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Abstract:While most Internet of Things (IoT) solutions involve sensing, some of them also introduce actuation
mechanisms. Specifically, devices interact with assets in the environment and transmit sensor readouts to
applications that perform analytics. These applications typically reside on the network core and, in turn, process
the readouts that trigger the transmission of actuation commands to the device. One important issue in these
schemes is the nature of the communication channels. Most devices are wireless and therefore they are affected
by the effects of signal multipath fading that results in application loss. More importantly, these impairments
may cause actuation commands to be lost or to be critically delayed. In this context, several standard
mechanisms have been proposed for the transmission of traffic from the application to the devices. They fall
under two main architectural categories: (1) Representational State Transfer (REST) and (2) Event Driven
Architecture (EDA). In this paper, we analyze two protocols associated with each of these two architectures by
comparing them in order to assess their efficiency in IoT actuation solutions. This analysis leads to the
development of a mathematical model that enables the dynamic selection of the right technology based on
network impairments.
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1. Introduction
IoT architectures follow a fix topology that involves devices interacting with applications. The devices

support sensing and actuation while the applications perform analytics, generically through Artificial
Intelligence (AI) algorithms. Machine Learning (ML) classification is a field of AI that provides several
algorithms to support predictions that can be used to make actuation decisions [1].

While devices reside on the access side of the network, the application is, in most cases, on the core side in
the context of a cloud computing scenario. Between devices and applications, there is a network edge where an
edge device like a router or gateway translates protocols. Access networks are characterized by low transmission
rates associated with constrained devices and physical layer technologies. Core networks, on the other hand, rely
on traditional Internet protocols and, therefore, support higher transmission rates. Devices observe the
environment through sensing and affect the environment by means of actuation. To minimize latency and
improve the Round Trip Time (RTT) between sensing and actuation, applications sometime reside on the edge
or in the access network itself. Edge and access applications are respectively representative of fog and mist
computing scenarios.

REST scenarios follow the Create, Read, Update, Delete (CRUD) paradigm where devices are created and
deleted, sensor readouts are read and actuation commands are updated [2]. Under REST an endpoint transmits a
request that triggers a response on the far end. In the context of this research work, the application transmits an
actuation request to the device such that the device performs the actuation and transmits back a response. EDA
scenarios rely on a broker that reliably forwards messages between actuator drivers and applications. In this
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scenario, the application sends an actuation command to the broker, the broker then forwards the command to
the device. EDA as opposed to REST, does not require the device to transmit an end-to-end message to
acknowledge the reception of the command. EDA relies on lower layer protocols to support reliable date
transmission between endpoints.

In this paper we examine the performance of actuation mechanisms under REST and EDA scenarios. The
focus on actuation has to do with the fact that actuation is associated with transmission of commands from the
application down to the devices. Compare this with sensing where readouts are transmitted from devices to the
application. In the context of this paper, we look at two different protocols: Hyper Text Transfer Protocol
(HTTP) to support REST and Message Queue Telemetry Transport (MQTT) to support EDA [3-5]. First, we
present the different session flows and then we introduce a mathematical model to evaluate the performance of
each mechanism. This model is then used as the driver of an algorithm that enables the determination of the best
protocol given network conditions. The algorithm is then evaluated in an experimental framework.

The following is a list of the contributions of this research work:
 A mathematical model that provides a way to estimate session layer impairments for REST and EDA

architecture.
 An algorithm that relies on the mathematical model to enable the dynamic switching between different

session layer protocols to improve the overall system performance.
 An experimental framework to evaluate the proposed algorithm.

The remaining sections of this paper are the following: Motivation and a literature review are presented in
Section 2. In Section 3, we look at the message flows associated with actuation in the context of HTTP and
MQTT protocols. A mathematical model and an algorithm for dynamic protocol selection are presented in
Section 4. In Section 5, an experimental framework to evaluate the aforementioned algorithm. Finally, in
Section 6 conclusions and future work are discussed.

2. Motivation and Literature Review
The main motivation for the research presented in this paper is to find a mechanism that optimizes the

propagation of actuation commands from applications to devices. The biggest challenge is minimizing the end-
to-end latency to expedite the transmission of such commands. This is critical in Real-Time Communication
(RTC) IoT scenarios where high latency implies low Quality of Service (QoS). For example, consider a case
where an application transmits a flight path to an Unmanned Aerial Vehicle (UAV) that results from processing
through ML readouts coming from on-board sensors. In this context, any excessive latency becomes a liability
that can lead not only to failure but also to physical and personal damage [6]. Because most IoT devices are
constrained in nature, another very important requirement is for the algorithm to be computationally simple and
flexible enough that can be deployed in as many scenarios as possible.

The use of IoT networking protocols to propagate messages between applications and devices is a topic of
extensive research. When considering REST architectures, in addition to HTTP, the Constrained Application
Protocol (CoAP) is one of the preferred mechanisms to support the transmission of device messages. In this
context, the performance and the effects of latency, loss, throughput and other impairments on the application
under both CoAP and HTTP are evaluated in constrained IoT networks in [7]. In [8], CoAP, HTTP, IEC 61850
and other protocols are compared from a perspective of performance. Similarly, several congestion control
mechanisms are introduced in [9] to improve end-to-end latency in the context of network layer impairments. In
[10], HTTP session management drives the support of REST notifications to enable an IoT motion detection
application. The performance of web enabled actuators that rely on HTTP sessions is explored in [11]. REST
HTTP actuation in the context of industrial IoT architectures is analyzed in [12]. Because REST protocols are
independent of the lower layers, in [13] the support of HTTP and CoAP is taken into account in the context of
different transport layers.

From the perspective of the EDA architecture, several applications of MQTT have been studied. In [14] the
authors introduce an indoor localization solution in an EDA scheme. Similarly, an architecture to support
automated traffic light control in Smart City EDA topologies is presented in [15]. A detailed list of interop
issues associated with MQTT, as well as common applications are explored in [16]. Loss and latency in MQTT
scenarios are analyzed in [7]. The performance of MQTT with respect to other protocols, not only EDA but also
REST ones, is presented in [17]. A voice controlled IoT system that relies on MQTT messaging is introduced in
[18]. An MQTT-based robotic system that is used to mimic human hand movement is presented in [19]. An
aquaponics system that supports actuation and sensing in MQTT sessions is analyzed in [20]. In [21], a building
automation architecture that relies on a LoRa based MQTT protocol stack is introduced. The effects on network
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resources in MQTT and HTTP scenarios is presented in [22]. This analysis, however, does not address the
performance differences of these two mechanisms. In [23], the authors propose an architecture that allows
MQTT brokers to cooperate and share their data with other interested MQTT brokers. Similarly, in [24], the
authors evaluate the resource consumption of state-of-the-art fuzzing frameworks, thereby understanding the
degree to which brokers are tested before deployment. A comparison of the characteristics of MQTT, HTTP and
secure HTTP (HTTPS) is presented in [25]. Table 1 summarizes each paper and list of protocols that each
reference analysis.

Table 1. Summary of Related Work

Reference Protocols under analysis

Reusing Web-Enabled Actuators from a Semantic Space-Based Perspective [11] HTTP

Internet of Things application layer protocol analysis over error and delay prone links [9] CoAP, MQTT

Performance evaluation of IoT protocols under a constrained wireless access network [7] CoAP, HTTP

Validation of a CoAP to IEC 61850 Mapping and Benchmarking vs HTTP-REST and WS-SOAP [8] CoAP, HTTP

RESTful Motion Detection and Notification using IoT [10] HTTP

A REST and HTTP-based Service Architecture for Industrial Facilities [12] HTTP

Analysis of the constrained application protocol over quick UDP internet connection transport [13] CoAP, HTTP

Application of Fingerprint-based Indoor Localization System Using IEEE 802.15.4 to Two-Floors
Environment [14]

EDA generic

IoT-Based Urban Traffic-Light Control: Modeling, Prototyping and Evaluation of MQTT Protocol [15] MQTT

Internet of Things: Survey and open issues of MQTT protocol [16] MQTT

Performance evaluation of IoT protocols under a constrained wireless access network [7] MQTT

Analysis of the constrained application protocol over quick UDP internet connection transport [17] MQTT

The voice controlled Internet of Things system [18] MQTT

An IoT based wireless robotic-hand actuation system for mimicking human hand movement [19] MQTT

Data Acquisition and Actuation for Aquaponics using IoT [20] MQTT

A LoRa enabled building automation architecture based on MQTT [21] MQTT

Comparison with HTTP and MQTT on required network resources for IoT [22] MQTT, HTTP

Secure Data Distribution Architecture in IoT Using MQTT [23] MQTT

Resource-Intensive Fuzzing for MQTT Brokers: State of the Art, Performance Evaluation, and Open Issues
[24]

MQTT

Performance Comparison of HTTP, HTTPS, and MQTT for IoT Applications [25] MQTT, HTTP

Note that none of these papers addresses the difference between REST and EDA topologies to enable the
transmission of actuation commands. Moreover, none of them provides an algorithm, like the one introduced in
Section 4, that enables to dynamically select between REST and EDA architectures to maximize the system
performance.
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3. Actuation Message Flows
This Section introduces the different message flows associated with the actuation in the context of IoT that

are relevant to this research work.
The framework presented in this paper follows the topology shown in Figure 1 that is derived from ETSI

IoT reference architecture document [26]. Devices observe assets and send readouts to the application. The
application, in turn, transmits back actuation commands to the devices. This leads to REST and EDA topologies,
illustrated in Figure 2, that support protocols stacks made of layers that comply with the Internet Engineering
Task Force (IETF) layered architecture. These layers are (1) the physical layer that enables signal modulation
over the channel, (2) the link layer that supports access to the network core, (3) the network layer that provides
end-to-end routing, (4) the transport layer that supports application traffic multiplexing and (5) the application
layers that enables security and session management along with the transmission of application traffic itself.
Note that Figure 2 shows the flow of messages in the context of both architectures and does not take into
account the effects of lower layer protocols. Moreover, these flows are representative of a large number of
REST and EDA protocols but not all of them. For example, certain event-driven protocols like the Data
Distribution Service (DDS) do not rely on brokers.

Figure 1. IoT Topology

Figure 2. REST vs EDA

Figure 3 shows two stacks associated with HTTP and MQTT mechanisms. They both rely on traditional
IEEE 802.11 (WiFi) physical and link layers that support Internet Protocol (IP) networking. Similarly, in both
case the transport relies on the Transport Control Protocol (TCP). For each topologies the application layer is
carried out by the corresponding HTTP and MQTT protocols. On top of the application layer is the actual
actuation traffic that results from the transmission of actuation commands.
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Figure 3. Protocol Stacks

Figure 4 shows the message flows for both HTTP and MQTT. Note that this Figure corresponds to a subset
of the architectures shown in Figure 2. Specifically, HTTP and MQTT respectively fit the REST and EDA
paradigm. These flows only indicate application layer exchanges and do not take into account the lower layers.
Under HTTP, a POST request is directly transmitted from the application to the actuator driver. The request has
a body that carries the actual actuation command. Once the request is received, the actuator driver transmits a
200 OK message to confirm. Note that 200 is the response code that represents the OK response. Under MQTT,
a PUBLISH message is directly transmitted to the broker. The broker, in turn, forwards the message, as is, to the
actuator driver. The message holds the actuation command.

Figure 4. Flows: HTTP vs MQTT

4. Dynamic Protocol Selection Algorithm
This Section introduces the mathematical fundamentals that serve as the basis of the dynamic protocol

selection algorithm introduced in this paper.
Network impairments like packet loss and latency result from the transmission of actuation commands in

scenarios of multipath fading associated with wireless communication. In this context, the Gilbert-Elliot channel
model shown in Figure 5 is representative of these scenarios [27]. The assumption is the existence of two states:
(1) good and (2) bad respectively linked to low and high network loss. In the good state, the packet loss
probability is eG, while in the bad state, the packet loss probability is eB. In addition, the model has two
additional parameters: the channel good-to-bad transition probability p and the channel bad-to-bad transition
probability α. Network packet loss and loss burstiness are controlled by the parameters p and α respectively.
Note that under normal communication between two endpoints, loss is typically different for each direction.
Because this model only supports half-duplex communication, two models (with different parameters) are
typically needed to represent full duplex scenarios. Also note that for HTTP and MQTT sessions loss and
latency are tied together because retransmissions due to loss cause messages to take longer to arrive. Channels
with low loss are associated to channels with low latency. This channel model is used from this point on to
derive all the following expressions.



Computer Networks and Communications 236 | Rolando Herrero

Figure 5. Gilbert-Elliot Channel Model

For MQTT, that relies on the transmission of readouts from the device to the application, only one channel
model is needed. This model is known as the forward channel model. In this context, the overall probability that
the forward channel is in a good (Pf,g) or bad (Pf,b) state is respectively given by
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where pf and αf are the p and α parameters of the forward channel respectively.
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with ef,B and ef,G defined based on the channel model.
For HTTP, as opposed to MQTT, the communication is bidirectional, so two channel models are needed: (1)

a forward one and (2) a backward one. For those two models the channels probabilities are therefore Pf,g, Pf,b,
Pb,g and Pb,b. In this case the probability of successful transmission, derived similarly to equation 9 above, is
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with ef,B, ef,G, eg,B and eg,G defined based on the channel models. For simplicity, it can be assumed that all packets
are lost when the channel is in a bad state and it can be also assumed that no packets are lost when the channel is
in a good state. Specifically, ef,B = 1, ef,G = 0, eg,B = 1 and eg,G = 0.

Figure 6 shows the probability of successful transmission of HTTP and MQTT messages, PRs,Rq and
PM2,M1 respectively, for different values of the network layer packet loss (p) and packet loss burstiness (α).
Note that depending on the values of the latter parameter, HTTP is sometimes more efficient than MQTT and,
of course, some other times is not. For example, for α = 0.01 HTTP is more efficient and, similarly, for α = 0.1
MQTT is more efficient. Note that for α = 0.05 the performance of both protocols is quite similar.

(a)

(b)



Computer Networks and Communications 238 | Rolando Herrero

(c)

Figure 6. ,s qR RP (HTTP) vs
2 1,M MP (MQTT). (a) α = 0.01; (b) α = 0.05; (c) α = 0.10

Equations 8 and 10 lead to the following algorithm that dynamically determines whether HTTP or MQTT
should be used to forward actuation commands from the application to the device:
(1)Compute the pf, pb, αf and αb estimators using Maximum Likelihood Estimation (MLE) as indicted below
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where Jf,H,H, Jf,L,H, Jf,H,L and Jf,L,L respectively, reflect the transition counts between low and high loss probability
states throughout the analysis period in the forward channel. Similarly, Jb,H,H, Jb,L,H, Jb,H,L and Jb,L,L are the same
parameters for the backward channel. Note that these parameters are the outcome of a TCP segment analysis. In
essence, TCP protocol information can be used to obtain the p and α estimators.
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To summarize, this algorithm takes into account the network layer impairments to select the best
application layer session protocol. This selection is based on information that can be obtained from the TCP
layer that both HTTP and MQTT rely on. Based on this, one of these two protocols can be dynamically selected
to propagate application actuation commands to the device. An advantage of this algorithm is its low complexity
of order O(1) that enables it to be deployed on super low end IoT devices. Because, as indicated in Figure 6, the
performance of HTTP and MQTT are highly dependent on network layer impairments, any application can use
this algorithm to dynamically decide the protocol to select in order to transmit actuation commands to a device.
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5. Experimental Framework
This Section introduces the experimental framework that is utilized to evaluate the performance of the

algorithm introduced in Section 4.
To evaluate the efficiency of the algorithm presented in Section 4, the experimental framework topology

shown in Figure 7 is used. The goal is to measure the latency between the application and the device when an
actuation command is transmitted. In order to do so, Netualizer can be used to deploy emulated protocol stacks.
Specifically, the protocol stacks shown in Figure 3 are integrated to build the topologies in Figure 7. Netualizer
is a framework that supports Protocol Stack Virtualization (PSV) and enables the deployment of protocol stacks
and topologies. Figure 8 shows this experimental topology on Netualizer. The functionality provided by an
algorithm implemented (as a Lua script) that runs on Netualizer. Lua is a popular lightweight scripting language
that is characterized by a very small fingerprint that is ideal for the deployment of applications on low end
constrained embedded devices. In the context of the algorithm above, the script enables the retrieval of TCP
layer parameters that support the estimation of the Jf,H,H, Jf,L,H, Jf,H,L and Jf,L,L metrics.

Figure 7. Experimental Framework

For different conditions given by levels of packet loss (parameter p) and packet loss burstiness (parameter
α) for the forward and backward channels, the latency for HTTP and MQTT are estimated. Specifically, 300
actuation commands are transmitted at a rate of one command per second. It is assumed that in this scenario
devices are sparsely deployed so for all intent and purpose they are isolated in their own subnets where there is
little media access contention. The packet loss and packet loss burstiness follow a uniform distribution with p ∈
(0.1, 0.4) and α ∈ (0.1, 0.9). Three scenarios are considered: (1) using HTTP, (2) using MQTT, and (3)
dynamically selecting between HTTP and MQTT following the algorithm introduced in Section 4. Note that the
algorithm runs on the application layer of the application stack shown in Figure 8 and dynamically selects the
best transports to support the transmission of actuation commands. In this context, latency is measured in the
device stack for MQTT, as the traffic is unidirectional. Similarly, latency is measured in the application stack
for HTTP as the traffic is bidirectional.

Figure 8. Experimental Topology on Netualizer
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Figure 9 shows the actual end-to-end latency obtained for each of the three aforementioned mechanisms. It
can be seen that HTTP and MQTT exhibit latency levels that vary in the 50 to 120 milliseconds range. For some
samples, latency associated with HTTP is larger than that associated with MQTT, for other samples, the
opposite is true, that is, latency associated with MQTT is larger than that associated with HTTP. The end-to-end
latency that results from applying the algorithm results in an overall latency that combines the best case
scenarios of HTTP and MQTT. Figure 10 shows the actual transitions between HTTP and MQTT that result for
this particular scenario. Note that the transitions are quite uniform, it can be seen that around 53.28% of the time,
the algorithm selects HTTP while for the remaining 46.72% it selects MQTT.

Figure 9. End-to-End Latency

Figure 10. Mode Selection

Table 2 shows the experimental metrics that are measured as a result of the algorithm. Specifically, the
mean latency and standard deviation in units of milliseconds is shown. Again, note that the proposed algorithm
outperforms both HTTP and MQTT session management mechanisms to propagate actuation commands from
the application to the device. The Table also shows an alternating scenario where HTTP and MQTT are
sequentially applied 50% of the time. Specifically, the algorithm exhibits an overall latency that is 12.84%,
14.01% and 21.65% lower than that resulting from HTTP, MQTT and alternating session management
respectively.
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Table 2. Measured Experimental Metrics

Mechanism Mean (ms) STD deviation (ms) HTTP (%) MQTT (%)

HTTP 86.88 13.60 100 0

MQTT 88.05 11.17 0 100
alternating 92.15 19.26 50 50

algorithm 75.72 10.26 53.28 46.72

Similarly, the standard deviation of the latency is 24.56% and 8.15% lower than that of plain HTTP and
plain MQTT respectively. Note that the Table also shows, in its last two columns, the ratio between HTTP and
MQTT activity under each scenario. Because there are no other mechanisms that support dynamic session layer
protocol switching, the proposed algorithm is only compared against static use of HTTP and MQTT.

6. Conclusions and Future Work
In this paper, we addressed the transmission of actuation commands from applications to IoT devices. We

introduced a scenario where two session layer protocols, HTTP and MQTT, respectively support REST and
EDA architectures. One issue with these two architectures is that, depending on network and communication
conditions, the latency from the application to the device may be different depending on the session layer
protocol under consideration. For certain actuation commands, the latency may be smaller under HTTP, for
some other commands, MQTT may provide better results. In this context, this paper introduces a novel
algorithm that dynamically selects the best session layer mechanism given network metrics that are collected
real time from analyzing the transport layer. The algorithm, by conveniently combining both mechanisms, is
shown to lower end-to-end latency by around ten percent when compared to the plain use of either HTTP or
MQTT. The algorithm is based on a mathematical model of the communication channel, that produces to
expressions to obtain the probability of successful transmission for both HTTP and MQTT. Depending on the
burstiness characteristics of the network packet loss, sometimes HTTP is more efficient and some other times
MQTT is. It can be seen that the algorithm uniformly switches between one protocol and the other for uniformly
distributed channel network layer impairments. This algorithm is the most significant contribution of the
research work presented in this paper. There are a few limitations associated with the mechanism though. It is
designed to work with REST and EDA architectures that follow topologies shown in Figure 2. The algorithm
does not take into account routing constrains like those associated with the Routing Protocol for Low-Power and
Lossy Networks (RPL) standard. The algorithm also assumes no access media contention as devices are
deployed in their own subnets.

Note that although REST and EDA are architectures and HTTP and MQTT are protocols respectively
associated with these architectures, other session layer protocols can be also taken into account. Going forward,
this research can be extended to take into account other IoT session layer protocols like CoAP. Moreover,
because CoAP relies on the User Datagram Protocol (UDP) for transport, CoAP relies on a different traffic
model that may be worth investigating. Specifically, dynamically choosing between HTTP, MQTT and CoAP
can be the next step for this algorithm. Obviously, this requires some additional channel modeling. Alternatively
another line of research can take the effect of routing and multi-device deployment scenarios.
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