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Abstract: The constant desire for faster data rates, lower latency, improved reliability, global device integration,
and pervasiveness are some of the factors driving the development of next-generation communication systems.
Sixth-generation (6G) networks have received a lot of attention from the industry and academics as fifth-
generation (5G) communications are being rolled out globally. With the proliferation of smart devices and the
Internet of Things (IoT), 6G networks will require ultra-reliable and low-latency communication. Routing
protocols have a significant role in improving the performance of a network. Traditional routing techniques will
have difficulty coping with the highly complex and dynamic 6G environments. Recently, machine learning
(ML), a key component of artificial intelligence, is emerging as the key to managing complex and dynamic
networks efficiently. However, there are still several significant challenges that need to be addressed. In this
paper, we provide an overview of current machine-learning techniques used in network routing. Lastly, we
highlight open research problems that need to be addressed and prospects for future research.
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1. Introduction
The ever-increasing demand for higher data rates, minimal latency, better reliability, global integration of

diverse devices, and pervasiveness are some of the drivers for newer-generation wireless communication.
Introduced in the 1980s, the first generation (1G) of cellular communication was the first commercially
available mobile network. The data rate was minimal, supporting the most fundamental voice calls. The second
generation (2G) networks emerged in the 1990s, supported text message service, email, web browsing, and
voice communication, and brought significant improvements over 1G. 2G networks adopted the GSM cellular
communication standard. Mobile technology advanced significantly with the advent of third-generation (3G)
networks in the early 2000s. 3G networks provided services to access multimedia and video communication and
greatly improved mobile networks' capacity and effectiveness, enabling faster data rates and better voice quality.
The fourth generation (4G), introduced in the early 2010s, supported high-definition TV, online gaming, and
mobile TV with improved QoS over the predecessors. In the early 2020s, the fifth generation (5G) is being
deployed globally with additional services, including telemedicine, industrial control, virtual and augmented
reality, and the Internet of Things (IoT) with enhanced broadband, massive access, and ultra-reliable and low
latency [1,2].

The three primary aspects of 5G are enhanced mobile broadband (eMBB), ultra-reliable low-latency
communications (URLLC), and massive machine-type communications (mMTC). The enhanced eMBB feature
of 5G allows for high data rates of up to 10 Gbps. Furthermore, compared to 4G, mMTC in 5G supports over
100 times as many devices per unit area, and uRLLC achieves a latency reduction of 1 millisecond. An
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extremely high connection density of 1 million devices/km2 is expected to be supported [3]. Technologies such
as Software Defined Network (SDN), Device to Devices (D2D), Non-Orthogonal Multiple Access (NOMA),
and massive MIMO have been introduced to improve performance by reducing network traffic, saving energy,
and increasing data rate. However, the capabilities of 5G wireless systems are likely to be outperformed by the
rapid inclusion of smart devices and automated IoT devices in the networks. On the other hand, as new IoT
services and applications grow, such as robotic surgery, automated cars, and extended reality, which require
further advancement in the current generation. The 5G-enabled Internet of Things (IoT) is evolving into the
Internet of Everything (IoE), aiming to associate with vast numbers of devices, people, and organizations,
exceeding the capabilities of 5G. The current network design cannot guarantee service quality for applications in
the future that need high throughput, very low latency, and global coverage [4]. Therefore, investigation of the
upcoming network design is important.

Overcoming these challenges necessitates the development of 6G networks, which are expected to provide
data speeds exceeding 100 Gbps, latency of 0.1 milliseconds, and support for high connection densities of up to
10 million devices/km2 [3]. Network reliability and availability are expected to go beyond the requirement of
5G. Increase in application based on positioning are expected due to 5G networks' anticipated ability to find
devices with sub-meter accuracy. However, the advent of applications like extended reality, telemedicine, V2X,
and autonomous industrial systems often compromises the positioning accuracy of current 5G. The 6G network
will have to conform down to centimetre-level positioning accuracy or even sub-centimetre-level positioning
accuracy to support such applications [5]. The sixth generation aims to present the space-air-ground-sea
integrated network and areas within human activities to increase capacity and offers worldwide coverage,
providing a completely integrated user experience that works as a fully intelligent system [3,6,7]. 6G
communication networks may address the shortcomings of the 5G system by incorporating new future services
such as THz communications [8], edge intelligence [9], reconfigurable intelligent surfaces (RISs) [10], a
pervasive introduction of AI [11], space–air–ground–underwater communications [6], massive URLLC
communications [12], and blockchain [13]. An overview of 6G wireless communication networks is shown in
Figure 1.

Figure 1. An overview of 6G networks.

Wireless communication technologies are improving rapidly to meet the demand of ever-increasing data-
hungry applications, demanding higher data rates, very low latency, and better service quality. 6G network is
designed to provide pervasive intelligent services from the core network to its endpoints, making its widespread
deployment of machine learning systems feasible. With the assistance of Artificial Intelligence (AI) technology
over a large spectrum, 6G is envisioned to offer a higher data rate with improved QoS and reliability with ultra-
low latency. AI-assisted 6G offer computational power and intelligent data transfer with caching to enhance
network performance [14,15]. The network architecture design for 6G has considered high dynamism, dense
distribution, and heterogeneity. Effective connectivity to support real-time processing of large amounts of data
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generated from terminal devices has been considered one of the main challenges for 6G networks. The existing
wireless infrastructure needs improvement to support rapidly increasing connectivity that can ensure end-to-end
QoS as well as QoE. Some machine learning methods and protocols are being studied in recent times to enhance
some aspects of network functionality, including network traffic prediction, traffic classification, and congestion
control.

Routing strategy plays an important key role in improving network performance. One of the major
challenges with traditional routing protocols is that, it relies on finding the shortest path between a source and its
destination without considering the real-time network scenario. Furthermore, the traditional routing methods do
not have the scope of learning from past information with similar conditions, that resulted in severe congestion
or increased delays, because of wrong decisions. Traditional routing algorithms are inefficient in large-scale
systems because it involves enormous computational complexity. Moreover, the rapid growth in network traffic
and rapidly changing network environments in next-generation networks may give rise to new challenges for
routing strategy design with application demands large amounts of data, high data rates, and low latency [14,16].
Thus, traditional routing solutions require a scope for improvement to meet the requirement of 6G with the
assistance of Machine Learning techniques, thereby predicting the optimum path and estimating the minimum
cost to route the packet in real-time. This paper provides an in-depth review of machine learning based on
intelligent routing and makes the following contributions:

• An analysis of the 6G convergence, beginning with the evolution of cellular network generations and
limitations of 5G.

• The expected service requirements of 6G are briefly discussed.
• The overview of Machine Learning techniques and existing machine learning-based routing techniques

are enumerated.
• Research challenges and potential future research directions toward 6G are discussed.
The paper is organized as follows; the first section of this paper gives an overview of cellular

communication emphasizing on 6G. The second section lists the key requirement of the 6G Network. The third
section discusses the background of different machine-learning techniques, followed by an elaborate discussion
of existing machine-learning-based routing algorithms. In the fifth section, we list some open research
challenges that need further investigation for future prospect and finally, we conclusion the manuscript.

2. Requirements of 6G network
The specifications for 6G network are covered in this section. Applications such as remote surgery, virtual

reality/augmented reality, unmanned aerial vehicles (UAVs), Internet of Things (IoT), Vehicle to Everything
(V2X), and machine-to-machine communication are expected to be supported by 6G networks. In addition, 6G
mobile network are expected to provide these services with high reliability, high efficiency, capacity, and low
latency.

2.1 Massive Connectivity
The future 6G networks are anticipated to host a sizable number of IoT devices. IoT applications require

frequent data exchange which may be from sensing, processing, managing and storing. Machine-type
communication is a significant focus of next-generation communication networks due to the demand for
seamless communication among multiple networked devices. As the number of devices increases, networks
need to support huge connections with efficient utilization of resources. Massive device deployment may
exacerbate network resources, packet loss, and latency [17]. A mmWave-based NOMA strategy for mMTC,
where several devices share the same assigned base station resources, was proposed in [18]. The author in [19]
suggests a reinforcement-learning-based ML strategy to overcome channel limitations, because connected
devices use the same spectrum. Depending on the distance between the devices themselves or between the
device and the base station, the devices sharing the resources that works in pairs. With non-terrestrial
technologies like satellite connectivity and wireless communication supported by UAVs, 6G are expected to
provide total coverage. These applications require an efficient spectrum and capacity to accomplish this
connectivity [20].

2.2 Massive Ultra-Reliable and Low-Latency
Relatively low latency and dependability link are key requirement in IoT-based application domains such

as autonomous vehicles, remote surgery, machine-to-machine communications, smart grids, and virtual reality /
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augmented reality. Vehicles will need a high URLLC to send information, and video information to improve
traffic efficiency on the roadway while maintaining safety. The efficiency and delay for applications such as
remote surgery and remote medication, which use robots to monitor or treat patients located at far distance, can
directly impact a patient, as their well-being relies on the effectiveness and efficiency of these network
parameters [21]. Machine learning methodologies will be crucial for the development of intelligent network
resource allocation strategies for URLLC requirements. The author in [22] presents a framework that aims to
enhance time and frequency resources in such communication system, thereby increasing the capacity to support
lifesaving devices. With this approach, latency and reliability restrictions are guaranteed with improved
spectrum utilization. The author in [23], suggested approach with prediction and communication co-design for
improving performance in remotely-controlled system. The author also pointed the challenges of simultaneous
achievement of 5G NR's ultra-reliability and high latency demand. Thus, Massive MIMO and multi-
connectivity were studied in order to attain high reliability. The author in [24] has concentrated on using
machine learning techniques to acquire prior environmental knowledge. In order to enable URLLC services
utilizing cognitive radio under perfect or imperfect channel state information, the author introduces low-
complexity algorithms in a cellular environment. The suggested techniques improved the uplink and downlink
access scenario.

2.3 High Energy Efficiency
For real-time applications like smart automobiles, smart cities, smart health, and smart industries, high

power is required. Mobile devices with poor battery life, running services demanding high energy consumption
seriously impair smooth connectivity. 6G devices will demand more energy because they are projected to
operate in a higher frequency range. Power optimization and energy-efficient methods must be designed to meet
the challenges of next-generation networks. A fresh approach for 6G network was proposed by the author of [25]
and is known as Multivariate Regressive Deep Stochastic Artificial Structure, learning to adjust the different
data packets to improve communication that is energy and cost-conscious. In order to locate the useful node in
the hidden layer, multivariate regression is performed. The suggested approach examines node statuses like
energy, signal intensity, and spectrum usage. According to the author's discussion in [26], a machine learning-
assisted 6G network can achieve energy efficiency, enabling energy efficiency at the access, edge, and core
networks. Machine learning can boost performance while lowering energy efficiency concerns in future
networks. In order to increase the network lifetime, radio frequency (RF) energy harvesting, for instance, can
harness energy from RF waves. A novel alternating optimization technique is proposed to enhance the energy
efficiency of the backscatter-enabled cooperative NOMA system, which is affected by poor channel conditions
[27].

2.4 High Security and Privacy
The protection of data, privacy and confidentiality in existing IoT networks is another crucial requirement.

Edge devices will regularly use AI applications, and every edge device in 6G is anticipated to have an Internet
connection. The security and privacy of data that is acquired must be addressed because bulk of AI applications
rely on data. Distributed Denial of Service (DDoS) attacks on a large scale may become more frequent as more
IoT devices are connected to the internet. The broad distribution of 6G systems renders edge computing prone to
physical security concerns, DDoS attacks, and man-in-the-middle attacks [28]. In order to intelligently
recognize and address potential threats, it is crucial to employ a security design that utilizes machine learning
techniques that can analyze network anomalies throughout the network. Future networks should also include
strong security safeguards to protect user privacy, and the vast amounts of obtained healthcare data, describing
how ML can be used to improve the security of 6G networks in health care [29]. UAVs have emerged as an
effective way to reduce security risks. An approach based on UAV-assisted communications is carried out by
the author in [30] to enhance URLLC systems' secrecy by reducing the risk of eavesdroppers.

2.5 Resource Management/Optimization
Edge computing (EC) is viewed as a potential enabling technology for the sixth generation (6G), able to

meet enhanced service needs. Moreover, Edge computing in 6G will include edge devices with advanced
technologies such as artificial intelligence and autonomous decision-making that handle real-time data analysis,
extract insightful knowledge, and react autonomously to local events, enabling quicker and more effective
decision-making [8]. With the support of base stations, wireless network controllers and other aggregation sites,
EC enables the development of virtualized infrastructures at the network's edge. Researcher have been
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investigating on enabling edge intelligence in 6G-IoT use cases. The development of EC reduces the network's
potential data transmission bottlenecks as well as the data processing load assigned to the core network.
However, the frequent changes in these edge devices and resources result in uncertainty in EC systems. The
author in [31] offered a brief overview of RL-based EC-enabled networks and identified the challenges with
optimization based on an analysis of the network uncertainty. The author in [32] proposes an effective edge
computing framework for smart cities to reduce energy consumption, enhance system performance, and
implement real-time applications. The proposed technique acts at the application layer between EC servers and
creates an information structure to store the characteristics of EC services that are performed by EC servers.

2.6 Global Coverage
It is anticipated that wireless broadcasts will be completely available everywhere. Multiple devices, such as

smartphones, automobiles, sensors, robotics, and maritime users, must be seamlessly connected via 6G. The
next generation of wireless communication networks will integrate air-space-ground-sea networks to attain
worldwide coverage. Satellites and UAVs collaborate to create a cognitive satellite-UAV network in order to
smoothly connect Internet of Everything (IoE) that are outside the range of terrestrial cellular networks.
Enabling communication via satellites is especially challenging due to the inherent delay and limited data
capacity. Wide-area IoT networks are anticipated to be connected in 6G using swarm UAVs. Incorporating
swarm UAVs into terrestrial and satellite networks will allow for 3D networking and cell-free communication
[20]. Such technology is anticipated to be used in the next generation of mobile communication networks.

3. Overviews of Machine Learning Techniques
Machine learning (ML), being an integral part of artificial intelligence that does not require explicit

programming, allows systems to learn from examples and data. Regression, categorization, and interactions
between an intelligent agent and its environment, uses these models. For cases where there is no optimal
solution using a conventional technique, ML approach may be the candidate of choice. ML is data-driven and
uses past data to predict application scenarios dynamically, allowing it to adapt to various situations and changes
in the network environment. Based on an enormous number of predictions about the application scenarios, the
ML-based routing algorithm can be used for suitable decisions making in accordance with the QoS standards
[14]. Adopting ML techniques that can automatically acquire knowledge from previous data gives a more
effective method of replacing traditional techniques that depends on lengthy rule lists. Figure 2a depicts the
relationships between artificial intelligence, machine learning, and deep learning.

3.1 Supervised Learning
ML technique known as supervised learning maps the input function to the output function using labelled

datasets. Supervised learning (SL) is divided into regression and classification based on network continuity.
Applications that have access to large volumes of data for algorithm training have benefited from supervised
learning since the robustness of an algorithm is directly correlated with the number of instances [11]. Compared
to the conventional technique, supervised learning-based routing algorithms can significantly reduce the
computing and signalling overhead, making them a desirable solution for intelligent routing. Support Vector
Machine (SVM), Gaussian Process Regression (DPR), Support Vector Regression (SVR), and K-Nearest
Neighbours (KNN) methods are a few examples of SL techniques.

3.2 Unsupervised Learning
Unsupervised machine learning learns the functions that can be used to describe hidden data structures and

patterns using unlabelled datasets. These methods are suited for wireless network problems where - the findings
are unknown in advance or where data annotation is difficult to put into practice. The extraction of system
knowledge and behaviour in difficult environments is made possible by data analysis utilizing unsupervised
learning techniques, such as analyzing the effects of frequency changes, dynamic interference, changing user
density over time, dynamic traffic patterns, and cell switching [11]. The techniques for unsupervised learning
are K-means clustering, Principal Component Analysis (PCA), isometric Mapping (ISOMAP), and hierarchical
clustering algorithms.
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3.3 Reinforcement Learning
Reinforcement learning (RL) focuses on producing appropriate decisions by mapping situations to actions

and determining which actions must be considered to maximize a long-term reward. Wireless networks operate
under unpredictable stochastic conditions, such as the location of a node and its available power level. The goal
of the RL task is to determine the optimal action taken to maximize rewards by making the best decision under a
given circumstance [11,14]. RL gains the ability to manipulate a system to achieve a long-term goal. The
controlled system's current state, as well as the reward linked to the most recent state change, are sent to the
controller. As a result, the controller makes a decision and update the system about the changes. The system
then transitions to a new state in response. This loop keeps iterating until the controller discovers a way to
interact with the system so that the overall reward is maximized. Reinforcement learning techniques include the
Markov decision process (MDP), a multi-armed bandit (MAB), Q-Learning and policy learning, and actor-critic
(AC).

(a)

Figure 2. (a) Gives the relationship between artificial intelligence, machine learning, and deep learning. (b) Traditional programming (c)
Supervised learning (d) Unsupervised learning (e) Reinforcement learning.

3.4 Deep Learning
Deep learning is an AI function that analyses how human brains work and uses that knowledge to build

patterns on artificial neural networks with numerous layers of neurons. The accessibility of large datasets and
the availability of adequate computing power have been the key drivers for deep learning paradigm's growth
[14,15]. By using nonlinear processing units to extract information from raw data - layer by layer, DL
techniques produce predictions based on predetermined goals, as shown in Figure 3. Deep Neural Networks
(DNN), Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), and Recurrent Neural
Networks (RNN) are some DL methods. Deep neural networks (DNNs) use straightforward nonlinear functions
on input data to approximate complex functions. The model parameters are produced when a loss function
reaches its minimal value by employing stochastic gradient descent (SGD) techniques and a back-propagation
mechanism, which abides by the fundamental chain principle of differentiation.

4. Machine Learning-Based Routing Algorithms
The process of selecting a path for transferring the data from source to destination is known as network

routing. The end-to-end delivery of packets is mostly handled by the network routing algorithm. Traditional
routing protocols primarily rely on distance vectors or link metrics. Several ideas have also been offered for the
conceptual explanation of routing and its application. These traditional routing protocols may not be adequate
for rapidly changing network and handle heterogeneity of connectivity, resulting in ineffective routing decisions
and insufficient resource utilization [14]. These methods have shortcomings, such as slow network recovery
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speeds for large networks and poor scalability in dynamic context. The classical shortest path technique, which
incurs high computational complexity with the increase and dynamic of the node, routes packets based on
variables like hop count or delay [16,17]. Additionally, because these traditional protocols make their routing
decisions on limited information, existing techniques may be challenging to adapt to dynamic traffic. Moreover,
traditional routing techniques send all traffic to a link as per the current state information, which may lead to
bottleneck problems as available bandwidth fluctuates over time in the actual network environment. The user
experience will be significantly reduced as a result, leading to major network congestion and significant
resource wastage [33]. Intelligent network routing systems based on machine learning have received a lot of
interest in a variety of network environments for their ability to take advantage of the intricate relationships
among the many parameters to choose the optimum route. Recently, researchers are adopting machine learning
techniques to address network routing issues. Figure 3 depicts the architecture of a machine learning-based
routing system for a varying packet with respect to time.

Figure 3. Deep learning-based routing.

4.1 Supervised Learning Based Routing Algorithm
Deep learning based on supervised learning techniques can provide the opportunity to implement routing

techniques in complex network topologies by obtaining insight from labelled data. The author in [34] proposes
the use of supervised classification methods to handle the routing and wavelength assignment problem. The
combined wavelength distribution and routing challenge is defined as an ML task classification problem, and
the software-defined optical network is trained using logistic regression and DNN from the training data set that
was gathered. A QoS-aware routing method is proposed using supervised ML to classify and determine a path
with the highest average route residual capacity based on the QoS requirements of each application. DNN model
is then used in the SDN controller to perform dynamic QoS classification for each request that enters the
network [35]. In [36], the author proposed a routing protocol for D2D communication to reduce routing
overhead and energy consumption resulting from delivering various parameters separately. The model was
trained using four supervised ML techniques to find the best technique for the proposed protocol. When
compared to the conventional approach, the proposed approach reduces routing overhead, increases network
lifetime, and enhances connection quality. The author in [37], address complex decision-making problems by
using a deep learning-based routing method to choose the shortest path required for data transmission. The
suggested routing approach learn the nodes' connection behaviour for shortest path identification to avoid
congestion and improve energy efficiency. Compared to the traditional method, which uses the distance between
nodes as metrics, the work in [38] uses four distinct metrics, such as latency, bandwidth, SNR, and distance, to
determine the best routes with the use of Dijkstra's algorithm in real-time. In [39], the author considering the
significance of maintaining IoT networks and the difficulty of achieving energy optimization in various
environments. A hybrid method based on support vector regression is suggested to enhance IoT routing and
reduce energy consumption. The suggested technique outperforms alternative approaches in terms of power
consumption, end-to-end delay, load balancing, overhead, and network longevity. In [40], the author suggested a
novel approach based on stochastic gradient descent to verify the accuracy of the node's parameter updates and
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integrity of aggregating the node's parameter updates. The suggested approach guarantees data privacy and
improves QoS. Table 1 summarizes the supervised learning based routing algorithms.

Table 1. Summary of supervised learning based routing algorithm.

Ref. Technique Year Path Deployment Outcome

[34] Deep Neural Networks 2019 Single-path Distributed Reduce network congestion dynamically

[35] Deep Neural Network 2022 Single-path Distributed Improve the link capacity and throughput

[36] Supervised Learning 2022 Multi-path Distributed Minimize routing overhead and improves
link quality

[37] Deep Belief Network 2022 Single-path Distributed Improve energy efficiency, number of
active nodes, and packet delivery rate

[38] Supervised Learning 2023 Multi-path Distributed Improve delay and throughput

[39] Support Vector
Regression

2023 Multi-path Distributed Reduce computational overhead, end-to-
end delay, and improve load balancing

[40] Supervised Learning 2023 Multi-path Distributed Improve data privacy within the
acceptable overhead

4.2 Imitation Learning Based Routing Algorithm
Imitation learning is learning from experts and imitating the best behaviours without the redundant

exploration process. The key concept is to consider network routing with the optimal routing decision as an
expert behaviour, and the network's agent continuously imitates the optimal decision as it learns from the
current state. The author in [41], highlight the drawback of traditional network, that is traditional networks are
unable to perform self-adaptation intern SDN controllers' computing resources are wasted. The CNN approach,
which is based on real-time traffic traces, is used to intelligently compute the paths by following the concept of
imitation learning. The suggested method is highly accurate at determining the appropriate path combinations.
The author in [42] analyses the effect of route prediction on the performance of the transport network. In order
to effectively perform fast inference and lower the cost of control information exchange, the central controller
uses a DNN classifier to predict the path sequence. A network model based on the GNN that can adjust to
various topologies, routing protocols, and traffic quantities was proposed in [43]. Even with topologies, routing,
and congestion that was not present during training, the author claims their approach accurately predict the delay
distribution and loss. The study in [44] pointed out that certain issues exist with the deep learning-based network
traffic control methods in use, including sub-optimal routing performance, longer training durations, and high
data demand. The study shows the use of three deep learning models to train and test a large number of network
sub-blocks via a recursive partition technique to address these issues. The work in [45], presents an extreme
learning machine method to address the issue of longer training durations, and high data demand. With the aid
of both past and current data, the authors in their study learned the attack rule and anticipated the attacker's
subsequent behaviour in the edge computation system.

The work in [45] presents an extreme learning machine method to address the issue of longer training
durations, which in turn will have penalty during network congestion and attacks in EC. With the aid of both
past and current data, the authors in this study learned the attack rule and anticipated the attacker's subsequent
behaviour in the EC system. The QoS-aware multipath routing issue was addressed by the author in [46], using
DNN-based multipath routing. The suggested approach develops a mapping function that relates the routing
configurations at the central network controller to the projected network state. The proposed framework also
exhibits a higher gain in computing efficiency. Table 2 summarizes the imitation learning based routing
algorithms.
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Table 2. Summary of imitation learning based routing algorithm.

Ref. Technique Year Path Deployment Outcome

[41] Convolutional Neural
Networks

2019 Single-path Distributed Minimize the packet loss rate, prevent
congestion, and increase throughput

[42] Deep Neural Networks 2020 Single path Centralized Decrease the signalling overhead of the
transport network

[43] Graph Neural Networks 2020 Single-path Centralized Increase network performance metrics
including jitter, packet delay, and latency

[44] Convolutional Neural
Networks

2020 Single-path Centralized Achieves less time complexity while obtaining
higher accuracy

[45] Extreme Learning
Machine

2020 Single-path Centralized Improve network reliability and avoid
congestion

[46] Deep Neural Network 2021 Multi-path Centralized High prediction accuracy and improved
computational efficiency

4.3 Reinforcement Learning Based Routing Algorithm
Reinforcement learning are more dominant approach adopted for optimization and dynamic problem, as

RL does not rely on instruction and therefore does not require manual data labelling, which is a significant
benefit of RL over supervised learning. Some researchers propose using deep reinforcement learning for multi-
hop routing since it achieves lower latency. To reduce congestion problems and reducing delay in transmitting
data, the author in [47] employs DRL for route selection in networks with high traffic. Two distinct DQN based
algorithms have been created to minimize the possibility of network congestion using short-range routes. The
other focuses on shortening the transmission route, while the former aims to reduce the possibility of congestion.
The proposed algorithms claim to have increase network throughput in situations with high network traffic. The
author [48] incorporated a modified deep Q-network into each router to assess its neighbours. By updating their
Q-networks, the model updates to improve the packet routing technique. The network's routers can function
decentralized to lower computation complexity if the reward structure and learning process are appropriate. The
suggested strategy can also enhance network performance by lowering the likelihood of congestion.

In recent years, new network application scenarios like data centre network traffic scheduling and
backbone network traffic engineering have emerged. The authors of [49] propose a direct flow routing technique
that is based on SDN and allows packets belonging to the same flow to follow the same routing path. In this
work, single-path routing and conventional routing techniques are greatly outperformed in terms of performance
by using simple Q learning algorithm. A constrained intelligent routing methodology built on deep learning was
developed by the author in [50]. It combines the advantages of the Lagrange multiplier method for dealing with
constrained situations with the exceptional feature learning capabilities of deep learning. The routing service
learns a variety of properties in order to adapt to the ever-changing network traffic environment and enhance
network performance. The authors in [51], suggested Q-routing, which treats each routing node as a state in the
MDP, the current routing node select the next routing hop based on the MDP action. An intelligent routing
algorithm was proposed in [52], which utilize deep learning and global optimization techniques to improve
performance for newly developed network application scenarios. By merging erasure coding and DQN to learn
constantly changing network parts, the author proposed DQN erasure coding to address routing issues. The
proposed approach gathers information about the status, quantity, and block size of nodes that have stored
blocks during erasure coding using the SDN controller. A routing algorithm based on reinforcement learning
was presented in [53] with the objective of balancing the network load and improving network connection.
Based on the current input status, the technique predicts the ideal routing plan in the current traffic environment.
The suggested method outperforms conventional algorithms by attaining better average delay, reduced packet
loss rate, greater throughput, and improved load distribution performance.

In [54], the author suggests a dynamic routing method selection approach that utilizes Q Learning. The
suggested algorithm is trained to select the best traditional routing method to apply to the traffic flows in an
SDN environment and decide which QoS-based traffic class offers the optimum balance between throughput,
packet loss, and rate of rejection. For the purpose of offloading in 5G cellular IoT, the author in [55] proposed
reinforcement learning-based V2V routing, which is used to balance each vehicle's energy usage and conserve
energy. However, strict energy consumption limits are not imposed on vehicle models. As a result, certain
vehicles may end up using a lot of energy to transmit packets. Moreover, due to the continuously changing
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network topology and short coherence periods caused by high levels of mobility and hybrid vehicle types, a
quick adaptation is required. A new routing protocol with reinforcement learning capabilities incorporates
information on the potential movements of mobile agents. The RL-based routing technique has been shown to
suffer from short-term impacts in urban environments. A hybrid ML approach added a timer-based technique to
the update process in order to classify radio environment prototypes. This allows the protocol to adapt
autonomously based on the situation [56].

The author of [57] presented a routing model based on RNN that takes service delays into consideration
while calculating routes, that complies with the traffic routing principle. The suggested technique quickly
calculates every route between every pair of nodes in the meta-graph, and it determines how reliable a link is by
tracking the cost variance over time. The suggested method results in constant-time convergence. In order to
authenticate the nodes, the work in [58] presents a unique routing protocol based on ML for IoT-WSN. When
compared to other protocols, the suggested protocol outperforms in terms of throughput, latency, and overhead.
However, convergence speed and model generalization are the main concerns with regard to progress in the real
world. The author in [59], proposed a method in order to speed up convergence and meet the current 3GPP
standard. The work introduces Soft Actor-Critic, a DRL algorithm based on maximum entropy reinforcement
learning for achieving its objective.

In order to communicate between nodes in an energy-efficient manner, Distributed AI is first adopted in
[60], and power usage for the communicating nodes is determined mathematically. The consumed power values
of the nodes for various time instants serve as the training data for the neural network approach employing self-
organizing maps (SOM), which creates a cluster. This power-based node design produces effective routing for
operation of specific application. The suggested strategy turns out to be more efficient in terms of the network's
overall energy use as well as minimizing computational complexity. However, strict energy consumption limits
are not imposed on vehicle models throughout the routing process. As a result, certain vehicles may end up
using a lot of energy to transmit packets. For the purpose of offloading 5G cellular IoT, reinforcement learning-
based V2V routing is used to balance each vehicle's energy use and conserve energy [61].

According to the research of [62], each link's bottleneck was predicted using a deep neural network
predictor based on multitask learning using past information, and the results were compared to rule-driven
congestion mitigation and replay. In contrast to passively compensating for congestion once it occurs, the
integration of routing techniques enables routing approaches to continuously adjust routing before congestion
arises. The technique presents more robustness against topology changes and reduces the network's average end-
to-end delay. The author [63] addressed the issue of the Q-learning algorithm's slow convergence. Based on the
Q-learning algorithm, the author enhances the reward mechanism, boost the guiding function, decrease the
possibility of random behavior in an agent's decision-making process, reduce delay and packet loss rates, and
use the periodic data of satellites to establish the network model. The LEO satellite network features a guiding
function that improves the algorithm's convergence by including in Q learning algorithm.

In order to optimize connection stability, range and to increase the packet delivery rate of the IoV, the
sending node uses the multi-weight decision algorithm for decision-making process [64]. The author in [65]
aims to solve dynamic load balance problem in real-time topology and improve the QoS of the system using the
proximity of each of the paths and priority-based categorization. The suggested approach keeps track of each
link's load and, if necessary, re-routes traffic in real-time. The result shows significantly improvement in
bandwidth utilization and throughput. In [66], the author proposed an efficient method to address the issue of
call drops due to a lack of resources, which causes an additional network delay. The proposed technique
distributes the user's power according to their needs, provides stable connectivity for latency-sensitive
applications, and reroutes users if there is network congestion. Table 3 summarizes the reinforcement learning
based routing algorithms.

Machine learning routing technique perform better for heterogeneous networks and has promising feature
learning capabilities that can be exploited for highly dynamic network. The ML-based routing algorithm can
cope with higher dimensional network state feature information as compare to traditional routing algorithm.
Furthermore, the development of the SDN architecture allows the ML-based routing algorithm to operate as an
application on the SDN server with significant processing capacity with efficient management of traffic [44,48].
Existing deep reinforcement learning-based intelligent routing schemes have achieved improvements in network
traffic engineering [44], complicated optimization tasks [37], and congestion control [38,39]. However, with
changing network deployment environments, such as when the topology and traffic-generating model are altered,
performance measures like accuracy, latency, and throughput may change. As the network environment changes,
it could be necessary for some application scenarios to gather training data and retrain continuously [67].
Reducing the cost of training is a challenging task when dealing with machine learning methodology. Deep
reinforcement learning techniques are often associated with high training costs [38]. These issues have a
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negative impact on QoS and will be challenging to meet the needs of the massive, extremely dynamic future 6G
network. Moreover, overall network throughput may be affected because of frequent fluctuations in network
behaviour due to node mobility and varying network resources. Future 6G systems will have to take into
account more than just communication performance, including the cost of computing and storage, in order to
achieve full intelligence. Therefore, it is crucial to develop adaptable machine-learning models that can be
applied to heterogeneous network.

Table 3. Summary of reinforcement learning based routing algorithm.

Ref. Technique Year Path Deployment Outcome

[47] Deep Reinforcement
Learning

2019 Single-path Centralized Reduce congestion probability and minimize the
path length over heavy traffic

[48] Deep Q-Network 2019 Single-path Distributed Achieve higher network throughput with less
transmission path

[49] Q Learning 2020 Multi-path Centralized Low latency and flow integrity is maintained in
small multipath networks

[50] Long Short-Term
Memory

2021 Multi-path Distributed Adapt to constantly changing networks

[51] Reinforcement
Learning

2021 Multi-path Distributed Reduce the network overhead and delay

[52] Deep Q-Network 2021 Single-path Distributed Increase network throughput and reduce link
cost

[53] Reinforcement
Learning

2021 Single-path Distributed Increase throughput and improve load
distribution

[54] Reinforcement
Learning

2021 Single-path Centralized Determines the optimal balance between packet
loss, rejection rate, and throughput

[55] Reinforcement
Learning

2021 Multi-path Distributed Less traffic load and improve packet delivery
ratio

[56] Reinforcement
Learning

2021 Multi-path Distributed Provides high PDR and low latency

[57] Recurrent Neural
Network, LSTM

2022 Multi-path Centralized Reduced end-to-end latency

[58] Deep CNN 2022 Multi-path Distributed Higher accuracy with less overhead

[59] Reinforcement
Learning

2022 Multi-path Distributed Improve reliability and minimized latency

[60] SOM Neural
Networks

2022 Single-path Distributed Minimizes energy consumption

[61] Reinforcement
Learning

2022 Multi-path Distributed Minimize energy consumption, delivery ratio
and average delay

[62] Deep Reinforcement
Learning

2022 Multi-path Centralized Minimize delay and improve robustness over
topology changes

[63] Q learning 2022 Single-path Distributed Reduce delay and accelerate the convergence

[64] Multi-weight decision
algorithm

2023 Multi-path Distributed Reduce packet loss and improve bandwidth
utilization

[65] Deep Neural Network 2023 Single path Centralized Improve the transmission bandwidth utilization
and throughput

[66] Reinforcement
Learning

2023 Multi-path Centralized Allocates resources efficiently and minimize the
delay
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5. Open Research Challenges

5.1 Quality of Service (QoS) and Quality of Experience (QoE)
The next-generation network with ultra-reliable and low-latency communications is strongly dependent on

end-to-end QoS and QoE. For large data stream applications with high dependability on security, users, for
instance, demand high throughput and low delay. Furthermore, the next-generation network's complex and
incredibly dynamic circumstances are difficult for traditional network optimization techniques to handle. ML
techniques can be essential for balancing network resources and meeting a variety of criteria. An efficient cross-
layer design can be achieved by using machine learning-based network routing algorithms to predict potential
applications based on historical patterns and intelligently route the packet. However, the upcoming 6G systems
will focus more on improving several metrics than just one, outperforming the capacity of present mathematical
models to define their complex relationships accurately. Utilizing several purpose-based learning approaches is
essential to overcome these problems effectively.

5.2 Dynamic Power Control
The future network will require more power due to connectivity for applications such as vehicle networks,

UAVs, and satellite networks. Most of these devices are powered by batteries, which demand large amounts of
energy. High energy efficiency is expected in 6G networks to provide efficient communication. Traditional
power control systems often look for near-optimal power distribution strategies by addressing optimal problems.
Due to their high computational cost and immediate channel state information precision requirements, such
approaches are difficult to apply to large-scale networks [26]. To address these issues in large-scale
heterogeneous 6G networks, employing energy-aware optimization methods is critical to dynamically allocating
resources to ML approaches depending on their needs and priorities.

5.3 Scalability
Scalability is one of the requirements that routing methods must fulfill. In some dynamic applications, ML

approaches can consider dynamic factors such as changing link connections, varying network resources, and
producing high accuracy [41,42,46]. Future intelligent routing algorithm design challenges include ensuring the
algorithm can still produce decent results in a large topology. Additionally, when the topology is complicated,
the centralized routing control mechanism may cause high information exchange costs and lengthy network
state transfers, which limits scalability. However, the accuracy can lead to frequent network dynamics caused by
node relocation and the reconstruction of virtual subnetworks. Therefore, it is crucial to develop scalable
machine-learning models that may replicate in various networks to achieve global intelligence.

5.4 Interpretability
The machine learning models at the foundation of 6G are expected to increase in sophistication and

complexity. The unpredictable nature and difficulty of interpretability in routing techniques is another issue with
intelligent routing solutions. Deep neural networks are among the many machine learning models that are
regarded as black box models and frequently have unpredictable behaviours [14]. It becomes difficult for the
operator to identify the source of a problem when incorrect routing decisions are taken, and it is very
challenging to fix the model. This lack of interpretability could lead to problems in figuring out the rationale
behind a specific routing choice and can cast doubt on the reliability and accountability of the system. Therefore,
improving the interpretability of intelligent routing techniques remains an open challenge in
developing intelligent routing systems.

5.5 High Propagation and Atmospheric Loss of Terahertz (THz)
Terahertz communication is expected to increase 6G network capacity by supplying more spectrum ranges.

THz has a short wavelength and a high frequency. In the THz range, long-distance data transmission becomes
problematic. To enable high-frequency bandwidth, a small-sized transceiver must be redesigned in the THz
band. Due to the size of tiny particles like water vapor and oxygen being close to the wavelength of the THz
band, the THz frequency is affected by atmospheric absorption. As a result, terahertz channels cannot be
modeled using conventional channel models that are based on the assumption that they are stationary or quasi-
stationary. In a known or unknown environment, ML algorithms can assess communication data and forecast
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likely signal loss. Therefore, a wide range of AI or ML techniques can be used to solve the problems with
terahertz channel modeling and estimation in 6G networks.

5.6 Ultra-Reliable Low Latency
The ultra-low latency requirement of 6G network is predicted to be less than a millisecond. To ensure

seamless connectivity, IoT applications like the Internet of Things, UAVs, holographic communication, and
VR/AR demand incredibly low latency. Furthermore, rapid resource allocation, network reconfiguration, and
service adaption require effective, low-latency, and adaptive network management. Mobility management and
offloading solutions must provide ultra-reliable and low-latency communications to meet these demands. The
computational complexity of traditional machine learning techniques may prevent them from meeting these
latency requirements. Developing machine learning models that can quickly predict outcomes within the
required time frame and can perform well with minimal computational resources is a challenge in URLLC.

5.7 Dynamic Spectrum Allocation
In 6G network, spectrum efficiency must be taken into consideration. New spectrum resources are needed

as a result of the rise in user numbers, as the current spectrum resources cannot support the increase in users and
devices with high data demands. Due to the limited spectrum resources, interference increases and becomes a
significant problem in heterogeneous networks. In dynamic wireless environments, the availability and
utilization of the spectrum may vary quickly. Channel availability, interference levels, and user requirements are
all vulnerable to change throughout time and space. Moreover, it is difficult to obtain a significant and diverse
dataset for the purpose of training machine learning models. Designing machine learning models that efficiently
collect and utilize the data for reliable spectrum allocation choices is difficult due to the high-dimensional and
complicated data. It is challenging to explore approaches to tackle these problems and enable effective and
adaptive spectrum allocation in dynamic wireless environments.

5.8 Trust, Security, and Privacy
The proliferation of IoT devices has led to new security flaws and wireless interface assaults. Due to the

demanding communication requirements and high-performance requirements of 6G applications, many
applications require strong security at the same time maintaining performance [29]. When individuals switch
between their interconnected network services, security and privacy risks appear. IoT devices and services will
make it harder to monitor and execute privacy and security solutions. Although IoT systems and devices'
embedded intelligence are used by ML-based security technologies to address these security concerns, more
challenges pertaining to the authenticity of devices and trust need further study.

6. Conclusions
The next-generation communication network with extremely stable and effective communications is in

high demand. As such, intelligent routing design is crucial for network performance. However, the complex and
extremely dynamic environment of the next-generation networks is challenging using conventional methods.
Machine learning-assisted 6G networks can be the significant candidate of choice for resolving some of these
issues. We have covered some of the criteria of 6G in this paper. To create dependable transmission links and
handle high dynamics, we have also enumerated machine-learning techniques and examined several machine-
learning-based network routing strategies. The research concerns and potential future scope are discussed in the
final section.
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