
Volume 1 Issue 1|2019| 1 Contemporary Mathematics

A Nullclines Approach to the Study of 2D Artificial Network

Felix Sadyrbaev1, Diana Ogorelova2, Inna Samuilik2

1 Institute of Mathematics and Computer Science, University of Latvia, Riga, Latvia
2 Faculty of Natural Sciences and Mathematics, Daugavpils University, Daugavpils, Latvia
  E-mail: felix@latnet.lv

Abstract: The system of two the first-order ordinary differential equations arising in the gene regulatory networks theory 
is studied. The structure of attractors for this system is described in three important behavioral cases: activation, inhibition, 
mixed activation-inhibition. The geometrical approach combined with the vector field analysis allows treating the problem 
in full generality. A number of propositions are stated and the proof is geometrical, avoiding complex analytic. Although 
not all the possible cases are considered, the instructions are given on what to do in any particular situation.
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1. Introduction
The system [1]

( ) ,γ′ = −i i i ix f x x                                                                                                                                             (1)

is used to model the behavior of some artificial networks including the gene regulatory networks (GRN in short). Functions 
fi(z) are sigmoidal functions, that is, each fi(x) is monotonically increasing from zero to unity as the argument z goes from 
−∞ to +∞ and, moreover, the graph of fi(z) has only one point of inflexion. The typical sigmoidal functions are the logistic 
function [2]
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and Gompertz function [3]
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where µ and θ are parameters. For this particular choice of f the system (1) in the extended form is
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A similar expansion is valid for the Gompertz function.
System (4) is a simplified form of GRN.
GRN can be thought of as complex dynamical systems that are present in living organisms (on a cellular level) 

and which are constantly changing their states responding to fluctuations in their environment. The interaction 
of elements in living cells strongly depends on the interrelation of genes encoding proteins as transcription 
factors. In the above system the variables xi stand for the protein concentrations. Each xi is affected by other 
elements xj , (j ≠ i) of a network. The cumulative impact on xi is recorded as the linear combination wi1x1 + wi2x2 
+ ... + winxn in the argument of fi. The element xi begins to respond to the total effect of the other elements by the 
expression of proteins when this effect reaches a threshold θi. The ability of xi to respond to the effects of other 
elements is expressed by the parameter µi. The coefficients wij in the system (4) can be gathered in the matrix
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which is called the regulatory matrix. A positive coefficient wij means that xj activates the expression of protein xi, while the 
negative coefficient means the inhibition (the repression). The zero coefficient means no relation.

The background and the description of other approaches to modeling GRN can be traced by the review papers [4], [5],[6], [7], 

[9], [8].
The other approaches include graph theory, Boolean algebras, stochastic functions, etc. It is acknowledged that one 

of the more effective tools for studying GRN and their evolution is the differential equations approach. Indeed, imagine 
that the current state of a given GRN is described by the vector (x1(t), . . . , xn(t)). The phase space Rn contains information 
about possible scenarios of evolution. The future of the system is described by the attracting sets. In simple models, these 
sets are merely stable critical points and/or limit cycles [10], [11].

The study of attractors of a general system is not an easy problem. Even the definition of an attractor is a matter of 
discussion. The minimal GRN consists of two equations and the corresponding system of differential equations is
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The dynamics of this system can be explored by the phase-plane analysis in particular cases. The global study is not easy 
since the system contains ten parameters. Bifurcations can be studied for restricted small groups of parameters. We mention 
the work by K.W. Kohn [12], who studied the system
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where h(z, θ, µ) is the (sigmoidal) Hill's function
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that is increasing in the case of activation, or
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in the case of inhibition (the decreasing function). In the paper [13] bifurcations in the system (22) were studied provided 
that µ1 = µ2, θ1 = θ2, w11 = w22 = 0, w12 = w21 = 1. In a series of recent publications [14] – [18] particular systems of low-
dimensions were investigated.

In the work [19] the n-dimensional system (4) was studied for specific regulatory matrices W. We refer also to the works 
[20]-[22], where similar techniques were used.

We provide a simple geometrical approach via the phase plane consideration for two dimensional systems of the form
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and/or
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which allows an overview of multiple variants of the behavior. All we use is the nullclines method, analysis of the vector 
field defined by the system, and some knowledge about the dependence of a set of solutions on the parameters of the 
system. We consider three types of behaviors, which are called activation, inhibition, and activation-inhibition cases. This 
is justified by the above explanation of the meaning of elements of the matrix W. The matrix W for our treatment is
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21 22

.
 

=  
 

w w
W

w w
                                                                                                                                             (12)

Our goal is to describe the behavior of attractors (sets of critical points) for the system (10). Our approach allows doing 
this without considering multiple parameters.

2. General
We assume that µ1 and µ2 are positive, as well as 1γ  and 2γ .
First consider the nullclines of the system (10) which are given by
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Introduce the functions

1 11 1 12 2 1 2 21 1 22 2 21 1 2 2 1 2( ) ( )

1 1( , ) , ( , )
1 1w x w x w x w xf x x f x x

e eµ θ µ θ− + − − + −= =
+ +

                 (14)

and similar functions for the Gompertz case
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Since the range of values of sigmoidal functions is the interval (0, 1), the nullclines defined by (14) are located in the strips
1

1

10 x
γ

< <   and 2
2

10 x
γ

< <  respectively. Therefore the first assertion.

Proposition 2.1 All the critical points of the system (10) (or system (11)) are located in the rectangle 
1 2

1 1(0, ) (0, ).Q
γ γ

= ×  
There is at least one critical point.

Proof. The critical points are cross points of the nullclines (13). These nullclines have points in common only in the 
rectangle Q They must intersect in Q.

Proposition 2.2 The vector field (x'1, x'2), defined by (10) (or by (11)), is directed inward on the border of the rectangle 
.Q

Proof. By inspection of the right-hand sides in (10), taking into account (13) and the range of values of the functions

1( )f z  and 
2 ( )f z  .

Corollary 2.1 Any trajectory of the system (10) (or of the system (11)), entering Q will stay there for t ˃ 0 
Proposition 2.3 There are at most three critical points for the system (10)(or for the system (11)) if w11 = w22 = 0. 

Exactly one and exactly two critical points are possible. w12 = α, w21 = β has not closed orbits in Q if w11 = w22 = 0.
Proof. The divergence of the vector field, defined by (10), is
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By the Bendixson criterium [23], there are no closed orbits in Q. Proof for the system (11) is similar.

3. The nullclines analysis for Gompertz function
3.1 Activation

Consider the system (11) where w11 = w22 = 0, and w12 = α, w21 = β, γ1, γ2 are positive. This corresponds to the 
activation case. The nullclines
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for three possible cases are depicted in Fig. 9 to Fig. 11. We set α = 1, β = 2, γ1 = γ2 = 1.

      

Figure 1 One critical point, 
µ1 = 1.5, µ2 = 1.2, θ1 = 0.6, θ2 = 0.8, 

w11 = w22 = 1.

Figure 2 Two critical points, 
µ1 = µ2 = 5.35, θ1 = θ2 = 0.3, 

w11 = w22 = 1.

Figure 3 Three critical points, 
µ1 = µ2 = 9, θ1 = 0.6, θ2 = 0.8, 

w11 = w22 = 1.
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The first case corresponds to the nullclines transversally intersecting in a unique critical point. The vector field (x'1,x'2)  
is directed towards the critical point which is a sink.

The second case is visualized in Fig. 2. Two nullclines intersect transversally and have a tangent point also. The upper 
(simple) critical point is a sink. Consider the lower critical point. Let it be at (z1, z2). Linearization of the system (10) at (z1, 
z2) yields the linear system
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where f1 and f2 are defined in (14). One has at the point (z1, z2) that 1 2
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The characteristic equation for the system (17) is (λ + 1)2 = 1f ′  (z2) 2f ′  (z1) = 1 and the characteristic roots are λ1 = 0, λ2 
= −2. The point (z1, z2) is degenerate therefore and the trajectory tangent to nullclines is directed away from the point (z1, 
z2). The location of the tangent point above the simple one is also possible. The conclusion is the same, namely, the simple 
critical point is a sink, the tangent critical point has an escape direction.

There are three critical points in the third case and two of them are sinks. The central point is a saddle. The summary 
of this section follows.

Proposition 3.1 The attractor of the system (10), where α and β are positive, can consist of either one or two stable 
critical points.

There is also an exceptional case where nullclines have a tangent point of order two (both the first and the second-
order derivatives 2

1

dx
dx

 are equal at the critical point. This point is attractive as shown in Fig.4.

Figure 4 Exceptional case, µ1 = µ2 = e, θ1 = θ2 = 1/e , α = β = 1, w11 = w22 = 0.

3.2 Mixed activation-inhibiton
Consider the system (10) where the signs of α and β are opposite. The nullclines together with the vector field are 

depicted in Fig. 5. If α is positive then the rotation of the vector field is in the counter clock-wise direction.
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If α is negative and β positive then (Fig. 6) the rotation of vector field is in the clock-wise direction.
Proposition 3.2 There is a single critical point of the type stable focus for the system (10) if α and β have opposite 

signs.
Proof. Suppose for definiteness that α is positive and β is negative. The critical points are solutions of the system (13) 

or
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where the functions f1 and f2 are defined in (14). The function f1(x2) is increasing together with the inverse function x2 = 
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has only one solution (x1, x2).
In order to detect the type of the critical point consider the linearized system
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Notice that 1 2( )f x′  is negative and 2 1( )f x′  is positive. The characteristic equation for the critical point (x1, x2) is 

2
1 2 2 1

1 2

1( 1) ( ) ( )f x f xλ
γ γ

′ ′+ =

and the characteristic roots are

Figure 5 One critical point, 
α = −2, β = 2, µ1 = 6, µ2 = 4, 

θ1 = −1.2, θ2 = 1.5, w11 = w22 = 1.

Figure 6 One critical point, 
α = 2, β = −2, µ1 = µ2 = 6, 

θ1 = 1.2, θ2 = −1.0, w11 = w22 = 1.

Figure 7 One critical point, 
α = 2, β = −2, µ1 = µ2 = 6, 

θ1 = 1.2, θ2 = −0.6, w11 = w22 = 1. 
The closed trajectory (limit cycle) 

is indicated by pointer.
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1,2 1 2 2 1
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Since the real part is negative and the expression under the square root sign is also negative, the critical point (x1, x2) is a 
stable focus. The proof for the case of α negative and β positive is similar. 

Figure 8 The limit cycle passing through the point (0.49, 0.38), 
w11 = w22 = 1, α = 2, β = −2, µ1 = 6, µ2 = 6, θ1 = 1.2, θ2 = −0.6.

Remark. Proposition 2.4 says that there are no closed orbits in the system (10) if w11 = w22 = 0. If w11 and w22 are 
allowed to be nonzero, the limit cycle is possible. In Fig. 7 the limit cycle appears as the result of Hopf bifurcation 
when the unstable focus arises. A vicinity of the unstable focus at (x1, x2) together with the boundary of the rectangle 

1 2 1 2
1 2

1 1{( , ) : 0 ,0 }y y y y
γ γ

< < < <  form the Bendixson region [23] with the vector field on the boundary directed inward 
and with no critical points in the interior.

4. The nullclines analysis for logistic function
In this section, we change the Gompertz function to the logistic function (both are sigmoidal) and allow the diagonal 

elements of the regulatory matrix W to be nonzero. In a series of examples, we show that the shape of nullclines may 
change substantially and as the result, the number of critical points and their location is different compared with those in 
the preceding section.
4.1 The parameter µ is small

We consider the system
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Set the parameters µ1 = µ2 = 2, θ1 = θ2 = 0.1,γ1 = γ2 = 1, but the entries of the regulatory matrix W will be flexible. The 
following choices of W will be considered.
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By changing values of w12 and w21 we consider several cases of possible regulatory matrices. Set µ = 2, θ = 0.1, but the 
entries of the matrix W will be changed.

Figure 9 (a) w11 = 4, w12 = 2,w21 = 3, w22 = 5 ; (b) w11 = -4, w12 = 2,w21 = 3, w22 = 5;
(c) w11 = 4, w12 = -2, w21 = 3, w22 = 5 ; (d) w11 = 4, w12 = 2, w21 = -3, w22 = 5;

(e) w11 = 4, w12 = 2,w21 = 3, w22 = -5

4.2 The parameter µ is large
Let us consider the example with µ = 40, θ1 = θ2 = 3.5, γ1 = γ2 = 1, but the entries of the matrix W are w11 = 4, w12 = 

2, w21 = 3 and w22 = 5. The graph of sigmoid functions is “Z-shaped” curve and this system has nine critical points (see 
Fig.10).
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Figure 10 The graph of sigmoid functions is “Z-shaped” curve and this system has nine critical points

Let µ = 40, γ1 = γ2 = 1 and the entries of the matrix W are w11 = 9, w12 = 6, w21 = 2, w22 = 3.
Proposition 4.1 Five critical points are possible for the system (22).
Proof. By construction the example (Fig. 11(a) and the given values of parameters).
Proposition 4.2 Seven critical points are possible for the system (22).
Proof. By construction the example (Fig. 11(b) and the given values of parameters).

Figure 11 (a) θ1= 0.5, θ2= 2.5; (b) θ1= 6, θ2= 2.5; (c) θ1= 7, θ2= 2.5

Proposition 4.3 The maximal number of critical points is nine for the system (22).
Proof. By construction the example (Fig. 11(c) and the given values of parameters).
Let µ = 40, γ1 = γ2 = 1 and the entries of the matrix W are w11 = 9, w12 = 6, w21 = −2 and w22 = 3.

Figure 12 (a) θ1= 0.5 = θ2 ; (b) θ1= 2, θ2= 0.5; (c) θ1= 7, θ2= 0.5

Let µ = 40, γ1 = γ2 = 1 and the entries of the matrix W are w11 = 9, w12 = -6, w21 = 2 and w22 = 3.

(a) (b) (c)

(a) (b) (c)
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Figure 13 (a) θ1= -5 , θ2=2.5; (b) θ1= 5 , θ2=2.5; (c) θ1= 2 , θ2=2.5

5. Conclusions
The systems (10) and (11) are the two-component models of GRN. These systems always have at least one critical 

point. For the regulatory matrices with zero entries in the main diagonal, the activation and the mixed cases can be 
geometrically analyzed. The activation systems can have attractors that consist of a single point or a couple of stable 
critical points. Any particular system can be geometrically analyzed by considering the nullclines and the vector fields. 
The influence of the change of parameters can be traced. In the mixed activation-inhibition case, the vector field rotates 
trajectories around the unique critical point which is a stable focus. Closed orbits are not possible. If the elements of the 
regulatory matrix W on the main diagonal are not zeros, closed orbits are possible. Moreover, the number of critical points 
then can vary from one to nine. The shape of nullclines is changed substantially under the change of the parameters.
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