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Abstract: Machine learning now confronts two significant obstacles: the first is data isolation in most
organizations' silos, and the second is data privacy and security enforcement. The widespread application of
Machine Learning techniques in patient care is currently hampered by limited dataset availability for algorithm
training and validation due to the lack of standardised electronic medical records and strict legal and ethical
requirements to protect patient privacy. To avoid compromising patient privacy while supporting scientific
analysis on massive datasets to improve patient care, it is necessary to analyse and implement Machine Learning
solutions that fulfil data security and consumption demands. In this survey paper, we meticulously explain the
existing works of federated learning from many perspectives to give a thorough overview and promote future
research in this area. Then, we determine the current challenges, attack vectors and potential prospects for
federated learning research. We analysed the similarities, differences and advantages between federated learning
and other machine learning techniques. We also discussed about system and statistical heterogeneity and related
efficient algorithms.
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1. Introduction
We currently live in a data-driven world, where most apps and services, such as healthcare and medical

services, self-driving cars, and financial applications, are powered by artificial intelligence (AI) technology and
complicated data-hungry Machine Learning (ML) algorithms. Furthermore, AI technology has yet to achieve its
full potential, and long-standing issues have plagued the implementation of such AI/ML-based applications, one
of which is centralised storage and processing [1].

In most real-world circumstances, data, particularly personal data, is created and kept, either on end-user
devices or in data centres operated by service providers. Traditional ML algorithms are run in a centralised
method, requiring training data to be combined in a data server. Large-scale data collecting and processing at a
powerful cloud-based server in standard ML algorithms involves a single point of failure and the possibility of
major data breaches. Centralised data processing and administration impose limited transparency and
provenance on the system, which may result in a lack of confidence from end users as well as trouble complying
with the regulatory authority such as EU General Data Protection Regulation (GDPR) [2], Australian Privacy
Act (APA).

To overcome such challenges, Federated Learning (FL) was first presented by Google in 2016 [1]. FL is
an algorithmic method that enables the training of ML models by delivering copies of a model to the location
where data performs the training at the edge, minimizing the need to transport vast volumes of data to a central
server for training. The data stays on the clients' originating devices, which receive a replica of the global model
from the central server. Each device's data is used to train a local replica of the global model. Local training is
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used to update the model weights, and then the local copy is transmitted back to the central server. When the
server gets the revised model, it aggregates the changes to improve the global model without disclosing any of
the private data used to train it.

When compared to standard ML techniques, FL inherently provides advantages in terms of privacy.
However, FL systems are sensitive to inference attacks (i.e., membership and reconstruction attacks) [3].
Malicious local participants can manipulate the training progression by delivering arbitrary updates to poison
the global model [4,5].

Patient records are strictly confidential. As an example, pregnancy data is highly sensitive, particularly
information linked to pregnancy termination, young women abortion. Often pregnant mother is unwilling to
share pregnancy record/information to Spouse, Parents, family, and friends for various concerns. Privacy breach
may result in catastrophic consequences such as domestic violence, shame, mental illness, family breakdown
and social isolation etc.

Potential of Complex Data: Data sources in complex format such as Time-series measurements (fetal Heart
rate or actigraphy), imaging data (ultrasound), and free text (e.g., diagnosis records, patient narratives). ML can
provide information critical for a more complete understanding of maternal and neonatal health [6]. In WA
Health Data Linkage Benefits [7], the Western Australian Data Linkage System explains how to design and
implement a comprehensive, population-based system. Among the benefits are improvements in health policy
and practice, community development, patient privacy preservation, economic stimulation of the research sector,
database quality upgrade, and research cost reduction. In Pregnancy Data Driven Model [6] the Machine-
learning methods were examined to provide deeper biological insights into a pregnancy that current
methodologies have not revealed; to clarify the pathologies that affect a pregnancy; and to recommend the best
approaches to address disparities in outcomes affecting vulnerable population. In this survey paper we will
discuss about Federated Learning definitions, workflow, security risks and different privacy mechanisms,
performance evaluation based on privacy protection mechanism, FL algorithms, statistical and system
heterogeneity and efficient algorithm addressing those heterogeneity.

2. Related Works
Homogeneous patients with comparable traits are grouped to construct a high-performance model, and

each group develops its own local and global models. The authors in [8] present an in-depth analysis of the
previously published studies on FL as well as definitions, architectures, and applications. The survey [9]
provides a detailed and organised analysis of Privacy Preserving Federated Learning (PPFL). They suggested a
scenario-based taxonomy focused on the 5Ws (Who, What, When, Where, Why). They reviewed current
approaches, examined privacy leakage issues in the FL from various angles, and identified potential research
areas. Additionally, they summarised the interconnections between the proposed taxonomy and the practises
now in use. The authors of the survey [1] perform an analysis of recent FL studies that focuses on GDPR
compliance and privacy-preserving strategies. Authors in [10] suggests a federated transfer learning strategy for
wearable medical equipment. Lyu et al. in [11] listed the dangers that threaten FL systems. The authors' major
attention was directed against inference and poisoning attacks, which disrupt the expected model behaviour.
However, the authors did not mention any of privacy-preserving mechanisms that could be used in the FL
specially for Model and Data protection. Brief reviews of privacy-preserving FL mechanisms were provided by
Li et al. [12] with an emphasis on homomorphic encryption, secure multiparty computing, and differential
privacy. FL is used in [13] to address patient record privacy concerns. However, the authors assert that it will be
challenging to accomplish a trade-off between what the model is learning globally considering local information
from each data source due to the vast number of data sources with various volumes of data having multiple
features. Because of this, the authors suggest a novel approach called FADL, in which the first layer of the
neural network model is trained locally in each data source. The authors demonstrated the Neural Network
model for ICU mortality prediction. In contrast, the following layers are trained in an FL manner utilising data
from all sources. Their proposal surpasses the use of the standard FL for dispersed electronic health records and
exhibits accuracy comparable to a centralised analysis. The future of digital health with FL [14] explores the
federated future for digital health, providing context and information to the community on the benefits and
consequences of FL for medical applications, as well as outlining important difficulties and barriers to
implementing FL for digital health. Dayan, Roth, H.R., Zhong, A. et al. in [15] discussed about FL for COVID-
19 Oxygen Prediction Patient Care “EXAM” AI Model. The prediction model was implemented in TensorFlow
using the NVIDIA CLARA. The authors in [16] suggests a homomorphic encryption-based federated learning
method for medical data.
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Table 1 below shows that most research papers have covered some or either of FL characteristics. However,
there needs to be more discussion about Health records Heterogeneity and algorithms. In this research paper, we
discussed a wide variety of FL features, including FL definitions, security and privacy issues, different
algorithms, System Heterogeneity, and Statistical Heterogeneity in Health Records. Moreover, we discussed the
best performing algorithm for Heterogeneous Federated Learning. The main contributions of this survey are
providing an overview and architecture of FL, discussion of FL based on data partitioning, protection
mechanism, privacy risks. We highlighted FL algorithms comparison, practical implementation of FL based on
medical records, performance impact and trade-off between security/privacy protection and
performance/accuracy in FL (section 7). We also discussed efficient FL algorithms addressing both Statistical
and System Heterogeneity in section 6.

Table 1. Overview and comparison of related work on FL

Ref Summary of Contribution Security and
Privacy

FL Algorithm Health System and Statistical
Heterogeneity

[1] PPFL survey from the GDPR Perspective Yes Yes No No

[8] FL definitions, architectures, and
applications

Yes No No No

[9] Survey of PPFL, Review, Scenario-based
taxonomy, and Future Directions

Yes No No No

[10] Federated transfer learning strategy for
wearable medical equipment

No Yes Yes No

[11] FL threats and attacks Yes No No No

[12] FL Privacy preserving mechanism Yes Yes No No

[13] FL Algorithm for Distributed Electronic
Health Record and mortality prediction

No Yes Yes No

[14] Benefits and challenges of FL for medical
applications

Yes No Yes No

[15] CLARA FL for COVID-19 Oxygen
prediction model

No Yes Yes No

[16] Homomorphic Encryption and FL based
COVID-19 Detection

Yes Yes Yes No

3. Preliminaries

3.1 Federated Learning Overview
Google was the first to propose a federated learning framework in 2016 [17,18]. The basic concept behind

Google's approach is to construct machine-learning models based on datasets spread across several devices
while limiting data sharing. Current enhancements focus on overcoming statistical problems [19,20] and
improving privacy [21,22] in Federated Learning; there are several other initiatives to enhance federated
learning personalization increase through research [23,19].

3.2 Federated Learning Workflow Cycle
Real-world FL applications such as Google's G-board have concentrated on Centralised FL frameworks,

where the centralized control is performed by a Coordination orchestration server by requesting and aggregating
training outcomes to/from local nodes. Decentralized FL is also an option, in which local nodes directly
communicate their training results on a peer-to-peer basis [24]. The FL workflow cycle is divided into four steps
(shown in Figure 1) [1].
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Figure 1. Federated Learning workflow cycle.

1) Participant node selection and global model transmission
The centralised global model server chooses a group of site/nodes who meet the conditions to participate in the
training process and then broadcasts to the participants a global ML model (or global model changes) for the
next training phase.

2) Node local model training
The participant nodes update their current local ML model after obtaining the global ML model from the server,
and then train the new model using the device's local dataset. This stage is performed at local nodes, and it
involves the installation of a FL client application on end-user devices to run training algorithms like Federated
SGD and Federated Averaging, as well as to receive global model updates and transfer local ML model
parameters from/to the server.

3) Local Models Combination
To update the global ML model, the centralised global model server collects enough locally trained ML models
from participants (the next step). To prevent the server from accessing individual ML model parameters, this
aggregation mechanism is necessary to combine several privacy preserving strategies such as safe aggregation,
differential privacy, and sophisticated encryption methods.

4) Centralised Global Model Update
Based on the pooled model parameters collected in step 3 (local models’ combination), the server updates the
current global ML model. In the upcoming training phase, participants will receive an updated global model.

This four-step cycle is continued until the global model is adequately precise.

3.3 Privacy of Federated Learning
One of the most important aspects of Federated Learning is privacy; and privacy-preserving procedures are

meant to maximise data value while guaranteeing that the original data is not shared with other people or
organisations. Every stage of the training and deployment process is a target for a variety of new assaults and
threats, making FL systems vulnerable. Which is disused in Federated Learning Privacy Risks section. Multiple
approaches exist for attackers to take advantage of FL system weaknesses. Before delivering them to the central
server, an attacker, for instance, may purposefully damage training data or local model updates on clients'
devices. The central server and the clients' devices communicate model updates, which attackers may intercept
and replace with malicious model updates. Numerous academics have offered defences against FL attacks and
vulnerabilities to address these security risks. In this part, we discuss and evaluate federated learning privacy
preservation techniques. The Cryptographic techniques commonly used in FL privacy mainly consist of
Homomorphic Encryption, Secret Sharing, and Secure Multiparty Computation (SMC).

3.3.1 Homomorphic Encryption

Homomorphic encryption allows calculations on encrypted data without needing the secret key to decrypt
the ciphertext [25]. The computation's results are encrypted and can only be decrypted by the computation's
requester. Furthermore, homomorphic encryption assures that the decrypted result is identical to that computed
on the unencrypted dataset. Homomorphic encryption protects sensitive medical data. The authors of [26]
proposed an online secure multiparty computation (SMC) using homomorphic encryption for exchanging
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medical information with hospitals. The authors Bocu et al. [27] described the homomorphic encryption scheme
connected to healthcare information system employing heart rate data. The suggested approach effectively
handled the criteria for the secure data processing for the 500 patients to overcome network and storage
challenges. In [28], researchers created an IoT based platform featuring homomorphic encryption to prevent
privacy leaks and spoofing threats in chronic illness monitoring. The findings indicate that homomorphic
encryption provides cost-effective and simple privacy for sensitive health information. Homomorphic
encryption systems may be classified into three types based on the supporting operations (addition,
multiplication): Partially Homomorphic Encryption (PHE) features single type of operation (addition or
multiplications) with an infinite number of times. Somewhat Homomorphic Encryption (SWHE) features both
addition and multiplication operations a limited number of times. Fully Homomorphic Encryption (FHE)
features unlimited number of operations for an unlimited number of times [29]. The significant advantage is that
FHE ensures security by stronger encryption. Authors in [30] proposed a multi-party privacy preserving
machine learning framework based on Partially Homomorphic Encryption and Federated Learning

Even though homomorphic encryption provides individuals with strict privacy guarantees because the
original data in plaintext is never divulged, there is a practical limit to conducting computations over cipher-text
due to the enormous processing overhead [31]. Homomorphic encryption will undoubtedly result in certain
performance issues, such as the increased overhead of the encryption and decryption processes, which will have
a significant impact on training efficiency. The network topology, encryption/decryption key length, and key
replacement frequency, among other factors, all have an impact on the final performance.

3.3.2 Secure Multiparty Computation (SMC)

SMC, often called Multi Party Computation (MPC) or privacy-preserving computation, was initially
proposed by Yao in 1982 [32] and has since been improved by several researchers. SMC is a cryptographic
system that allows distributed parties to compute an objective function jointly while keeping their data private.
All participating parties’ data is kept private and all parties only allowed to acquire the outcome. The only
information each party can obtain from the computation is the result and its own inputs. Classical secret sharing
such as Shamir’s secret sharing [33,34] and Verifiable Secret Sharing (VSS) schemes [35] are the basis for most
of the SMC protocols [1].

There are several advantages of SMC, including that no trusted third parties are required, the compromise
between data utility and data privacy is abolished, and a high level of accuracy is obtained. The downsides are
high communication costs and computational overhead [9].

3.3.3 Perturbation Technique

The main principle of perturbation technique is to introduce noise to the original data, resulting in statistical
information generated from the perturbed data that is statistically indistinguishable from the original data.
Differential privacy, Additive perturbation, and Multiplicative perturbation are three often used perturbation
techniques. The fundamental composition theorem leads to differential privacy for repeated applications of
additive noise techniques. The following steps make up the actual design process for a differentially private
additive-noise mechanism that implements a given functionality: approximating the functionality by
sequentially composing bounded-sensitivity functions, selecting additive noise's parameter settings, and
conducting a privacy analysis of the resulting mechanism [36]. The authors in Differential Privacy-enabled
Federated Learning for Sensitive Health Data [37] analysed the effect of differing degrees of privacy on the
performance of the FL model and collect insights on the usefulness of FL with and without differentiated
privacy in healthcare applications.

3.4 Types of Federated Learning
This section will discuss how to classify Federated Learning depending on the data partitioning and

distribution characteristics. The feature and sample spaces of the participating nodes data sets may differ. We
categorise federated learning into three categories: horizontally federated learning, vertically federated learning,
and federated transfer learning, based on data distribution among participants in the feature space and sample ID
space [8].

3.4.1 Horizontal Federated Learning

This is the scenario when the decentralized datasets have the same feature space, but different sample ID
space. This is a common occurrence in the same field. Student records from various colleges, for example, often
have the same feature space but a separate ID space. Two regional banks may have quite diverse user groups
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from their separate regions, with a relatively limited intersection set of their users. However, because their
businesses are so similar, the feature spaces are the same. A horizontal federated learning system typically
assumes honest participants and security against an honest-but-curious server [21,38]. Aggregation at the server
is more straightforward since all clients may utilise a single model; the FedAvg method is popular for
aggregation. Another simple to comprehend example would be a dataset that only included lung cancer patient
records from a particular hospital.

3.4.2 Vertical Federated Learning

When the decentralized datasets have same sample ID space, but they differ in feature space. This is a
common occurrence in a variety of areas. Each person, for example, may have many data records in financial
systems, hospitals, ecommerce markets etc. In [9] the authors suggested a vertical federated-learning strategy to
build a privacy-preserving logistic regression model. Authors investigated the impact of entity resolution on
learning performance and used Taylor approximation to the loss and gradient functions, allowing homomorphic
encryption to be used for privacy-preserving calculations.

3.4.3 Transfer Federated Learning

It refers to the situation in which the decentralised datasets differ in terms of both sample ID and feature
space. A recommendation model that learns from varied app/software usage behaviours of different users in
different countries is an example of Transfer FL. Because they utilise various programmes on their devices, they
produce independent decentralised datasets with no overlap in sample and feature space. The federated transfer
learning framework for wearable healthcare - FedHealth [10] has described FL featuring customised models
using transfer learning.

Table 2 summarises the FL data partition type. Horizontal FL has same feature space but different sample
ID; Vertical FL has similar sample ID but different feature space; Transfer or Hybrid FL has both different
sample ID and feature space. Transfer Federated Learning is more suitable for Heterogeneous Electronic Health
Record dispersed across the different hospitals or applications.

Table 2. Federated Learning Data Partitioning

FL Data Partitioning Sample ID Feature Space
Horizontal Different Same
Vertical Same Different
Transfer/Hybrid Different Different

3.5 FL and Related Machine Learning Comparison
There are a few related Machine Learning concepts like FL, including Distributed Machine Learning,

Mobile Edge Computing, Split Learning, Privacy Preserving Machine Learning. We are comparing FL with the
similar Machine Learning (ML) concepts highlighted from author of [9] in summarised content. The comparison
is for main features, common features and different features of FL: Table 3 for comparison with distributed
machine learning, Table 4 for Mobile edge Computing ML, Table 5 for Split Learning, Table 6 for
Conventional Privacy Preserving ML. The important advantage of FL privacy preserving distributed mechanism
suitable for large heterogeneous medical record.

Table 3. Comparison between Distribute Machine Learning and Federated Learning

Distributed ML Federated Learning

Main Features Common Features Different Features

 Data-parallel scheme
 Model-parallel scheme
 Multiple local nodes & an aggregator
 Acceleration for large-scale datasets
 Homogeneous data

 Large scale data sets
 Distributed Computing

 Privacy-preserving
 May be no central aggregators
 No exchange of datasets
 Heterogeneous/homogeneous data
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Table 4. Comparison between Mobile Edge Computing and Federated Learning

Mobile Edge Computing ML Federated Learning

Main Features Common Features Different Features

 Three-layer architecture: end-users, edge
servers & a cloud server

 Low-latency (e.g., augmented reality)
 IoT devices (e.g., smartphones, Sensors)

 Privacy-preserving
 Large-scale datasets
 Distributed computing

 May be no servers
 No exchange of datasets

Table 5. Comparison between Split Learning and Federated Learning

Split Learning Federated Learning

Main Features Common Features Different Features

 Model splitting design
 Collaborative learning
 Clients & a central server
 Communication efficiency

 Large-scale datasets
 No Datasets exchange

 Entire model training
 May be no central aggregators
 Privacy-preserving

Table 6. Comparison between Conventional Privacy Preserving ML and Federated Learning

Conventional Privacy Preserving ML Federated Learning

Main Features Common Features Different Features

 Usually centralized computing
 Privacy-preserving machine learning

 Privacy-preserving
 Neural network

 Distributed computing
 Multiple participants
 Multiple private datasets
 Large-scale datasets

In summary, the main advantages of Federated Learning over other ML techniques are: Privacy preserved
architecture, No exchange of datasets, suitability for large scale heterogeneous data and heterogenous platforms.
As highlighted in Table 6: Electronic Health Records centralised ML and data administration impose limited
transparency on the system, which may result in a lack of confidence from end users, hospitals, and nodes. As
well as implies trouble complying with the regulatory authority such as EU General Data Protection Regulation
(GDPR), Australian Privacy Act (APA).

3.6 Federated Learning Privacy Risks
FL provides a framework for collaboratively training a global model with datasets stored in different

clients. But FL may not always ensure sufficient privacy protection [39]. Beyond the restrictions that are basic
and FL-specific, the security of FL systems is crucial for creating networks where users may cooperate, learn,
and, most importantly, trust. Every stage of the training and deployment process is a target for a variety of new
assaults and threats, making FL systems susceptible. Multiple approaches exist for attackers to take advantage of
FL system weaknesses. Before delivering them to the central server, an attacker, for instance, may purposefully
damage training data or local model updates on clients' devices. Someone may intercept the model updates sent
back and forth between the customers' devices and the central server and substitute malicious model updates for
them [17].

The potential privacy leakage issue can be divided into six important perspectives [9] shown in Figure 2.
Attackers: There are two types of attackers, internal (nodes and central global model server) and external

(model consumers and eavesdroppers). An example of internal malicious attackers: The intermediate training
model updates (e.g., weights and gradients) and the final model are accessible to the client nodes and the central
server. As a result, certain individuals and an honest-but-curious server might be internal malevolent opponents
attempting to obtain access to confidential data. Other type of malicious attackers can be external: Model
consumers can access the whole model and through API interface the query results can be accessed [40]. By
intercepting the connection between the participants and the server, eavesdroppers can steal intermediate
training updates or the final model.
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Attack Type: Active and passive attacks are the two types of privacy attacks. FL active attacks seek to
actively affect the training process and collect sensitive information about training datasets [41]. Passive attacks
are described as those that use information or learn from a system without altering it.

Attack Phase: Training phase and inference phase are two primary phases for privacy leakage. The training
phase involved mostly of computing the local gradient on the client, aggregating the global model on the server,
transferring intermediate updates between the clients and the aggregator, and delivering the final model to the
clients [42]. The inference phase is primarily concerned with determining how to deliver the query service for
customers [41].

Figure 2. FL privacy leakage

Attack Points: There are three possible attack points; Weight update stage, gradient model stage and attack
on trained model.

Inference Attacks: An inference privacy attack is typically used to gather sensitive information about
training datasets. Inference attacks are classified into four types [43]: Inferring class representative, Inferring
Membership, Inferring Training Data, Inferring Input and labels.

Poisoning Attacks: During poisoning attack, intruders manipulate the client's data or local model to
influence the global model's performance/accuracy [44]. Mainly divided into Data and model poisoning. FL
poisoning attack is a serious concern. Two types of FL poising attack shown in figure 3; consist of data
poisoning (clean label and dirty label) and model poisoning (gradient manipulation, training rule manipulation,
backdoor attacks).

Figure 3. FL poisoning attack types

Figure 4 shows the poising attack effect or flow. Data poisoning may lead to model poisoning and result in
a possible cause of poisoned model parameters. By sending poisoned local model updates to a coordination
server, model poisoning attacks often try to manipulate the training process.
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Figure 4. FL poisoning attack flow

4. Heterogeneity in Medical Records
The diversity of electronic health records (EHR) is inherent. Real-world FL deployments occur across a

hospital network with various data samples, device capabilities, availability, network quality, security level,
operating system platform, and database types. Such as in Department of Health Western Australia [45]; there
are more than 400 clinical and enterprise business applications, with different platforms and databases, more
than 540 sites across the state. According to the data structure, Electronic Health Records (EHR) can be
categorised into three groups: structured data, unstructured data, and semi-structured data [46].

Structured data, such as numbers and symbols, can be represented by a consistent structure. Two-
dimensional tables are used to express structured medical data that is kept in databases. A few examples include
demographic data, an encounter, a diagnosis code, a procedure code, a laboratory result, a drug, an allergic
reaction history, social data, etc.

Unstructured data includes both text and images. The fundamental purpose of an unstructured database is
to store unstructured data. A clinical note, radiological report, surgical note, discharge note, etc., are some
examples. It overcomes limitations of a fixed length of data and unchangeable definition of the relational
database structure, permits repeated fields, subfields, and variable-length fields, and implements storage
management.

Semi-structured data exists between structured and unstructured data. It is often self-descriptive; the
structure and content of the data are blended with no evident distinctions. Reminiscent of resource description
files, for example (RDF). Semi-structured data can be considered a subset of structured data, but its structure
varies widely.

Heterogeneity thereby affects a federated network's performance and is demonstrable. This section breaks
the heterogeneity into two primary categories—data diversity and node diversity.

Data Diversity/Non-IID Data: Many models for distributed optimization issues assume Independently and
Identically Distributed data (IID). The difficulty of issue modelling, solution formulation, analysis, and
optimization are increased because EHR contains many data points that differ significantly between silos.
Statistical heterogeneity and non-IID make it challenging to obtain an ideal performance to learn a single,
universally shared model.

Node diversity: Various health apps on a network may use different CPUs, RAM, network infrastructure,
communication protocols, operating systems, cloud architectures, database diversity, etc. In conclusion, each
node in the network has different processing, storage, and communication capabilities; additionally, FL
networks must deal with stragglers.

5. ML Benefits and Barriers in Electronic Health Records
Since patient privacy is protected, it is incredibly challenging to gather medical data dispersed across

many institutions. Medical data thus becomes a limited resource. The allocation of medical resources and illness
diagnostics have undergone revolutionary changes due to the development of artificial intelligence.

Some of the benefits include: Live ML data/model synchronisation and sharing among other applications,
facilities, agencies. ML can assist with Robust diagnosis, Interactive Alert generation, Realtime Data analysis
without giving away the data, Disease prediction, Disease prevention, Forecasting and trend, Future planning,
resource allocation, budgeting etc. The FL system is a desirable alternative, given the present emphasis on
healthcare systems to improve sustainability. With FL, creating more universal models to help with clinical
treatment is feasible. Less time spent in emergency rooms and hospitals, a slowing of the course of chronic
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diseases, and better results sooner may be the effects of more effective and targeted patient care. FL has the
potential to lower healthcare system expenses, making the healthcare system more sustainable [14]. Participants
stand to gain from the FL system through the formation of cooperative partnerships and the benefits of
information and expertise exchange. These frameworks represent the pinnacle of open innovation since they
incorporate several outside stakeholders, including physicians, healthcare workers, administrators of healthcare
facilities, data scientists, and software developers, who will contribute their skills. Manufacturers of healthcare
gear and software might also gain from FL since it can help them continuously validate or enhance their ML-
based systems by pooling the learning from several devices and apps without disclosing patient-specific
information [14]. Introducing FL systems will result in lasting alliances between hospitals, medical facilities,
and governments. FL Nodes or Participants stand to gain from the FL system through the formation of
cooperative partnerships and the benefits of information and skill sharing. The ML frameworks represent the
pinnacle of open innovation since they incorporate several outside stakeholders, including physicians, healthcare
workers, administrators of healthcare facilities, data scientists, instrument manufacturers, and software
developers, who will contribute and collaborate their skills. Introducing FL systems will result in lasting
alliances between participant hospitals, medical facilities, and governments [47].

Some of ML/FL barriers: Isolated patient care applications, Data sharing restrictions and difficulties. There
are strict legal and ethical requirements and standards to protect patient privacy such as Australian Privacy Act
(APA), General Data Protection Regulation (GDPR). The standards are essential for data security and privacy
reasons. However, they can make it challenging to communicate and link healthcare information between
medical centres, hospitals, organisations, and governments. As a result, Electronic Health Records are
frequently restricted to specific institutions, making it challenging to analyse and use deep learning in healthcare.
There is a limited dataset availability for algorithm training and validation, Lack of standardised electronic
medical records. When combined with other unidentified datasets, data biases from certain institutions might
lead to models that scale poorly and underperform. Utilising data from many healthcare organisations while
learning and improving combined models is one method for obtaining sufficiently vast and varied datasets.

When gathered by a centralised authority or company, personal data from sources like patient records,
diagnostic devices, smartphones, wearables, and many others are sensitive and vulnerable to data breaches and
misuse. Federated Learning is a decentralised machine learning approach that seeks to learn the same global
machine learning model without using a central server. Instead, FL relies primarily on distributed calculations
performed by the devices, with each user's data never leaving the node from which it originated. While
significant progress has been achieved in this direction, important issues in terms of privacy, algorithmic
efficiency, resilience, and scalability need to be solved.

6. FL Algorithms
We chose the top six open-source FL algorithms for centralised aggregation for this paper. Table 7

represents these six algorithms in brief comparison based on Non-IID support (Independently and Identically
Distributed data) or Statistical Heterogeneity, Node Heterogeneity support, Equality (various users' data
distribution may be considered equally without interfering with irrelevant elements) and communication
efficiency. The authors of [48] discussed extremely popular and widely used FL algorithms, including their
characteristics and limitation. We summarize couple of FL algorithms in Table 7.

Table 7. FL Algorithm comparison

FL Algorithms Non IID/Statistical
Heterogeneity

System/Node
Heterogeneity

Impartiality Communication
Efficiency

FedAvg [49] Yes No No Yes [49]

FedProx [50] Yes Yes Yes [50] Yes

FedPD Yes No No No

SCAFFOLD Yes No No Yes

FeSEM Yes No No Yes

Federated Stochastic Expectation Maximization (FeSEM), a revolutionary multi-centre FL framework
suggested by the authors in [51], updated several global models by combining data from various user groups.
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Mainly, it is likely that the datasets created or derived from the same or an equal distribution for the users in the
same group. The authors defined the multi-centre FL issue as the joint clustering of users followed by the global
model optimisation for users in each cluster. The proposed multi-centre FL preserves the capacity to handle non-
IID data on diverse datasets and inherits the federated SGD's efficient communication.

SCAFFOLD [52] proposes a Stochastic Controlled Averaging technique that leverages control variates
(variance reduction) to offset the negative consequences of data heterogeneity. The algorithm calculates the
update direction for each node and utilises the difference to fix the local update. The technique is said to
overcome statistical heterogeneity issues and converge in far fewer communication cycles.

FedPD [53] introduced a novel algorithm design technique based on primal-dual optimisation. Federated
Primal-Dual (FedPD) is a novel technique that seeks to deal with the general non-convex objective while
obtaining the most significant possible optimisation and communication complexity for non-IID data.

FedAvg algorithm is the Federated Averaging method that combines model averaging on a server with
local stochastic gradient descent (SGD) on each client. The authors in [49] conduct extensive tests on this
technique, showing it can train deep networks on decentralised data with orders of magnitude fewer rounds of
transmission and is resilient to imbalanced and non-IID data distributions. Since FedAvg trains high-quality
models with only a small number of communication cycles, the studies demonstrate that federated learning may
be made practical.

FedProx algorithm developed as the crucial realisation for the interaction between systems and statistical
heterogeneity in federated learning. FedAvg does not let participating devices execute varying amounts of local
work depending on their underlying system restrictions in the setting of systems heterogeneity; instead, it is
typical to eliminate devices that are unable to compute. The problems presented by node and statistical
heterogeneity are addressed by the FedProx algorithm conceptually and experimentally. The convergence
behaviour of federated optimisation in heterogeneous networks can be negatively impacted by implicitly
increasing statistical heterogeneity and eliminating stragglers (as in FedAvg) or naively absorbing partial
information from stragglers. To address this problem, FedProx strengthens the method's stability by including a
proximal term to the objective. FedProx enables different amounts of work to be completed locally among
devices depending on their available system resources. It then aggregates the partial solutions supplied by the
stragglers (as compared to dropping these devices) [50].

7. FL Performance Evaluation
Federated learning ML is proposed to safeguard sensitive patient information during multi-party computing

operations. By avoiding the data from being centralised and susceptible, this strategy will increase the privacy
and security of medical data. The authors in [16] proposed a Homomorphic encryption based model weight
aggregation at the central server. With the help of the public patient record dataset for x-ray images, the training
phase time performance of the suggested methods was evaluated.

The Figure 5 demonstrates the Federated Learning framework performance times in seconds for three
alternative configurations: No model encryption, Model encryption utilising HE with ciphertext modulus=128,
and Model encryption utilising HE with ciphertext modulus =192.

Figure 5. FL framework performance prediction
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The execution time in the encrypted model is substantially greater than in the plain model. Due to the
difficulty of homomorphic encryption and decrypting encrypted data, these exponential discrepancies exist.
However, for two clients, the execution times of different ciphertext modulus values (12,192) are the same, but
the difference in execution times increases as the number of clients increases. As a result, there will likely be a
trade-off between model security and FL performance.

8. Conclusions
To provide a complete overview and encourage further study in this field, we painstakingly explain the

current works of federated learning in this review article from various angles. We examined the parallels,
contrasts, and benefits of federated learning compared to other machine learning approaches. We also identified
the present issues, prospective threats, and future directions for federated learning research. The privacy attacks
would cause huge destruction to the security and privacy of the medical data. This may limit the growth of
improved patient and healthcare employing data-driven models. Therefore, it is important to take critical efforts
to increase not just the safety of the information but also the manner data is handled.

Future Developments: In terms of future development, more powerful and scalable federated learning
algorithms, such as vertical federated learning algorithms that partition features into various clients, should be
addressed. Additionally, very efficient encryption methods (such as homomorphic encryption) will help to speed
up learning. A robust privacy-protected learning algorithm, such as hybrid algorithms, anti-malicious attack
clients’ algorithm should be given greater consideration. In general, future research opportunities for sensitive
medical records can focus on these two questions:

 How to ensure privacy and security for data and model for sensitive patient records in FL?
 How to achieve a more effective trade-off between security/privacy and performance/accuracy in FL?
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