Existence of Scalar Minimizers for 0-Nonconvex Autonomous Single Integrals with Relaxed Lagrangian at Zero Velocity Having No Isolated Local Minimum Points

Authors

  • Clara Carlota Research Center in Mathematics and Applications (CIMA), University of Évora, Évora, 7004-516, Portugal https://orcid.org/0000-0002-8038-4096
  • Mário Lopes Research Center in Mathematics and Applications (CIMA), University of Évora, Évora, 7004-516, Portugal https://orcid.org/0000-0002-2570-1976
  • António Ornelas Research Center in Mathematics and Applications (CIMA), University of Évora, Évora, 7004-516, Portugal https://orcid.org/0000-0001-6073-7467

DOI:

https://doi.org/10.37256/cm.7120267482

Keywords:

calculus of variations, optimal control, pointwise state and velocity constraints, general nonconvex lagrangians, Lipschitz regularity, DuBois-Reymond necessary condition

Abstract

We study the nonconvex integral mceclip4-9dbe0d2c1af67c6fee77a6129fdd12df.png, defined in the class of the absolutely continuous functions x : [a, b] mceclip6-97a0b83f89fed4c29839897ad0d7b163.png having x(a) = A & x(b) = B, using a superlinear mceclip2-76e38570ded96475ce94475b3f8fee5f.png-measurable nonconvex lagrangian mceclip5-c9520098ffb643ab16b93a0915c1e86a.png freely taking ∞ values and having L(s, ·) lower semicontinuous. Our aim is to look for weak hypotheses under which true minimizers still exist. In previous papers we have shown that 0-convexity L∗∗ (·, 0) = L(·, 0) suffices provided L∗∗ (·, ·) is lower semicontinuous at velocity zero, namely lsc at (s, 0) ∀s. In this paper we present sufficient conditions for existence of true minimizers in the 0-nonconvex case instead, i.e. L∗∗ (·, 0) < L(·, 0). This is important because when a relaxed minimizer is not a true minimizer then there exists another relaxed minimizer y(·) which has a non-singleton constancy interval where y(·) ≡ swith L∗∗ (s , 0) < L(s , 0). Our simplest hypothesis to avoid this is that sublevel sets of L∗∗ (·, 0) contain no singletons, provided L∗∗ (·, ·) and (LL∗∗)(·, ·) are both lsc at velocity zero. We also prove new necessary conditions.

Downloads

Published

2026-01-06

How to Cite

1.
Carlota C, Lopes M, Ornelas A. Existence of Scalar Minimizers for 0-Nonconvex Autonomous Single Integrals with Relaxed Lagrangian at Zero Velocity Having No Isolated Local Minimum Points. Contemp. Math. [Internet]. 2026 Jan. 6 [cited 2026 Feb. 8];7(1):552-68. Available from: https://ojs.wiserpub.com/index.php/CM/article/view/7482