@article{Magdy_Abd-Elhameed_Youssri_Moatimid_Atta_2023, title={A Potent Collocation Approach Based on Shifted Gegenbauer Polynomials for Nonlinear Time Fractional Burgers’ Equations}, volume={4}, url={https://ojs.wiserpub.com/index.php/CM/article/view/3302}, DOI={10.37256/cm.4420233302}, abstractNote={<p>This paper presents a numerical strategy for solving the nonlinear time fractional Burgers’s equation (TFBE) to obtain approximate solutions of TFBE. During this procedure, the collocation approach is used. The proposed numerical approximations are supposed to be a double sum of the products of two sets of basis functions. The two sets of polynomials are presented here: a modified set of shifted Gegenbauer polynomials and a shifted Gegenbauer polynomial set. Some specific integers and fractional derivatives are explicitly given as a combination of basis functions to apply the proposed collocation procedure. This method transforms the governing boundary-value problem into a set of nonlinear algebraic equations. Newton’s approach can be used to solve the resulting nonlinear system. An analysis of the precision of the proposed method is provided. Various examples are presented and compared to some existing methods in the literature to prove the reliability of the suggested approach.</p>}, number={4}, journal={Contemporary Mathematics}, author={Magdy, E. and Abd-Elhameed, W. M. and Youssri, Y. H. and Moatimid, G. M. and Atta, A. G.}, year={2023}, month={Oct.}, pages={647–665} }