
Computer Networks and Communications
https://ojs.wiserpub.com/index.php/CNC

Copyright ©2023 V S Ch Lakshmi Narayana, et al.
DOI: https://doi.org/10.37256/cnc.1120231686
This is an open-access article distributed under a CC BY license
(Creative Commons Attribution 4.0 International License)
https://creativecommons.org/licenses/by/4.0/

Volume 1 Issue 1|2023| 17 Computer Networks and Communications

Article

Scheduling Service Updates: A Multi-arm Bandit Approach

V S Ch Lakshmi Narayana1, Sucheta Ravikanti2, Harsh Deshpande3 and Sharayu Moharir4,*

1 Modem Systems Engineer, Qualcomm India Pvt Ltd, Bengaluru, 560066, India
2 Fixed Income Division Associate, Morgan Stanley, Mumbai, 400098, India
3 Department of Computer Science and Engineering, University of California San Diego, CA 92093, USA
4 Department of Electrical Engineering, Indian Institute of Technology, Bombay, 400076, India
E-mail: sharayu.moharir@gmail.com

Received: 29 July 2022; Revised: 24 November 2022; Accepted: 25 November 2022

Abstract: Software as a Service (SaaS) instances often use edge resources to serve their customers. The version
of the service hosted at the edge needs to be periodically updated to maximize the utility derived by the
customers. We focus on scheduling updates in the setting where the utility derived from a version is an unknown
decreasing function of the time elapsed since the version was created. We map the scheduling problem to a
multi-arm bandit and propose an update policy. We characterize its performance and compare it with the
fundamental limit on the performance of any online policy.

Keywords: edge computing, multi-arm bandits, scheduling

1. Introduction
Many real-time applications/services like weather forecasting, online shopping, and GPS-based navigation

need fresh data and the latest software to provide maximum benefit to their users. For example, online shopping
websites typically have an evolving catalogue of items for sale. In addition, the prices of the various items for
sale also evolve over time. Another example is when the code of a GPS-based navigation application is updated
to fix existing bugs or add new features. Many such services are hosted at the edge, i.e., either on servers close
to the end-users or the users’ local devices. Typically, the latest version of the service is more useful to the user
than older versions. Therefore, the version of the service hosted at the edge needs to be updated recurrently to
ensure good quality of service to the users. Each such service update requires new data to be brought to the edge
via the Internet and therefore leads to bandwidth consumption.

Motivated by this trade-off between quality of service and bandwidth consumption, we consider a time-
slotted system and model the reward the user derives from the service currently hosted at the edge as a
decreasing function of the time elapsed since the service hosted at the edge was last updated. Also, the amount
of bandwidth consumed by an update is modelled as an increasing function of the time elapsed since the last
update. This is because a longer inter-update time results in a larger difference in the latest iteration and the
currently hosted iteration of the service and therefore, more data needs to be fetched to update the service to the
latest version on the edge device. The utility in a time-slot is defined as the difference between the reward
gained and the update cost incurred in the time-slot. This is motivated by the fact that typically with time,
service developers add more features to the service, thus increasing the size of the source code and other
auxiliary files. Since an update would require us to fetch these files to the edge, larger the size of the source
code and other auxiliary files, higher the bandwidth consumption.

The algorithmic task is to schedule service up-dates in the setting where the reward derived by the user
from the currently hosted version of the service is an unknown function of the time elapsed since the recent most

Computer Networks and Communications 18 | V S Ch Lakshmi Narayana, et al.

update and needs to be estimated through user feedback. The goal is to design a policy to maximize utility. We
map our setting to a multi-arm bandit (MAB) and propose a policy (a variant of UCB [1]) that determines when
to update the service at the edge. We also characterize the fundamental limit on the performance of any policy in
this setting and use that as the benchmark to evaluate the performance of the proposed policy. Our analytical
results are not trivial extensions of known results in MAB literature since the problem has a specific structure
which we carefully exploit to prove our results.

1.1 Related Work
Our work has connections to the body of work on the Age-of-Information (AoI) metric. Closest to our

setting, [2–5] focus on caching policies that determine which contents to cache in order to minimize specific
functions of the AoI of the requested content. In [2] the goal is to update the cache to minimize the expected AoI
of the requested file given the popularity of the files in the cata-log. The problem is formulated as an
optimization problem. A relaxed version of this optimization problem is solved to design a practical cache
update policy. In [3], the goal is to design a dynamic cache update schedule when the performance metric is a
decreasing function of AoI. Guarantees on problem tractability are provided and a scalable solution approach is
proposed. On similar lines, [4] proposes a user’s queue-aware cache update scheduling algorithm while focusing
on minimizing the average AoI. In this work, the problem is formulated as a Markov Decision Process. The key
difference between these works and our setting is that in [2–4] the utility of each cached content is a known
function of its AoI. In [5], the goal is to design a cache update scheme for Internet of Things (IoT) networks.
The authors propose an online cache update scheme to obtain a trade-off between average AoI and the energy
consumed by the IoT sensors. This work does not assume any knowledge on user preferences towards contents
and uses deep reinforcement learning to design a cache update scheme. Specifically, this work uses Deep Q-
Network (DQN) and the parameters of Q-value functions in DQN are updated using a gradient descent
algorithm.

In [6–10], the focus is on designing scheduling policies to minimize AoI for one or more sources sending
updates to a monitoring station via multiple communication channels in the setting where channel statistics are
unknown. This body of work also maps the scheduling problem to the multi-arm bandit problem. Unlike these
works, our goal is to maximize utility which is an unknown function of the AoI. The cost incurred on each
update in our setting is also a key difference between [6–10] and our setting.

We map our problem to the MAB problem with a specific structure. Other variants of the MAB with
structure that have been studied include [11–17] where the rewards of arms are correlated through a common
hidden parameter.

2. Setting

2.1 System Model
We consider a service installed on an edge device. Time is divided into slots. In each time-slot, a new

version of the service is released by the developer. On request, the version of the service currently hosted on the
edge device is replaced by the latest version of the service. We refer to this as an update.

Definition 1 (Age of Installed Version). The age of the version installed on the edge device in time-slot t is
denoted by ()a t and is a measure of the time-elapsed since the version currently installed on the edge device
was released by the service developer. Formally,

1
()

(-1) 1
if an update requested in time-slot t

a t
a t otherwise.

Note that we assume that if the edge device requests for a version update in time-slot ,t the update is delivered
to it by the end of time-slot .t

A cost is incurred on each update and is an increasing function of the time elapsed since the previous
update. Let ic denote the cost incurred for an update requested after a gap of i time-slots. The formal definition
of the cost incurred in a time-slot is as follows.

Definition 2 (Cost). Let ()c t denote the cost incurred in time-slot t . It follows that

Volume 1 Issue 1|2023| 19 Computer Networks and Communications

(-1)()
0

a tc if an update requested in time-slot t
c t

otherwise.

Assumption 1. i jc c for .i j
The reward derived by the user from the service is a decreasing function of the age of the installed version.

The formal definition of reward is as follows.

Definition 3 (Reward). Let ()r t denote the reward accrued in time-slot t. We consider the setting where

 () 0, 1r t with

()1 . .
()

0
a tw p

r t
otherwise,

and ()() . a tr t

This Bernoulli reward assumption can be mapped to binary feedback from the user of the service, i.e., the
reward accrued in time-slot t is () 1,r t if the user is satisfied with the version of the service hosted at the edge
in a time-slot and () 0r t otherwise.

Assumption 2. i j for .i j
The costs are assumed to be known since there is a measure of the difference between two versions of the

service which the service developer can design/predict whereas the rewards depend on the user experience,
which are often subjective and can only be inferred via user feedback.

We define the utility as a difference between the reward accrued and the cost incurred.

Definition 4 (Utility). Let tu denote the reward accrued in time-slot .t It follows that () (). tu r t c t

2.2 Performance Metric

We consider the setting where the values of the expected rewards, i.e., the is are unknown. The cost
values, i.e., the ic s are known. Further, we impose an upper limit of M time-slots on the time between two
consecutive updates.

Definition 5 (Optimal Inter-Update Period). For each inter-update period {1, 2, ..., },i M we define its score
as the infinite horizon (T) time-average of expected utility when the service is updated every i time-slots.
The optimal inter-update period (* {1, 2, ..., }i M) is defined as the inter-update period with the maximum
score.

Let P ()u t be the utility in time-slot t under a given policy ,P and let *()u t be the utility in time-slot t
under the genie policy that always requests update at the optimum inter-update period (characterized in the next
section). We define the utility regret at time T as the difference in the cumulative expected utility under the two
policies in time-slots 1 to .T
Definition 6 (Utility Regret). Utility regret under policy P is denoted by ()T and

*

1
() () () .

T

t
T u t u t

2.3 Initial Conditions
We assume that at the beginning of the first time-slot, the service is not hosted at the edge device. Since the

utility derived from the service is not defined for this case, we add the initial condition that all candidate policies,
including the optimal policy, request an update in this time-slot, i.e., the service is fetched to the edge device in
the first time-slot.

Assumption 3 (Initial Conditions). The system starts operating in time-slot 1t and an update is requested in
the first time-slot.

Computer Networks and Communications 20 | V S Ch Lakshmi Narayana, et al.

2.4 Goal
The goal is to design a policy/algorithm to determine the optimum update frequency to use to request

updates to minimize Utility Regret (Definition 6).

3. Main Results and Discussion
In this section, we present our analytical results. The proofs and simulation results are discussed in Section

4.

3.1 Optimal Inter-update Period

Theorem 1. For a problem instance with reward vector 1 2{ , , ..., }M and the cost vector

1 2{ , , ..., }, Mc c c c the optimal inter-update period is given by

* 1

1

()
arg max .

i

k i
k

i M

c
i

i

Remark 1. There can be a reward vector 1 2{ , , ..., }M and a cost vector 1 2{ , , ..., }Mc c c c that gives

multiple optimal inter-update periods *.i Our analytical results in this paper are meaningful when *i is unique.
However, our results can be extended to the case when *i is not unique by suitably updating the definition of
certain quantities.

Assumption 4. The optimal inter-update period *i described in Theorem 1 is unique.

Remark 2. Note that for a reward vector 1 2{ , , ..., }M and a cost vector 1 2{ , , ..., }, Mc c c c if 2 i jc c

for all i j then the optimal arm * 1.i

The Genie policy which knows the values of the µis updates the service periodically with the optimal inter-
update period characterized in Theorem 1.

3.2 Our Policy: Utility-UCB
We map our problem to a multi-arm bandit where the task of scheduling service updates is equivalent to

the task of choosing one of M arms of the multi-arm bandit [18]. Time is partitioned into rounds with one arm
chosen per round. Choosing arm m in a round is equivalent to not updating the service in the first 1m time-
slots of the round and updating the service in the thm time-slot of the round.

Since the inter-update time belongs to the set {1, 2, ..., },M a round lasts for up to M time-slots. Note that
there is exactly one service update in each round and each round begins in the time-slot after an update is
requested and ends when the next update is requested.

Next, we discuss our policy called Utility-UCB (U-UCB). This policy is a variant of the UCB policy which
is known to be order-optimal for the MAB problem. Under the U-UCB policy, we maintain confidence bounds
for the rewards (, 1ms m M). The key difference between the classical UCB and our variant is the way in
which these bounds are calculated. In Step 5 of the U-UCB policy (Algorithm 1), we use the empirical estimates
of reward vector ˆms to compute γ̂m for 1 . m M Suppose we play arm j M and therefore, observe
samples of i for 1 . i j As a result, the estimates ˆi for 1 i j get updated. As a consequence of this,

γ̂m for 1 m M are all updated. It, therefore, follows that samples of the unknown quantities ('i s) obtained
while playing one arm lead to an update in the upper confidence bounds of all other arms. We incorporate this
fact that samples of the unknown quantities (is) obtained while playing one arm leads to an update in the
upper confidence bounds of all other arms. The policy starts with requesting an update in the first time-slot of
round 1 consistent with Assumption 3. In the second round, the policy selects arm ,M i.e., it requests an update
in the thM time-slot of the round. At the end of the first two rounds, we thus have at least one sample of
each , 1 . m m M After the first two rounds, in each round, the arm/inter-update time is chosen as the value

Volume 1 Issue 1|2023| 21 Computer Networks and Communications

of j for which the time-averaged utility in the round using the upper confidence bounds of the sm (computed
in Step 5 of Algorithm 1) is maximized. Refer to Algorithm 1 for a formal definition.

Note that in Algorithm 1, r denotes the time index and the algorithm can potentially go on forever. Our
performance guarantees hold for all (finite) time-horizons. We now characterize the performance of the U-UCB
policy.

Algorithm1: Utility-UCB(U-UCB)
Input: mc for 1 m M

Initialise: Set ˆ 0m and 0mn
[], 1, 1m M r t

While 0r do
for []m M do

1

ˆ
2 logγ̂

m

j m
j

m
m

c
t

m m n

Choose arm j , where

[]

1 if r = 1
if r = 2

ˆarg max otherwisem M m

j M
γ .

for []k j do

Receive reward Ber()k kX
ˆ ˆ() / (1)k k k k kn X n

1k kn n
1,r r t t j

Theorem 2. For a problem instance with reward vector 1 2{ , , ..., }M and the cost vector

1 2{ , , ..., }Mc c c c satisfying Assumption 4, the expected utility regret under U-UCB policy satisfies

- 8 log[()]U UCB

min

M TT

.

where
*

*

*

1 1
*[],

min

i m

j j mi
j j

min
m M m i

c c

mi

for *i characterized in Theorem 1.

We see that the upper bound on the utility regret under U-UCB policy is (log).
min

MO T The proof of

Theorem 2 is discussed in Section 4.

3.3 Lower Bound on Utility Regret
The next theorem characterizes the lower bound on the utility regret under a special class of policies with

certain restrictions on the optimal-inter update period and the structure of costs of updates (ic s).

Assumption 5. Let the reward vector be 1 2{ , , ..., }, M the cost vector be 1 2{ , , ..., }, Mc c c c and *i be
the optimal inter-update period. Define 0 0.c Then,

*i M (1)

Computer Networks and Communications 22 | V S Ch Lakshmi Narayana, et al.

* *

*
1 1

2
i i

i

c c
c

 (2)

Since our problem is a learning problem, it is important to characterize the fundamental limit on the
performance of any online policy and we do this for a special class of parameter values in Theorem 3.

Theorem 3. Consider a problem instance with re-ward vector 1 2{ , , ..., }M and cost vector

1 2{ , , ..., }Mc c c c satisfying Assumptions 4 and 5. Let j j for *i i and * 1ii
 and *i be the optimal

inter-update period for the problem instance with reward vector 1 2{ , ,..., }m and cost vector

1 2{ , , ..., }. Mc c c c Let

*

*

1 1
*

i m

j j mi
j j

m

c c

mi

*[],
minmin m

m M m i

*

*

1 1
*

i m

j j mi
j j

m

c c

mi

*[],
minmin m

m M m i

and (,)j jD denote KL-divergence [19] between j and . j Then, for any online policy P that achieves sub-
polynomial utility regret,

* min{ , }(1)
[()] log() (1) log

(,) 8
j minmin

j j

i
T T

D

For some 0 , and 0 1.
The main challenge in proving this result comes from the fact that a valid instance for our problem has a

specific structure. Specifically, the si decrease with i and the sic increase with .i In addition, pulling arm
{1, 2, ..., }k M gives one sample each of all arms indexed less than .k As a result of this structure of our

problem, Theorem 3 does not follow from existing results for the MAB and requires novel arguments.
From Theorems 2 and 3, we conclude that under Assumption 5, U-UCB is order-optimal with respect to

time. Order-optimality means that the upper bound on the regret of U-UCB and the lower bound on the regret of
any online policy is proportional to log(T). Therefore, the rate at which the regret of U-UCB grows with time is
as low as possible for any online policy. Further, for the special case when the optimal time-update period
is 1M , U-UCB is also order-optimal with respect to the upper limit on the inter-update time (M).

4. Proofs
In this section, we discuss the proofs of the results from Section 3.

4.1 Proof of Theorem 1

Proof. Let {1, 2, ..., }i M be an inter-update period. Then by Definition 5, the score of i for the given problem

instance is 1
()

.

i

k i
k

c

i
Hence the optimal inter-update period is * 1

1

()
arg max .

i

k i
k

i M

c
i

i

4.2 Proof of Theorem 2
We use the following lemma to prove Theorem 2.

Volume 1 Issue 1|2023| 23 Computer Networks and Communications

Lemma 1. For a problem instance with reward vector 1 2{ , , ..., }M and cost vector 1 2{ , , ..., }Mc c c c

satisfying Assumption 4, let ()in t denote the number of times the inter-update time i will be used in the first

t updates after 1.t For all *i i (optimal inter-update period), let () ()
M

i i
j i

h t n t

 and

*

*

1 1
*

i m

j j ii
j j

i

c c

ii

then,

2

8log()i
i

th t
i

(3)

Proof. Let t be a time-slot in which a new round begins and ()k t denote the inter-update time chosen by U-
UCB policy in that round. It follows that

1
() arg max()i i

i M

g c
k t

i

(4)

Where
1

2logˆ().

i

i j
j j

tg
j h

Note that the right-hand side of (4) is an increasing function of .ig We define

events tA and tB where ,j

, ()
2logˆ:

()jt j n t j
j

tA
j h t

, ()
2logˆ:

()jt j n t j
j

tB
j h t

Here ,t ()jn t and , ()ˆ
jj n t represent the time index, number of times arm j has been used by time-slot ,t and

the empirical estimate of j after ()jn t pulls respectively. By [20], (), C
tA 2() . C

tB t Conditioned on

, ()
2logˆ, ,

()

jt j n t j
j

tA b b
j h t

where , () , ()
2logˆ ˆ

()j jj n t j n t
j

tb
j h t

and 2log .
()

j j

j

tb
j h t

Using the increasing

nature of the expression in (4),

, ()
11

2logˆ ()
()j

ii

j ij n t i
j jj

tb cb c j h t

i i

(5)

A sub-optimal arm *()i i is pulled when the following is satisfied for all {1, 2, ..., } \ , M ip

, () , ()
1 1

ˆ ˆ
j j

pi

j n t i j n t p
j j

b c b c

i p

(6)

Chaining (5) and (6),

*

*, ()
1 1

*

2log ˆ()
() j

i i

j i j n t i
j j j

tb c b cj h t

i i

i.e.,
1

2log2)
()

i

j j
i

t
j h t

i

Computer Networks and Communications 24 | V S Ch Lakshmi Narayana, et al.

Now, a bh h if ,a b , i.e. 2log2) ,
()

 i

j

t
j h t

hence proving the lemma.

Proof of Theorem 2. Recall that
1

()

M

i i
i

T i n We know that . i in h i Therefore,

1 1 min

8log 8log() .

M M

i i
i i i

T TT i h

4.3 Proof of Theorem 3
The main challenge comes from the fact that a valid instance for our problem has a specific structure.

Specifically, the si decrease with i and the sic increase with .i In addition, pulling arm {1, 2, ..., }k M

gives one sample each of all arms indexed less than .k As a result of this structure of our problem, Theorem 3
does not follow from existing results for the MAB and requires novel arguments. We use the following lemma
to prove Theorem 3.

Lemma 2. Let 1I be a bandit instance with the reward vector 1 2{ , , ..., }M and the cost vector

1 2{ , , ..., }Mc c c c satisfying Assumption 5. Let *i M be the optimal inter-update period under 1.I Consider
an alternative instance 2I with reward vector 1 2{ , ,..., }M and cost vector .c c Let * *1i i

 and

k k for *{1, 2, ..., } \ (1). M ik Then, the optimal inter-update period under 2I is * 1.i

Proof. Let us prove this by contradiction, the index of the optimal arm in any bandit instance 2I is less than or

equal to *.i From the Assumption 5 we have the following.

* *

* * * *
1 1

1 1
2 .

2

 i i

i i i i

c c
c c c c

Thus, we have * * *
* * *

1 1
2 .

i i i
i c i c i c

By rearranging the terms in the last inequality, we obtain the following,

* * * *
* * * *

1 1
(1) (1) .

i i i i
i c i c i c i c (7)

Since *i is the optimal arm in 1I , we have the following.

* *

* *

1

1
1 1

* * 1

i i

k ki i
k k

c c

i i

*
* * *

*

* * *

1
1

* * * * *
1

1
* * *

1
1

1 1()
1 1

(1) (1)

i
i i i

k
k

i

ki i i
k

c c
i i i i i

i c i c i

(8)

Consider a bandit instance 2I with reward vector and cost vector same as 1I except that * *1
.

i i
That is the

expected rewards in 1I and 2I differ only at the * 1i position.
Assume that

* *

* *

1

1
1 1

* * 1

i i

k ki i
k k

c c

i i

This implies,

Volume 1 Issue 1|2023| 25 Computer Networks and Communications

*
* * * *

*

* * *

1
1

* * * * * *
1

1
* * *

1
1

21 1() ,
1 1 1

(1) (1)

i
i i i i

k
k

i

ki i i
k

c c
i i i i i i

i c i c i

(9)

This is a contradiction from (7) and (8).

Proof of Theorem 3. Let k be the reward of any arm {1, 2, ..., }k M under an alternative bandit instance 2.I

From Lemma 2, there exists a bandit instance 2I with optimal inter-update period *.j i Let ()k t denote the
total number of time-slots up to time-slot t corresponding to rounds in which an inter-update period

{1, 2, ..., }k M was chosen. The expected regrets after T rounds under the instance 1I is,

1 1 1
*

[()] [()] [()]I k I k j I j
k i

T T T

and therefore,

1

1

[()]
[()] I

I j
j

T
T

(10)

Similarly, the expected regrets after T rounds under instance 2I is,

2 2
*

[()] [()]I k I k
k i

T T

2

2
* min

[()]
[()] I

I k
k i

T
T

 (11)

From the divergence decomposition theorem [18], we have

1
1 2

[()]
ˆ(,) (,)

M
I l

j j
l j

T
D I I D

l

 (12)

From the Bretagnolle–Huber inequality [18], we have for any event A

1 2 1 2
1() () exp((,))
2

C
I IA A D I I (13)

Let us consider the event : { () }
2j
TA T thus its complement : { () }

2
C

k
k j

TA T

Then by Markov inequality and (10) and (11) we have:

1

1 1

2 [()]2() [()] I
I I j

j

T
A T

T T

2

2 2
min

2 [()]2() [()] IC
I I k

k j

T
A T

T T

Substituting in (13), we have

1 2
1 2

min

2 [()] 2 [()] 1 exp((,))
2

I I

j

T T
D I I

T T

For any policy that achieves sub-polynomial regret for all bandit instances, we have

1 2
[()] [()] 2I IT T T for 0 1 and 0. Thus,

Computer Networks and Communications 26 | V S Ch Lakshmi Narayana, et al.

1

1

1

1

min

min

min

min

min

[()]4 1 exp((,))
min{ , } 2

[()] min{ , }1 [log() (1) log()]
(,) 8

[()] min{ , }1 [log() (1) log()]
(,) 8

[()] [l
(,)

M
I l

j j
l jj

M
I l j

l j j j

I j

j j

I
j j

TT D
l

T
T

l D

T
T

j D

j
T

D

minmin{ , }

og() (1) log()]
8

j T

We now compare the performance of our pro-posed policy (U-UCB (Algorithm 1)) with a variant of the
Correlated UCB (C UCB) policy proposed in [21] via simulations. This variant called Utility-CUCB (U-CUCB)
exploits the structure of the problem to maintain an upper bound on the utility of an arm based on the observed
outcomes of when other arms are played. The next lemma characterizes these upper bounds on the utility called
the pseudo empirical estimates.

Lemma 3. Given any bandit instance ,I ,ims the pseudo empirical estimate of arm i with respect to arm m is
upper bounded such that

1
(()) / .

m

im l m m i
l

s i m c c i

Proof. We assume that the expected utilities of the tasks is a decreasing function and the cost incurred an
increasing function. The expected reward or utility by pulling configuration i can be written as

1

ˆ () /
i

i l i
l

f c i

Let us take the case where .m i Using the decreasing property of expected utilities, we have,

1

ˆ ˆ() ()
m

i l m i m m i m
l

i f i m c m f i m c c

Let us now take the case where .m i

1 1 1

ˆ ˆ
m m m

i l l i m m l i
l l i l i

i f c m f c c

Using the decreasing property of expected utilities, we get

ˆ ()m m i mm f c c m i

The formal definition of U-CUCB in given in Algorithm 2. In Figure 1, we compare the performance of U-UCB
with U-CUCB over 100 iterations where in each iteration the rewards and costs are sampled randomly and
sorted so as to satisfy the definitions 2 and 3. One example instance for of parameters for our simulation setup is;
number of arms 10M , reward vector [0.99816519, 0.96669968, 0.95893375, 0.95473951, 0.80981987,
0.61577662, 0.56091923, 0.44795704, 0.21987076, 0.18524995], cost vector c [0.0845928, 0.13959031,
0.17494821, 0.29012894, 0.33420872, 0.47049682, 0.48849441, 0.71938964, 0.87916942, 0.98123324]. The
value of time horizon T are given in Figure 1. We observe that the performance of the two algorithms is very
close. Given that U-UCB is computationally less expensive than U-CUCB, we thus conclude that comparable
performance can be obtained with a simpler policy that does not exploit correlated across arms.

Volume 1 Issue 1|2023| 27 Computer Networks and Communications

Algorithm 2: UTILITY-CORRELATED UCB (U-CUCB)
Input: mc for 1 m M

Initialise: Set ˆ 0, 0m mn and 0m

, ,[], 0, , []
1, 1

z m z mm M s m z M
r t

While 0r do

max []arg maxm M mk

max[] \M k
for z do

max

max

max

1

ax
,

m

ˆ
\ if

k

j k
j

kz

c
z

k

for []m M do

1

ˆ
2 logˆ

m

l m
l

m
m

c
tγ

m m n

Choose arm j , where

[]

1 if r = 1
if r = 2

ˆarg max otherwisem m

j M
γ .

1j jn n

for []k j do

Receive reward Ber()k kX
ˆ ˆ() / (1)k k k k kn X n

1k kn n
1,r r t t j

for [] \z M j do

,
1

ˆ ˆ(() () ()) /
m

z j l l
l

s z j c j c z z

,
, , ()

z j
z j z j

s
j

Figure 1. Regret as a function of time.

Computer Networks and Communications 28 | V S Ch Lakshmi Narayana, et al.

Acknowledgments
This work is supported by a SERB grant on Leveraging Edge Resources for Service Hosting and a SERB grant

on Versatile Scheduling Policies with Provable Guarantees for Latency Sensitive Systems.

Conflict of Interest
There is no conflict of interest for this study.

References
[1] Auer, P.; Cesa-Bianchi, N.A.; Fischer, P. Finite-time Analysis of the Multiarmed Bandit Problem. Mach.

Learn. 2002, 47, 235–256, https://doi.org/10.1023/a:1013689704352.
[2] Tang, H.; Ciblat, P.; Wang, J.; Wigger, M.; Yates, R. Age of information aware cache updating with file-

and age-dependent update durations. In Proceedings of 2020 18th International Symposium on Modeling
and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOPT), Volos, Greece, 15–19 June 2020.
pp. 1–6.

[3] Ahani, G.; Yuan, D.; Sun, S. Optimal Scheduling of Age-centric Caching: Tractability and Computation.
IEEE Trans. Mob. Comput. 2020, 21, 2939–2954. https://doi.org/10.1109/tmc.2020.3045104.

[4] Ma, M.; Wong, V.W. Age of Information Driven Cache Content Update Scheduling for Dynamic Contents
in Heterogeneous Networks. IEEE Trans. Wirel. Commun. 2020, 19, 8427–8441, https://doi.org/10.1109/tw
c.2020.3022895.

[5] Wu, X.; Li, X.; Li, J.; Ching, P.C.; Poor, H.V. Deep Reinforcement Learning for loT Networks: Age of Info
rmation and Energy Cost Tradeoff. In Proceedings of GLOBECOM 2020 - 2020 IEEE Global Communicat
ions Conference, Taipei, Taiwan, 7–11 December 2020, https://doi.org/10.1109/globecom42002.2020.932
2415.

[6] Bhandari, K.; Fatale, S.; Narula, U.; Moharir, S.; Hanawal, M.K. Age-of-information bandits. In
Proceedings of 2020 18th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and
Wireless Networks (WiOPT), Volos, Greece, 15–19 June 2020. pp. 1–8.

[7] Atay, E.U.; Kadota, I.; Modiano, E. Aging bandits: Regret analysis and order-optimal learning algorithm
for wireless networks with stochastic arrivals. arXiv preprint arXiv:2012.08682, 2020.

[8] Juneja, I.; Fatale, S.; Moharir, S. Correlated age-of-information bandits. In Proceedings of 2021 IEEE
Wireless Communications and Networking Conference (WCNC), Nanjing, China, 29 March 2021–1 April
2021, https://doi.org/10.1109/WCNC49053.2021.9417327.

[9] Prasad, A.; Jain, V.; Moharir, S. Decentralized age-of-information bandits. In Proceedings of 2021 IEEE
Wireless Communications and Networking Conference (WCNC), Nanjing, China, 29 March 2021–1 April
2021, https://doi.org/10.1109/WCNC49053.2021.9417301.

[10] Li, B. Efficient Learning-based Scheduling for Information Freshness in Wireless Networks. In Proceedings
of IEEE INFOCOM 2021 - IEEE Conference on Computer Communications, Vancouver, BC, Canada, 10–
13 May 2021, https://doi.org/10.1109/infocom42981.2021.9488709.

[11] Gupta, S.; Chaudhari, S.; Mukherjee, S.; Joshi, G.; Yağan, O. A unified approach to translate classical
bandit algorithms to the structured bandit setting. In Proceedings of ICASSP 2021 - 2021 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–
11 June 2021, https://doi.org/10.1109/ICASSP39728.2021.9413628.

[12] Mersereau, A.J.; Rusmevichientong, P.; Tsitsiklis, J.N. A structured multiarmed bandit problem and the gre
edy policy. IEEE Trans. Automat. Contr. 2009, 54, 2787–2802. https://doi.org/ 10.1109/TAC.2009.203172
5

[13] Hong, J.; Kveton, B.; Zaheer, M.; Chow, Y.; Ahmed, A.; Boutilier, C. Latent bandits revisited. Adv. Neural.
Inf. Process. Syst. 2020, 33, 13423–13433.

[14] Gupta, S.; Joshi, G.; Yağan, O. Best-arm identification in correlated multi-armed bandits. IEEE J. Sel.
Areas Inf. Theory 2021, 2, 549–563, https://doi.org/10.1109/JSAIT.2021.3082028

[15] Soare, M.; Lazaric, A.; Munos, R. Best-arm identification in linear bandits. Adv. Neural. Inf. Process. Syst.
2014, 27, 828–836.

Volume 1 Issue 1|2023| 29 Computer Networks and Communications

[16] Tao, C.; Blanco, S.; Zhou, Y. Best arm identification in linear bandits with linear dimension dependency. In
Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July
2018. pp. 4877–4886.

[17] Jamieson, K.; Nowak, R. Best-arm identification algorithms for multi-armed bandits in the fixed confidence
setting. In Proceedings of 2014 48th Annual Conference on Information Sciences and Systems (CISS),
Princeton, NJ, USA, 19–21 March 2014, https://doi.org/10.1109/ciss.2014.6814096.

[18] Lattimore, T.; Szepesvári, C. Bandit algorithms. Cambridge University Press: Cambridge, England, 2020.
[19] Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Stat. 1951, 22, 79–86,

https://doi.org/10.1214/aoms/1177729694.
[20] Lai, T.; Robbins, H. Asymptotically efficient adaptive allocation rules. Adv. Appl. Math. 1985, 6, 4–22,

https://doi.org/10.1016/0196-8858(85)90002-8.
[21] Gupta, S.; Joshi, G.; Yağan, O. Correlated multi-armed bandits with a latent random source. In Proceedings

of ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). Barcelona, Spain, 4–8 May 2020, https://doi.org/10.1109/ICASSP40776.2020.9054429.

	1.Introduction
	2.Setting
	3.Main Results and Discussion
	4.Proofs

