.) = diag(1, 1, 1), we get that conditions (.A) are verified
1 1

if we choose ¢ (¢) =(e—1)t, ¢(t) = e;t, and ¢(¢) = el Then, by (9) we have the following radii (Table 3).
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Table 3. Radius for example 3.3

1

Radius ¢ (H=ee ¢ (=1+¢,0)
R, 0.0154407 0.229929
R, 0.110108 0.149959
R, 0.0183481 0.0520623
R, 0.0955553 0.206634

Example 3.4 Returning back to the motivational example at the introduction of this study, we have for x, = 1 that

condition (\A) are satisfied provided that we choose ¢,(f) = o(f) = 96.662907¢, ¢,(£) = 1.0631. Then, by (9) we have the
following radii (Table 4).

Table 4. Radius for example 3.4

Radius ¢, (0 =1.0631 G () =1+¢,0)
R, 0.00445282 0.00413809
R, 0.0104863 0.00268149
Ry 0.000879059 0.0009277
§3 0.00249313 0.0024257
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