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Abstract: In this paper, the non-linear modified epidemiological model of computer viruses is illustrated. For this aim, 
two semi-analytical methods, the differential transform method (DTM) and the Laplace-Adomian decomposition method 
(LADM) are applied. The numerical results are estimated for different values of iterations and compared to the results 
of the LADM and the homotopy analysis transform method (HATM). Also, graphs of residual errors and phase portraits 
of approximate solutions for n = 5, 10, 15 are demonstrated. The numerical approximations show the performance of the 
LADM in comparison to the DTM and the HATM.
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1. Introduction
The computer viruses are malware programs that have been able to infect thousands of computers and have hurt

billions dollar in computers around the world. The virus should never be considered to be harmless and remain in the 
system. There are several types of viruses that can be categorized according to their source, technique, file type that 
infects, where they are hiding, the type of damage they enter, the type of operating system, or the design on which they are 
attacking. We can introduce some of famous and malicious viruses such as ILOVEYOU, Melissa, My Doom, Code Red, 
Sasser, Stuxnet and so on. Therefore, it is important that we study the methods to analyze, track, model, and protect against 
viruses. In recent years, many scientists have been illustrated the epidemiological models of computer viruses [2, 13, 16, 20, 32, 33, 

36, 37, 45, 46, 47]. These models have been estimated by many mathematical methods such as collocation method [30], homotopy 
analysis method [5, 27], variational iteration method [22] and others [33, 41].

One of applicable and important models is the classical Susceptible-Infected-Recovered (SIR) computer virus 
propagation model [20, 21, 33] which is presented in the following form:
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are the initial conditions of non-linear system of Eqs. (1). Functions and initial values of system (1) are given in Table 1.
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Table 1 List of parameters and functions.
Parameters & 

Functions
Meaning Values

S(t) Susceptible computers at time t S(0) = 20
I(t) Infected computers at time t I(0) = 15
R(t) Recovered computers at time t R(0) = 10

f1, f2, f3 Rate of external computers connected to the network f1 = f2 = f3 = 0
λ Rate of infecting for susceptible computer λ = 0.001
ε Rate of recovery for infected computers ε = 0.1
d Rate of removing from the network d = 0.1

Recently, several numerical and semi-analytical methods are introduced to solve the mathematical and engineering 
problems [7, 8, 9, 10, 23, 24, 25, 26, 48] that we can apply them to solve the non-linear model (1). The DTM and the LADM are 
two important and efficient tools to solve the linear and non-linear problems arising in the mathematics, physics and 
engineering [29, 34, 35, 40, 43]. Specially, the LADM [11, 14, 31] obtained by combining the Adomian decomposition method [1, 3, 4, 15, 

39, 44] and the Laplace transformations [17] similar to the HATM [6, 23, 27, 28], Laplace homotopy perturbation method [12, 38, 42] and 
so on.

The aim of this paper is to apply the DTM and the LADM to find the approximate solution of non-linear 
epidemiological system of Eqs. (1). The numerical results are compared with the HATM [6, 23, 27, 28] by plotting the residual 
erro function for different iterations. Also, the phase portraits of approximate solutions for n = 10 and different functions of 
S(t), I(t) and R(t) are presented. The numerical results show the abilities and capabilities of the LADM in comparison to the 
DTM and the HATM.

2. Differential transform method
Transformation of the k-th derivative of a function in one variable is as follows
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and the inverse transformation is defined by
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where F (k) is the differential transform of f(t). In actual applications, the function f(t) is expressed by a finite series and 
Eq. (4) can be rewritten as follows:
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where N is decided by the convergence of natural frequency. The fundamental operations of DTM have been given in Table 
3.
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Table 2 Main operations of DTM.
Original functions Transformed functions
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By applying the presented method to system of Eqs. (1), we get

1 1
0

1 2
0

1 3

1 ,
1

1 ,
1

1 .
1
[ ]

k

k i k i k
i

k

k i k i k k
i

k k k

S f S I dS
k

I f S I I dR
k

R f I dR
k

λ

λ ε

ε

+ −
=

+ −
=

+

 = − − +  

 = − − − +  

= − −
+

∑

∑                                                                                                                                                     (6)

The differential transform method series solution for system (1) can be obtained as
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3. Laplace-Adomian decomposition method
We apply the Laplace transformation   as
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By putting the initial conditions we have
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where A = SI and
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Also, the non-linear operator A is called the Adomian polynomials and it is presented as
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By substituting series (10) and (11) into (9) we get
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Now, the following relations can be obtained:
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and for term j we have
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Applying the inverse Laplace transformation 1−  for first equations of (14) as follows
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By putting S0, I0, R0 in second equations of (14) and using the Laplace transformations we have
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and by applying the inverse Laplace transform 1−  we can find S1, I1 and R1. By repeating above process, the other terms S2, · 
· · , Sj , I2, · · · , Ij , R2, · · · , Rj can be obtained. By using the relations
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the n-th order approximate solutions can be estimated.

4. Numerical Illustration
In this section, the numerical results of the DTM and the LADM for solving the system of Eqs.(1) are presented. The 

approximate solutions for n = 5 by using the DTM are obtained in the following form

S5(t) = 20 − 2.3t + 0.15425t2 − 0.00790458t3 + 0.000309711t4, 
I5(t) = 15 − 2.2t + 0.04575t2 + 0.00573792t3 − 0.000406169t4, 
R5(t) = 10 + 0.5t − 0.135t2 + 0.006025t3 − 7.17708 × 10−6t4,

and for n = 10 we have

S10(t) = 20 − 2.3t + 0.15425t2 − 0.00790458t3 + 0.000309711t4

             − 7.74864 × 10−6t5 − 1.35996 × 10−8t6 + 1.41005 × 10−8t7

             − 8.93373 × 10−10t8 + 3.32927 × 10−11t9,

I10(t) = 15 −2.2t + 0.04575t2 + 0.00573792t3 − 0.000406169t4

         +9.82135 × 10−6t5 + 1.12052 × 10−7t6 − 1.97453 × 10−8t7

         +9.96904 × 10−10t8 − 3.2067 × 10−11t9,
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R10(t) = 10 + 0.5t − 0.135t2 + 0.006025t3 − 7.17708 × 10−6t4

                − 7.97984 × 10−6t5 + 2.96686 × 10−7t6 − 2.63764 × 10−9t7

            − 2.13846 × 10−10t8 + 1.34528 × 10−11t9,

and finally for n = 15 the approximate solutions are obtained as

S15(t) = 20 − 2.3t + 0.15425t2 − 0.00790458t3 + 0.000309711t4

                − 7.74864 × 10−6t5 − 1.35996 × 10−8t6 + 1.41005 × 10−8t7

                − 8.93373 × 10−10t8 + 3.32927 × 10−11t9 − 5.68453 × 10−13t10

                − 2.34166 × 10−14t11 + 2.59234 × 10−15t12 − 1.28786 × 10−16t13 + 3.78868 × 10−18t14,

I15(t) = 15 − 2.2t + 0.04575t2 + 0.00573792t3 − 0.000406169t4

         +9.82135 × 10−6t5 + 1.12052 × 10−7t6 − 1.97453 × 10−8t7 

         +9.96904 × 10−10t8 − 3.2067 × 10−11t9 + 4.21668 × 10−13t10

         +2.88892 × 10−14t11 − 2.70438 × 10−15t12 + 1.28307 × 10−16t13 − 3.62709 × 10−18t14,

R15(t) = 10 + 0.5t − 0.135t2 + 0.006025t3 − 7.17708 × 10−6t4

          − 7.97984 × 10−6t5 + 2.96686 × 10−7t6 − 2.63764 × 10−9t7

          − 2.13846 × 10−10t8 + 1.34528 × 10−11t9 − 4.55198 × 10−13t10

          + 7.97151 × 10−15t11 + 1.74314 × 10−16t12 − 2.21438 × 10−17t13 + 1.07465 × 10−18t14.

Now, by applying the LADM we get
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and finally the approximate solution of the epidemiological model of the computer viruses (1) for n = 10 is in the following 
form
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− 7.97984 × 10−6t5 + 2.96686 × 10−7t6 − 2.63764 × 10−9t7

− 2.13846 × 10−10t8 + 1.34528 × 10−11t9 − 4.55198 × 10−13t10.

In order to show the accuracy of the presented methods, following residual errors are presented. Also, the numerical 
results are compared to the obtained results of the HATM for n = 5, 10. The results are presented in Tables 3, 4 and 5.
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The comparative graphs between the residual errors of the LADM, the DTM and the HATM for n = 5, 10, 15 are 
demonstrated in Figs. 1, 2 and 3. Also, phase portraits of S −I, S −R, I −R and S − I −R which are obtained by 10-th order 
approximation of the DTM and the LADM are presented in Figs. 4 and 5. According to the generated results, the LADM 
has suitable scheme than the DTM and the HATM.

Table 3 Numerical comparison of residual error En,S (t) between LADM, DTM and HATM for n = 5, 10.
t E5,S(t)-LADM E5,S(t)-DTM E5,S(t)-HATM E10,S(t)-LADM E10,S(t)-DTM E10,S(t)-HATM

0.0 0 0 0 0 0 0
0.2 1.98295 × 10−11 6.22316× 10−8 0.0000116327 4.44089× 10−16 4.44089× 10−16 4.22713 × 10−11

0.4 4.38413× 10−10 9.99398× 10−7 0.0000116327 0 1.77636 × 10−15 8.71449 × 10−10

0.6 1.87637 × 10-9 5.07724× 10−6 0.0000214386 1.77636 × 10−15 5.9508 × 10−14 4.95175 × 10−9

0.8 1.93464 × 10-9 0.0000161 0.00015492 2.57572 × 10−14 7.94032 × 10−13 1.57635 × 10-8

1.0 1.18760 × 10-8 0.0000394305 0.000429509 2.30038 × 10−13 5.97122 × 10−12 3.43742 × 10−8

Table 4 Numerical comparison of residual error En,I (t) between LADM, DTM and HATM for n = 5, 10.
t E5,I(t)-LADM E5,I(t)-DTM E5,I(t)-HATM E10,I(t)-LADM E10,I(t)-DTM E10,I(t)-HATM

0.0 0 0 7.10543 × 10−15 0 0 0
0.2 2.08857 × 10−10 7.88132× 10−8 0.000013859 4.44089× 10−16 4.44089× 10−16 4.24451 × 10−11

0.4 6.48732× 10−9 1.26470× 10−6 0.000036861 4.44089× 10−16 1.77636 × 10−15 8.8009 × 10−10

0.6 4.78103 × 10-8 6.42035× 10−6 0.0000397647 1.77636 × 10−15 4.44089 × 10−14 5.06861 × 10−9

0.8 1.95500 × 10-7 0.0000203449 8.51494 × 10−6 3.15303 × 10−14 5.96412 × 10−13 1.65033 × 10-8

1.0 5.78838 × 10-7 0.000049794 0.000140914 2.89546 × 10−13 4.50395 × 10−12 3.7476 × 10−8

Table 5 Numerical comparison of residual error En,R(t) between LADM, DTM and HATM for n = 5, 10.
t E5,R(t)-LADM E5,R(t)-DTM E5,R(t)-HATM E10,R(t)-LADM E10,R(t)-DTM E10,R(t)-HATM

0.0 0 0 0 0 0 0
0.2 5.69638 × 10−10 6.38387× 10−8 1.95392 × 10−6 1.11022 × 10−16 3.33067 × 10−16 1.04154 × 10−12

0.4 1.82284× 10−8 6.38387× 10−6 0.0000285358 3.33067 × 10−16 1.22125 × 10−15 8.17403 × 10−12

0.6 1.38422 × 10-7 5.17094× 10−6 0.000112891 3.33067 × 10−16 4.56857 × 10−14 1.57476 × 10−10

0.8 5.83309 × 10-7 0.0000163427 0.000290976 9.43690 × 10−15 6.10734 × 10−13 1.69486 × 10-9

1.0 1.78012 × 10-6 0.0000398992 0.000601621 8.77631 × 10−14 4.55164 × 10−12 8.65934 × 10−9
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Figure 1 Comparison between error functions of LADM, DTM and HATM for S5(t), I5(t), R5(t).

Figure 2 Comparison between error functions of LADM, DTM and HATM for S10(t), I10(t), R10(t).

Figure 3 Comparison between error functions of LADM, DTM and HATM forS15(t), I15(t), R15(t).
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Figure 4 Phase portraits of S10(t), I10(t), R10(t) by using the LADM.

                              

Figure 5 Phase portraits of S10(t), I10(t), R10(t) by using the DTM.

5. Conclusion
In this study, two robust and applicable methods, the DTM and the LADM were applied to solve the non-linear 

epidemiological model of computer viruses. These models are among of applicable models in computer engineering that 
we can apply to track, analyze and predict the computer viruses in a network. In order to show the efficiency and accuracy 
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of presented method, the residual errors for different iterations n = 5, 10 were presented based on the LADM, DTM and 
HATM. Also, the graphs of residual error were demonstrated to show the abilities of the presented methods. According to 
these results the LADM has more applicable and more accurate than DTM and the HATM. We can improve the mentioned 
model by adding some other parameters into the model. Also, this model can be applied to provide the other models in 
many other sciences. We will work on fractional and fuzzy mathematical model of computer viruses for future researches.
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