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Abstract: We have investigated the dynamics of spatially homogeneous Bianchi type-I (LRS) space-time filled with 
two minimally interacting fields-matter and holographic dark energy components with volumetric power laws expansion 
towards the gravitational field equations of the linear form of gravity. Solving the set of field equation, we obtained the 
exact solution and observed that the mode of expansion of the model is accelerating throughout the evolution due to 
destructive assessment of deceleration parameter. Also, it has found that the Gauss-Bonnet invariant and the function of 
Gauss-Bonnet invariant both are not occur for, the equation of state parameter admits the different values for different 
values of n which are relevant in the standard range provided by recent theoretical and experimental data along with the 
model has a Big-Bang type of singularity at singular point.
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1. Introduction
An awesome abundance of observational evidence (SNe-Ia Supernova, CMBR, LSS and WMAP) favor the universe 

is spatially flat and late-time accelerating expansion which is not fit within the framework of Einstein’s General Theory of 
Relativity. The proposals that have been put forward to explain this observed phenomenon can basically be classified into 
two categories. An exotic component with negative pressure called mysterious energy or Dark Energy (DE) is introduced 
into Einstein’s General Theory of Relativity (GTR). The dynamical dark energy models are classified into two different 
categories: (a) the scalar fields, including Quintessence, Phantom, Quintom, K-essence, Tachyon, Dilaton, and so forth. (b) 
the interacting models of dark energy such as the Chaplygin gas models, Braneworld models, Holographic and Agegraphic 
models. 

For a good review of the dynamics of different dark energy models, Mishra and Biswal [1] have constructed a self-
consistent system of Bianchi Type-VI0 cosmology in five dimensions with a binary mixture of perfect fluid and dark 
energy where the dark energy is chosen to be either the quintessence or Chaplygin gas using solutions to the corresponding 
Einstein’s field equations as a quadrature and observed that the equation of state parameter for dark energy is found to 
be consistent with the recent observations (SNe-Ia Supernova with CMBR) and Galaxy Clustering Statistics. Chirde 
and Shekh [2-4] investigated interacting two-fluid viscous dark energy and magnetized dark energy cosmological models 
in self creation cosmology and Lyra geometry respectively. The same authors [5, 6] studied plane symmetric dark energy 
cosmological model in the form of wet, dark fluid in ƒ(R,T) gravity. Dark energy dominated Bianchi type-VI0 cosmological 
model with hybrid law of expansion in ƒ(R,T) gravity investigated by Bhoyar et al. [7]. Recently, Mishra et al. [8] have 
investigated the anisotropic behavior of the accelerating universe in Bianchi type-V space time in the framework of 
General Theory of Relativity considering the matter field is of two non-interacting fluids i.e. the usual string fluid and dark 
energy fluid and the skewness parameters are introduced along three different spatial directions in order to represent the 
pressure anisotropy. In recent years, an interesting observation is made to determine the nature of dark energy in quantum 
gravity which is termed as Holographic dark energy [9, 10].Recently, Singh and Kumar [11] study non-viscous and viscous 
Holographic dark energy models for a homogeneous and isotropic flat Friedmann-Robertson-Walker Universe and find 
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that the Hubble horizon as an IR cut-off is suitable for both models to explain the recent accelerated expansion of the 
Universe. Very recently, Bhoyar et al. [12] obtained a spatially homogeneous and anisotropic Bianchi type-I Space-time in 
ƒ(G) gravity theory using the interaction and non-interaction between Holographic dark energy and dark matter. Chirde 
and Shekh [13] inspected the dynamics of spatially homogeneous Bianchi type-I space-time filled with two minimally 
interacting fields matter, Holographic dark energy components with volumetric power, exponential expansion laws towards 
the gravitational field equations for the linear form of ƒ(T) gravity, They also observed that both models at late times turned 
out to be flat Universe whereas the power-law model has an initially singular and stable but with expansion, it is unstable 
while the exponential  model is free from any type of singularity and stable throughout the expansion, and predicts that the 
anisotropy of the Universe will damp out and the Universe will become isotropic. 

Another category to obtain an accelerating expansion of the Universe is the change in the gravity law through the 
modification of action in General Theory of Relativity. Various modifications in the action are present, out of which one 
replaces the Ricci scalar R in the Einstein-Hilbert action by an arbitrary function of R belongs to the well-known ƒ(R)
modified gravity. Vacuum solution in cylindrically symmetric space-time in the same gravity studied by Azadi et al. [14]. 
Bianchi type-cosmological models with bulk viscosity in ƒ(R) theory investigated by Katore and Shaikh [15] along with 
many authors have discussed some features of same gravity in [16-19]. Another generalization is the gravitational action 
includes an arbitrary function of the Ricci scalar and trace of the stress-energy tensor known as ƒ(R,T) gravity. Several 
authors have investigated the aspect of cosmological models in this gravity [20-22]. Among the various modifications of 
Einstein’s theory, another one way to look at the theory beyond GR is the Teleparallel Gravity (TG) which uses the 
Weitzenbock connection in place of the Levi-Civita connection and so it has no curvature but has torsion which is 
responsible for the acceleration of the Universe. Some relevant works in this gravity are presented in [23-26].

Modified Gauss–Bonnet gravity is another theory that has gained popularity in the last few years [27-28]. It is also 
known as the ƒ(G) theory of gravity, where ƒ(G) is a generic function of the Gauss-Bonnet invariant G. 

Modified Gauss–Bonnet gravity is described by the action

[ ]41 ( ) ( , ),
2 MS d x g R f G S g µν ψ
π

= ∫ − + +                                                                                                                                            (1)

where x is the coupling constant, g is the determinant of the metric tensor guv and SM(guv,ψ) is the matter action, in 
which matter is minimally coupled to the metric tensor and ψ denotes the matter fields. This coupling of matter to the 
metric tensor suggests that ƒ(G) gravity is a purely metric theory of gravity. The ƒ(G) is an arbitrary function of the Gauss–
Bonnet invariant G. 

                                                                                                                                              (2)

where R is the Ricci scalar and Ruv and Ruvσa denote the Ricci and Riemann tensors. Gravitational field equations are 
obtained by varying the action in equation (1) with respect to the metric tensor:
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where u∇  denotes the covariant derivative and ƒ(G) represents the derivative of f with respect to G.
The Gauss–Bonnet term plays an important role because it may allow avoiding ghost contributions and is helpful 

in regularizing the gravitational action [29]. It has been suggested that this theory may describe the late-time cosmic 
acceleration. Moreover, the theory also passes the solar system tests for some specific choices of ƒ(G) gravity models. 
Some interesting work has been done so far in this theory. Nojiri and Odintsov [30] developed the reconstruction techniques 
for ƒ(G) gravity and it was demonstrated that how cosmological sequence of matter dominance, deceleration-acceleration 
transition, and acceleration era could emerge by using a modified theory. Garciaet al. [31] explored energy conditions to 
find the viability of some specific choices of ƒ(G) gravity models. Fayaz et al. [32] investigated power-law solutions with 
an anisotropic background in ƒ(G) gravity and it was concluded that Bianchi type-I power law solutions only existed for 

2 4 ,G R R R R Rµν µνσα
µν µνσα≡ − +
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some special choices of ƒ(G) gravity models. Abbas et al. [33] gave the possibility for the existence of anisotropic compact 
stars in ƒ(G) gravity. Sharif and Fatima [34] argued the role of Gauss–Bonnet term in the late time accelerated phases of the 
universe. 

Incited by the above discussion, we focus our attention to investigate ƒ(G) gravity in the anisotropic background with 
Holographic dark energy. For this purpose, we consider Locally Rotationally Symmetric (LRS) Bianchi type-I space-time. 
We explore the exact solutions of the LRS Bianchi type-I field equations in modified ƒ(G)  gravity. A well-known ƒ(G) 
gravity model has been used to solve the set of differential equations.

2. Holographic dark energy model in Bianchi type-I space-time
The line element for a spatially homogeneous, anisotropic LRS Bianchi type-I space-time is given by

2 2 2 2 2 2 2( ),ds dt A dx B dy dz= − − +                                                                                                                                              (4)

where A and B are the directional scale factors which is a function of cosmic time t.
The corresponding Ricci scalar and Gauss–Bonnet invariant for the space-time (4) are turned out to be
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where the dot denotes the differentiation with respect to cosmic time.
Let us consider that the matter content is dark matter and Holographic dark energy such that the energy-momentum 

tensor Tv
u are respectively given by

,mT u uν ν
µ µρ=

                                                                                                                                             (7)

( ) ,h h hT p u u p gν ν ν
µ µ µρ= + −                                                                                            (8)

      
together with commoving coordinates 

(0,0,0,1)and 1,vu u uν ν= =                                                                                             (9)

where uv is the four-velocity vector of the fluid, p  and ρ are the pressure and energy density of the fluid respectively. 
From the equation of motion (3), Bianchi type-I space-time (4) for the fluid of stress-energy tensor (7) and (8) can be 

written as
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where the dot (.) denotes the derivative with respect to time t.
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3. Exact Matter Dominated Solution of the Field Equations
Finally, here we have three differential equations (10) – (12) with six unknowns namely A, B, ƒ, p˄, ρ˄, ρm. Now to 

solve the system of equations completely, we assume shear scalar is proportional to the expansion scalar (which gives a 
linear relationship between the directional Hubble’s parameters) this assumption gives an anisotropic relation between the 
scale factors A and B are as follows:

,nA B=                                                                                                                              (13)

where n ˃ 1 is an arbitrary constant. If n = 1, the matter distribution in the Universe is  all over the same, hence the 
model becomes isotropic otherwise, it turns out to be anisotropic.

Following the work of Granda and Oliveros [35] and Sarkar [36], the Holographic dark energy density is given by

2 23( )with 8 1,pH H M Gρ α β π−
∧ = + = =                                                                (14)

                                                                                       

The equation of state for Holographic dark energy is

p ω ρ∧ ∧ ∧=  
                                                                                                                                              (15)

Before finding the solution of these field equations, consider some kinematical quantities of the space-time such as 
Average scale factor and Spatial volume respectively as

1
3/ 2, .a V V AB= =                                                                                                                                              (16)

Another dimensionless kinematical quantity is the mean deceleration parameter which tells whether the Universe 
exhibits accelerating volumetric expansion or not is  

11 ,dq
dt H
 = − +  
                                                                                                                                                (17)

for -1≤ q ˂ 0 , q ˃ 0, and q = 0, the Universe exhibit accelerating volumetric expansion, decelerating volumetric 
expansion and expansion with constant rate respectively.

The mean Hubble parameter, which expresses the volumetric expansion rate of the Universe, given as

1 2 3
1 ( ),
3

H H H H= + +                                                                                                                                               (18)
 
where H1, H2 and H2 are the directional Hubble’s parameter in the direction of x, y and z-axis respectively.
Using equations (16) and (18), we obtain

1 2 3
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To discuss whether the Universe either approach isotropy or not, we define an anisotropy parameter as
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The expansion scalar and shear scalar are defined as follows
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Subtracting equation (11) from equation (10), we obtained
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                                                                                                                                             (23)

Using equation (13) and (23), we get the directional scale factor as

2
1

1( ) ,n nA ct d + −= −                                                                                                                                             (24)

21( ) ,
n

n nB ct d + −= −                                                                                                                                             (25)

where c = c' (1 + n -n2) and d = d' (1 + n -n2).
Hence the model (4) becomes

2 2
2 2

2 2 2 2 21 1( ) ( ) ( ).
n
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                                  (26)      

   

From the above model (26), it is observed that the metric potentials are different, hence it represents an anisotropic 
model, but for the constant n if  these are identical which represents an isotropic model. Also, the model is constant but at 
a specific time, c

dtt s ==  the matric potential in the model vanishes hence the model represents the singular. Also, there is 
no such relation between the constants in the model for which the model shows isotropy.

Some kinematical parameters:
The kinematical parameters such as the Hubble parameter, the anisotropic parameter, the shear scalar, the expansion 

scalar, and the spatial volume of the model (26), which are of cosmological importance, are respectively given by

2

(1 2 ) 1 .
3(1 ) ( )

c nH
n n ct d
+

=
+ − −                                                                                                                                             (27)

2

2 (1 ) .
(1 2 )m
n nA

n
−

=
+

                                                                                                                                             (28)

2
2

2 2

( 1) ,
( 1)( )

nc n
n n ct d

σ −
=

− − −                                                                                                                                             (29)

2

(1 2 ) 1 .
(1 )

n c
n n ct d

θ +
=

+ − −                                                                                                                                             (30)

2
1 2

1( ) .
n

n nV ct d
+

+ −= −                                                                                                                                             (31)



Contemporary Mathmatics 50| S. H. Shekh, et al.

We observe that the spatial volume is constant at t→ 0. Therefore, the model starts evolving with constant volume 
at t = 0 and expands with cosmic time along with other parameters such as expansion scalar, shear scalar, and Hubble’s 
parameter are constants but at a singular point ts the spatial volume vanishes and other parameters are diverged. Hence the 
model (26) has a Big-Bang type of singularity at singular point ts.

Deceleration parameter is

2(3 3) .
(1 2 )
n nq

n
− −

= −
+                                                                                                                                              (32)

From equation (32), it is observed that the deceleration parameter is constant with a negative sign and not associated 
with expansion. Hence, the mode of expansion of the model is accelerating and throughout the evolution, the deceleration 
parameter is constant.  For -1≤ q ˂ 0 , q ˃ 0, and q = 0, the Universe exhibit accelerating volumetric expansion, 
decelerating volumetric expansion, and expansion with constant rate respectively. For, the model is isotropic and 
accelerating, and for, the model is anisotropic which is also an accelerating.

Gauss–Bonnet invariant is defined as

4 3 2

2 4 4

8 ( 2) 1( ) .
(1 ) ( )

nc n nf G G
n n ct d
+ −

= =
+ − −                                                                                                                                             (33)

Equation (33) represents the Gauss–Bonnet and function of Gauss–Bonnet invariants which is a function of cosmic 
time and depends on n. Our derived model gives two types of expansion isotropic and anisotropic for n = 1 and n ˃ 1 
respectively. But it is seen that in an isotropic expansion the Gauss–Bonnet invariant and function both are zero hence it 
seems that in an isotropic expansion the Gauss–Bonnet invariant and function both do not exist.

Pressure is defined as

2 2
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Energy density of Holographic dark energy is 
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It is observed that the energy density is a function of time t, for, it is zero and for  it always decreases positively with 
the expansion. At the initial stage t→ 0 the universe has infinitely large energy density ρ → ∞ but with the expansion of the 
universe it declines and at large t → ∞ it is null ρ → 0. The  behavior is clearly depicted in the following figures. 

                                      Energy density versus cosmic time for n = 2                                  Energy density versus cosmic time for n = 3 
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                        Energy density versus cosmic time for n = 4                          Energy density versus cosmic time for n = 5 

Energy density of matter is 
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ρ
 + − + + =  + − −                                                                                                                                               (36)

Energy density of matter shows the same deeds as that of the energy density of Holographic dark energy. 
Equation of state parameter for Holographic dark energy is 

3

.
( 2)( 3 6 3 )

n
n n n

ω
α α β∧

 
=  + − − + 

                                                                                                                                             (37)

From equation (37), it is observed that the Equation of state parameter of Holographic dark energy is independent of 
cosmic time (constant) hence which is not deflected throughout the expansion of the model. The results from SNe-Ia data 
collaborated with CMBR anisotropy and galaxy clustering statistics yield ω˄ as ω˄ = -0.97 (WMAP, SNe-Ia results) at a 
68% confidence level for dark energy. These results are consistent with the time-variable equation of state parameter and 
also for time free ω˄. The quintessence models, (ω˄ ˃ -1) (explanation of observations of accelerating universe) involving 
scalar field and phantom model, (ω˄ ˂ -1) (expansion of universe increases to infinite degree infinite time) give rise to the 
time-dependent parameter ω˄. Some other limits of the equation of state parameter are obtained from observational results 
that came from SNe-Ia data and a combination of SNe-Ia data with CMB anisotropy and Galaxy clustering statistics are 1.67 
˂ ω˄ ˂ 0.62 and -1.33 ˂ ω˄ ˂ -0.79  respectively. The latest result in 2009, obtained after a combination of cosmological 
data sets coming from CMB anisotropy, luminosity distances of high redshift SNe-Ia, and galaxy clustering constrain 
shows the range of the dark energy equation of state is -1.44 ˂ ω˄ ˂ -0.92. In the isotropic model, the equation of state 
parameter admits the value -0.1666 corresponding to n = 1, also it has found that for the value of constant n in the range [2, 5] 
the equation of state parameter admits a value -0.5, -0.9, -1.333, -1.777 which exists in the standard range given above.

23 ( 2) (1
.

( 3 6 3 )
n n n

r
n n

α β

α α β

  + − + −  =  − − +  
                                                                               
                                                                                                                                             (38)

It is observed that the coincidence parameter is independent of cosmic time, at very early to large stage of evolution, 
it is constant and remains constant throughout the evolution, by this means avoiding the coincidence problem (unlike 
ɅCDM).

The density parameter of dark matter and Holographic dark energy are as follows:
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+                                                                                                                                              (39)
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The overall density parameter as

2

2

( 2)( 2 4 2 ) .
(1 2 )

n n n n n
n

α α β β β+ − − + − +
Ω =

+
    

                                                                                                                                              (41)

From the above equation, one can observe that the sum of the energy density parameter approaches a constant value. 
So, from initial to late time the Universe becomes flat. Therefore, for a sufficiently large time, this model predicts 

that the anisotropy of the Universe will dam pout and the Universe will become isotropic. This result also shows that 
in the early Universe, i.e. during the radiation and matter-dominated era the Universe was anisotropic and the Universe 
approaches isotropy as dark energy starts to dominate the energy density of the Universe.

4. Conclusions
In the investigation of the spatially homogeneous Bianchi type-I space-time with two minimally interacting fields  

matter and holographic dark energy components with volumetric power laws expansion towards the gravitational field 
equations for the linear form of ƒ(G) gravity, it is observed that the metric potentials are altered, hence it represents the 
anisotropic model but for the constant n if  these are identical and represents an isotropic model. Also, both are constant 
but at a specific time, c

dtt s ==  the metric potential in the model vanishes hence the model represents the singular model. 
Also, except for there is no such relation between the constants in the model for which it shows isotropy. The spatial 
volume is constant, at t→ 0. Therefore, the model starts evolving with constant volume and expands with cosmic time 
along with other parameters such as expansion scalar, shear scalar, and Hubble’s parameter are constants, but at a singular 
point ts  the spatial volume vanishes and other parameters are diverged. Hence the derived model has a Big-Bang type of 
singularity at singular point ts.

The deceleration parameter is constant with a negative sign and not associated with expansion. Hence, the mode of 
expansion of the model is accelerating throughout the evolution, the deceleration parameter is constant.  For -1≤ q ˂ 0 , q 
˃ 0, and q = 0, the Universe exhibit accelerating volumetric expansion, decelerating volumetric expansion, and expansion 
with constant rate respectively. For, the model is isotropic and accelerating, and for, the model is anisotropic which is also 
an accelerating.

The Gauss–Bonnet invariant and function of Gauss–Bonnet invariants both are functions of cosmic time and depend 
on n. Our derived model gives two types of expansion isotropic and anisotropic for n = 1 and n ˃ 1 respectively. But it 
is seen that in an isotropic expansion the Gauss–Bonnet invariant and function both are zero, hence it looks that in an 
isotropic expansion the Gauss–Bonnet invariant and function both do not exist. The energy density is a function of time t 
and always decrease positively with the expansion. At the initial stage t→ 0 the universe has infinitaly large energy density  
ρ → ∞ but with the expansion of the universe it declines and at large t → ∞ it is null ρ → 0 . 

It is observed that the Equation of state parameter of Holographic dark energy is independent of cosmic time (constant) 
hence which is not deflected throughout the expansion of the model. In an isotropic model, the equation of state parameter 
admits the value -0.1666 corresponding to n = 1, also, it has been found that for the value of constant n in the range [2, 5] 
the equation of state parameter admits a value -0.5, -0.9, -1.333, -1.777 which exists in the standard range given by recent 
theoretical experiments along with the coincidence parameter is also independent of cosmic time, at very early to large 
stage of evolution, it is constant and remains constant throughout the evolution, by this means avoiding the coincidence 
problem (unlike ɅCDM ). The energy density parameter approaches a constant value. So, from initial to late time the 
Universe becomes flat. Therefore, for a sufficiently large time, this model predicts that the anisotropy of the Universe 
will dampen out and the Universe will become isotropic. This result also shows that in the early Universe, i.e. during the 
radiation and matter-dominated era the Universe was anisotropic and the Universe approaches isotropy as dark energy 
starts to dominate the energy density of the Universe.
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