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Abstract: Open Radio Access Network (O-RAN) is a platform developed by a collaboration between wireless
operators, infrastructure vendors, and service providers for deploying mobile fronthaul and midhaul networks,
built entirely on cloud-native principles. The vision of O-RAN lies in the virtualization of traditional wireless
infrastructure components, like Central Units (CU), Radio Units (RU), and Distributed Units (DU). O-RAN
decouples the above-mentioned wireless infrastructure components into open-source elements, operating
consistently with other elements of different vendors in the network. Quality of Experience (QoE) deals with a
user’s subjective measure of satisfaction. RAN Intelligent Controller (RIC) in O-RAN provides flexibility to
intelligently program and control RAN functions using AI/ML-based models. We argue that various QoE
parameters can be measured and operated by the RIC in O-RAN. We propose to improve the efficiency of O-
RAN’s radio resources by creating a RIC xApp that estimates the QoE measured using Video Mean Opinion of
Score (MOS), and accurately optimizes the usage of radio resources across multiple network slices. We use
predictive AI/ML-based models to accurately predict the QoE parameters in the network after which we can
optimize the usage of network compo-nents leading to an enhanced user experience. Simulation results on 3
simulated data sets show that our proposed approach can achieve up to 95% QoE prediction accuracy.
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1. Introduction
With the advent of fifth and sixth-generation cellular networks, there are a lot of challenges in the imple-

mentation of new and advanced policies owing to the diverse demands of this technology. Some major use cases
of fifth-generation networks include enhanced mobile broadband (eMBB), ultra-reliable and low-latency
communications (uRLLC), and massive machine-type communications [1]. The existing RAN architecture
consists of using proprietary and aggregated components that are mostly inaccessible to third-party vendors.
Open Radio Access Network (O-RAN) is a new collaborative approach that involves vendors, equipment
makers, and telecom industry members to include non-proprietary components in existing RAN architectures.

The O-RAN architecture is decoupled as it involves using components from different sources. A key com-
ponent of the O-RAN architecture is the RAN Intelligent Controller (RIC). The RIC controls the functionality of
the RAN and is a key component where we can add intelligence by implementing AI/ML algorithms. Fur-ther,
this component saves infrastructural costs as it is virtual and can be used to solve business use cases as well.
Adding intelligence in the RIC can help solve use cases such as predicting the QoE along with providing O-
RAN resource management. The O-RAN architecture involves off-the-shelf decoupled components that can be
built by third-party vendors. This is in alignment with 3GPP specifications which promote decoupled Next
Generation Node Bases (gNBs).
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Figure 1 shows the general architecture of O-RAN. Each gNB is split into various components including a
Central Unit (CU), Radio Unit (RU), and Distributed unit (DU). These are also called O-CU, O-RU, and O-DU
respectively in O-RAN terminology. The O-CU is further split into two logical divisions, the control plane (CU
C-plane) and the user plane (CU U-plane). By splitting these two components, they can be individually accessed
across different hardware planes and different locations as well. The intelligence aspect of O-RANs is handled
by the RAN Intelligent Controller (RIC). The RIC is one of the most critical aspects of the O-RAN architecture.
Figure 2 shows the architecture of the RAN Intelligent Controller. This component allows programmability in
O-RANs and allows third-party vendors and applications to include their software in the architecture. This gives
rise to various use cases also involving AI/ML to improve the quality of the network. The O-RAN Alliance
defines a number of use cases that can be worked upon using RICs [2]. The programmable components of RIC
can generally be divided into two categories. These include non-real-time (non-RT) and near-real-time (near-RT)
components. The non-RT components comprise system events that have a response time of 1 second or more.
Near-RT components involve events that have a response time of fewer than 10 milliseconds. Depending on this,
the RIC software consists of applications in the form of microservices called xApps and rApps. The xApps and
rApps can be defined as tools for the automation of the network. These microservices specialize in individual
functionalities for specific tasks. xApps are created for dealing with near-RT events and rApps deal with non-
RT events. xApps usually reside on the edge nodes of the network as they read data and provide functionalities
in real-time. On the other hand, rApps reside on the operator’s network as these functionalities are allowed to
have a larger response time.

Figure 1. O-RAN Architecture.
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Figure 2. RIC Architecture.

The technology of O-RANs is new and brings with it a lot of challenges and opportunities. Current
research on O-RAN demonstrates how intelligence can be added to solve new and innovative use cases. Our aim
is to demonstrate how an O-RAN can learn from multiple network slices in the same RAN. Quality of Service
or QoS refers to the mechanisms, metrics, and set of technologies that are used to prioritize and manage the
network traffic ensuring that certain criteria or performance levels are met. Quality of Experience or QoE
represents the measure of the overall level of satisfaction that an end user perceives while using a service or an
application. This metric takes into account multiple factors such as expectations of users, application quality,
application responsiveness, and performance of the network. QoE is a crucial factor as it takes into
consideration the opinions of an end user. Even if an application meets all QoS requirements, it could be the
case that the end user might not have a good experience with it. In the context of telecommunications and
networks, this plays a big role as networks are designed for users to have a smooth and pleasant experience
while being connected to a network. These metrics are also critical for real-time applications like emergency
services and healthcare [3]. For a network, a high QoE also enables a high rate of customer retention. In a
competitive market, a high QoE rate of customers is very beneficial for network providers as it reduces churn
rate. We demonstrate how the QoE can be improved for customers by predicting the Mean Opinion Score (MOS)
across network slices. This shows the potential of O-RANs on how data can be collected from each network
slice, and how intelligence can be applied to enhance the user experience of customers using the network.

We propose a solution to create an xApp that predicts the QoE of a 5G network across multiple network
slices. The following are our contributions:
 We demonstrate that an O-RAN serving multiple network slices can be used in a way that it learns data

across each network slice and we can now optimally predict the QoE across any network slice.
 We use 3 different datasets with varied features to simulate 3 network slices, each dataset consisting of

streaming video parameters such as video frame rate, video bit rate, audio rate, and more.
 We use different classification-based machine learning models to learn the Mean Opinion Score (MOS)

class for each dataset.
 Finally, we use this to predict the MOS of any new video. From this, we can show that the O-RAN can

learn from different network slices, and can use this to predict the MOS among the network slices or new
network slices.
This way, the QoE can be managed and improved with the help of the RIC in an O-RAN.
The rest of the paper is organized as follows. Section 2 reviews the existing work in O-RANs and

intelligence-based use cases of O-RANs. Section 3 elaborates upon AI/ML-based techniques and how we have
utilized these techniques to solve our use case. We discuss our implementation details and results in Section 4.
Section 5 concludes the paper with pointers to future work.

2. Related Works
The technology of Open-Radio Access Networks is new and is increasing in popularity given its virtualized

and decoupled nature. The O-RAN Alliance, a group that looks after the specifications and operating procedures
of O-RANs, was first started by 5 major operators namely AT&T, China Mobile, Deutsche Telekom, NTT
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Docomo, and Orange. With the growing popularity of O-RANs, it has now increased to over 300 operators
worldwide [4]. This is owing to the strong professional and academic research in this domain. Garcia-Saavedra
and Costa-P´erez describe how O-RANs have created major breakthroughs in next-generation virtualized radio
access networks (vRANs) [5]. They describe the growing popularity of O-RANs, how this technology is now
adopted across 4 continents, along with deployment scenarios of intelligent O-RANs. Polese et al. give an in-
depth explanation of O-RAN specifications while elaborating the security aspects of O-RANs [6]. They have
provided the first detailed tutorial on O-RANs and have explained how the design principles and interfaces of
O-RAN are important for researchers and industry practitioners. Abdalla et al. explain the limitations of O-
RANs and the challenges that this technology faces [7]. Some of these limitations include security aspects such
as having end-to-end security over an O-RAN. Moreover, testing intelligent RANs and having real-time control
over the physical layer of O-RANs is also a limitation. However, they also discuss the opportunities for
researchers to overcome these challenges. Dryjanski et al. [8] propose a traffic steering use case. This is another
one of the use cases from the O-RAN Alliance.

It has been shown that AI/ML techniques can be used to predict the QoE [9]. However, current research
does not demonstrate how this progress can be integrated into an xApp for a RAN Intelligent Controller (RIC)
in O-RANs. Kavehmadavani et al. propose a solution for a traffic steering use case in 6G O-RANs [10]. They
use joint implementation of scheduling, flow-split distribution, and congestion control to add intelli-gence to O-
RANs to optimize traffic steering. Qasim et al. proposed a personalized QoE model specifically for data-driven
architecture (DDA) in 5G wireless networks [11]. This research was specific to a problem that many
organizations face in Enterprise Architecture. Agarwal, Togou, Ruffini, and Muntean introduced a novel QoE
enhancement function to provide efficient resource provisioning to users [12]. However, this research does not
use AI/ML techniques and instead uses an adaptive genetic algorithm for resource provi-sioning. Schwarzmann
et al. estimate video streaming QoE in 5G architecture using regression techniques on a mobile-streaming use
case [13]. They proved that the subjective QoE score can accurately be predicted using linear regression
techniques. Ahmed et al. used supervised machine learning techniques for QoE prediction on a video streaming
dataset [14]. They demonstrated important features of the dataset and showed how Support Vector Regression,
Random Forest classifiers, and neural networks performed based on the video dataset.

3. Machine Learning Algorithms
The RAN Intelligent Controller (RIC) can be programmed to add intelligence to the O-RAN. This can be

done by creating AI/ML-based models that learn from the data accumulated by the RAN. Model training is
generally done at the Service Management and Orchestration (SMO) level. We treat the QoE prediction problem
as a classification problem. We have based our models on the techniques explained in the following subsections:

3.1 Logistic Regression
Logistic regression [15] is a supervised machine-learning technique that aims to classify the dependent

variable with one or more independent variables. This algorithm estimates the probability of a data point falling
into a particular class depending on the given input parameters. We use the multi-class logistic regression model,
which is an extension of logistic regression over multiple features. Logistic regression uses the Softmax function
[15] to create a probability distribution to predict the target class. The equation of a logistic regression model is
defined in Equation 1:
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where
P = probability of MOS to fall under particular class
k = total classes for MOS values between 1 to 5
w = weight vector
b = bias term, an adjustable parameter to tune the model
x = vector of predictor variables; this includes parameters such as audio rate, video buffer rate, frame rate, etc.

Figure 3 shows an example of how logistic regression is used to classify a target class into multiple
categories. For our implementation, the response variable is the Mean Opinion Score (MOS) which can fall
under 5 categories ranging from 1 to 5. Our input parameters consist of multiple features including frame rate,
buffering time, audio rate, etc.
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Figure 3. Logistic Regression.

3.2 Support Vector Machine
For a Support Vector Machine-based classification model [15], we aim to find a hyperplane that best

separates the MOS target score into different classes. This hyperplane will create a decision boundary between
the target classes. Once we train the SVM model, the RIC xApp will be able to predict the MOS for new data
points. This model training will be done on a dataset that provides historical information of video quality.
During model training, the hyperplane will be adjusted to get a clear distinction between the 5 categories of
MOS. The mathematical function is described by Equation 2:

0 wx b (2)
where
x = the input vector of QoE factors
w = weight vector
c = bias

The weights and biases are terms that are learned during the model training phase as they aim to optimize a
cost function that gives a penalty on incorrect classifications and tries to increase the margin between target
classes. For the target class of MOS, the values are divided into 5 categories. These categories are explained
further in Section IV. The SVM classifier will aim to find a hyperplane that divides the data for each class to
show separate groups. Any new data can be classified into the target classes by applying the SVM function and
the positive or negative sign of the value can determine the class of the new data point. Figure 4 shows how
SVM determines the hyperplane and maximizes the margins between different target classes.

Figure 4. SVM Classifier
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3.3 Decision Tree
The Decision Tree [15] is a machine learning algorithm that is used for both regression and classification

problems. Our decision tree-based machine learning model maintains a tree-like structure with features such as
audio rate, buffering time, playing length, etc. as nodes of the tree. Each branch of this tree denotes the possible
range of values of these features. For example, a node of the feature ’playing length’ can have two branches, one
for videos with a playing time of less than 4 minutes, and the other for videos with a playing length over 4
minutes. While training the model, this tree recursively creates branches by keeping features at the nodes. Hence,
the job of the intelligent RIC will be to check the values of a new data point and find the leaf nodes that
determine the category of the MOS. Figure 5 describes the working of a decision tree model.

Figure 5. Decision Tree Classification.

The leaf nodes of the decision tree determine the output or the final predicted values from the given input
parameters. Decision trees are generally good at dealing with both categorical and continuous data. Since we use
3 datasets to simulate our network slices, we create 3 models using decision trees. Each model will have a
different number of decision nodes depending on the dataset’s features. For example, one of the features in the
dataset is Round Trip Time (RTT). The decision tree will have a decision node that checks if the given data
point’s RTT value is within some given threshold. If so, it will then proceed to the next decision node which
checks the value for another feature. The branch terminates into the leaf node which determines the MOS value
for the given data point. In this way, our model will determine the MOS for new data points by checking its
values at each decision node and leading to the leaf node.

3.4 Random Forest
The Random Forest classifier [15] follows the method of ensemble learning as it uses decision trees to

build its model. In this case, our RIC xApp will be trained with a model that merges multiple decision trees to
create a robust and accurate model for MOS classification. For this, the model starts with taking a random
subset of features from our MOS dataset, along with a random sample of data to first create a decision tree. This
process is repeated over multiple iterations, each time taking a different sample of data and a different subset of
features. The leaf nodes of these decision trees will be the MOS categories. These decision trees are combined
to form a random forest. This combination is done by finding the majority of trees that choose a predicted target
value. This leads to creating a more robust model and tends to not overfit the model, unlike a single decision
tree. Hence, this will cause the RIC to have a strong and robust model to classify the MOS based on new input
data. Figure 6 describes a random forest classifier.
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Figure 6. Random Forest Classifier.

3.5 Naive Bayes
A Naive Bayes-based [15] classifier model in the RIC will use the Bayes theorem to determine the

probability of a new data point falling into a particular category of the MOS. This is also a supervised learning
algorithm. The mathematical equation for the Bayes’ theorem is as Equation 3:
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where
n = the number of features in the QoE dataset
i = index of the feature
c = index of the MOS class.

Naive Bayes makes the assumption that the features and the target class are conditionally independent. For
our 3 datasets, we create 3 probabilistic models to predict the MOS value. Each dataset consists of different
features and hence, each model will calculate different MOS values according to Equation 3.

3.6 K-Nearest Neighbors
The K-nearest neighbors (KNN) [15] is a supervised machine learning algorithm that can be used in an RIC

xApp. For this algorithm, we choose a value for k. Given a new QoE measurement, the model finds the k-closest
points from this given data point. From these k-neighbors, it finds the majority of the MOS value. The most
common value of the MOS from these neighbors is predicted to be the target for the new data point. This way,
the RIC will be able to predict the MOS of a new video using KNN. Figure 7 shows an example of K-Nearest
Neighbors.

This algorithm does not learn any particular type of model from the given data. It is termed as a lazy
learning algorithm that predicts values from the training data stored in its memory store. Our KNN model uses a
k-value of 5. This means that for every data point whose MOS needs to be predicted, we check the 5 nearest
points to it when plotted on a graph. These points will be plotted based on the values of their features. We use
the Euclidean distance metric to find the 5 nearest points and then check the target class values for these 5
nearest neighbors. The majority of these will be chosen as the MOS value for our new data point.
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Figure 7. KNN classification.

4. Simulation Experiments and Results
We consider a use case where our O-RAN has 3 network slices. Each network slice serves a different user

group. We consider streaming video data as the service that is offered to the users.

4.1 Data Set Preparation
To simulate the 3 network slices, we consider 3 different datasets of video data in .csv formats. Each

dataset has varied features and a different number of data points. This ensures that each network slice is offering
a different type of content to its users. The 3 datasets are explained ahead.

For the first network slice, we use the PoQeMoN dataset [16] which consists of multiple QoE Influence
Factors (QoE IFs) along with Mean Opinion Score (MOS) values. This dataset is based on users’ opinions on
several different types of videos viewed on different types of devices. These IFs are collected using a VLC
media player. The 22 influence factors include video resolution, video bitrate, framerate, audio rate, audio loss,
buffering rate, and more. The MOS is spread into 5 classes with values from 1 to 5. Table 1 shows the 5 classes
of MOS for the given dataset. The 22 features of the dataset are described in Table 2.

Table 1.Mean Opinion Score categories.

MOS values
1 Bad
2 Poor
3 Fair
4 Good
5 Excellent

Table 2. Dataset 1 Features

id user id QoA VLCresolution QoA VLCbitrate
QoA VLCframerate QoA VLCdropped QoA VLCaudiorate QoA VLCaudioloss
QoD model QoD os-version QoD api-level QoU sex
QoA BUFFERINGcount QoA BUFFERINGtime QoS type QoS operator
QoU age QoU Ustudy QoF begin QoF shift
QoF audio QoF video

For the second network slice, we have used Huawei’s dataset based on their SpeedVideo Global Operating
Platform (SVGOP) [17]. This dataset is in Simplified Chinese but Wang et al. [18] have translated it into
English. This dataset consists of 89,266 entries of video data entries with 15 features and a target class of vMOS
(video MOS). These features include parameters such as the Average rate of playing phase, Initial buffering
latency, Stalling rate, etc. Table 3 describes the features of this dataset. The vMOS value is a continuous floating
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point score between 1 to 5. We use normalization techniques for our implementation to set a fixed class value
for these scores.

Table 3. Dataset 2 Features

Max DL Rate(kbps) E2E RTT(ms) Average Rate of Playing phase Initial Buffering Latency(ms)
Stalling Ratio Video DL Rate Stalling Length Playing Length
Total time
of Playing phase (kbps)

Stalling times Video Bitrate Video Initial buffer download

Quality Loading Stalling period -

The third network slice consists of a dataset with 9575 data points [19]. It consists of 7 features including
download throughput, download loss rate, and stalling length. Table 4 shows the features of this dataset. The
target class is the MOS which has a score between 1 to 5.

Table 4. Dataset 3 Features

Session RTT Download lossrate
Download throughput Stalling number Stalling length

Each dataset has important features regarding the video content that is provided to the users. These include
network centric parameters such as Round Trip Time (RTT), as well as characteristics of each video. This
includes Buffering time, Audio loss rate, Stalling time, Stalling length, and more. The datasets were
meticulously chosen based on their ability to represent video transmission content over diverse network slices in
the O-RAN architecture.

For learning the QoE of users on video streaming data in an O-RAN, each network slice must be treated as
a separate entity. Each network slice serves video content in a different manner to its users. We have
demonstrated this by using different datasets with varied features across each network slice. Hence, we will
have a different machine learning model that goes through data preprocessing, model training, parameter tuning,
feature selection, and finally prediction for new data. We explain our machine learning models and their results
ahead.

4.2 Model Implementation
For the first dataset, we have 22 features and a target class of the MOS. We start by preprocessing the data

and identifying features that have string values. For the features QoD Model and QoD OS, which represent the
device model and device operating system, we use a One Hot Encoder to convert these string values into a
numeric array. From the feature set, we identify 17 of the 22 features to be relevant and which help gain the best
accuracy. Table 5 shows our selected features from this dataset.

Table 5. Dataset 1 Selected Features

id audio VLCbitrate
VLCframerate VLCdropped VLCaudiorate
Buffering count Buffering time VLC resolution

video model os-version
age begin shift

For feature selection, we use the Recursive Feature Elimination (RFE) method. This is a technique used in
machine learning that eliminates the least important features in a dataset. This process helps in fine tuning the
model by focusing on the most informative features. In this method, the model is trained on the entire set of
features, feature importance ranking is performed for each and finally the least important feature is eliminated.
This process is repeated until a pre-determined number of features is obtained.

The dataset comprises various features related to media playback and user characteristics. Audio attributes
include bitrate and audiorate, while video features encompass framerate, dropped frames, and resolution.
Buffering events are captured through count and time metrics. Additional information includes details about the
video model, operating system version, user age, and timestamps indicating the beginning and duration of
events or shifts. These features collectively offer insights into the performance of media streams, forming a
comprehensive dataset for analysis and modeling.
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We then apply different machine learning models to train the data. We split the data into 80% training and
20% testing. We used the train-test split function from the sci-kit learn library to divide the data into 80%
training and 20% testing. This is done so that we can learn the features of the training data and then test our
model on the test set. We then try out different regression and classification machine learning algorithms on this
data. These algorithms are Logistic Regression, Random Forest Classifier, Naive Bayes Classifier, K-Nearest
Neighbours, Decision Tree Classifier, and SVM classifier. After learning the data, we predict the MOS for the
test set and check its actual accuracy. The summary of the accuracy results is displayed in Figure 8. For this
dataset, we achieved the highest accuracy of 85.43%. This is using the Random Forest Classifier. The SVM
model has an accuracy of 81%. On the other hand, KNN has an accuracy of 77.9%, the Naive Bayes model has
60.5% accuracy, and Logistic Regression has 58.5% accuracy. We have summarized the parameters of our best-
performing model, the Random Forest-based classifier, in Table 6. Further, we plot the F1 score curve for the 5
categories of VMOS, the target class. From the F1 scores, we find that our predictions for the
categories ’Bad’, ’Good’, and ’Excellent’ are over 0.80 and show that our prediction values are accurate. The F1
score plot is described in Figure 9.

Table 6. Parameters for Random Forest classifier

Number of estimators 100
Estimator Decision Tree
Cross Validation 4

Figure 8. Results for the first dataset

Figure 9. F1 Score Curve for the first dataset.
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We follow a similar approach for the other two datasets. Dataset 2 consists of 89,266 data entries which we
again split into 80% training and 20% testing data. This dataset does not consist of any String values and hence,
there is no need for any such conversion. However, the target class, VMOS, has a floating point score between 1
to 5. To better train our model, we normalize this floating point score into a non-decimal value fixed score in
classes 1 to 5. We describe the selected features in Table 7.

Table 7. Dataset 2 Selected Features

Initial Buffering Latency Playing Length S Quality
Video bitrate S Loading S Stalling

The results of the applied machine learning algorithms are shown in Figure 10. We gain the highest testing
accuracy by using a Decision Tree Classifier. We achieved an accuracy of 97.91% for this dataset. The K-NN
classifier with a k-value of 5 neighbors also performs well with an accuracy of 96.6%. Further, the Random
Forest classifier also performs well with 96.2% accuracy and the Naive Bayes model has an accuracy of 71.23%.
We also notice that multi-class logistic regression performs poorly with this dataset. Further, we plot the F1
score curve for the 5 categories from the Decision Tree model. From the F1 scores, we find that our predictions
for all 5 categories of MOS are over 0.90 and show that these categories of MOS can be predicted accurately.
The F1 score plot is described in Figure 11.

Figure 10. Results for the second dataset.

Figure 11. F1 Score Curve for the second dataset.
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For the final dataset, the data is clean and does not require any preprocessing step. We choose all 7 features
to train our model as shown in Table 8. Similar to the previous datasets, we split the data into 80% training and
20% testing data. Table 5 shows the chosen features from this dataset.

Table 8. Dataset 3 Selected Features

Session Stalling Number VLCbitrate
Join Time Download Throughput RTT

Stalling Length Download Lossrate —

The results of this algorithm compared with others are shown in Figure 12. We achieved the highest
accuracy of 98.7% using the K-Nearest Neighbour classifier. This model performed the best with a k value of 16.
This means that the results with the highest accuracy are obtained when a data point’s MOS value is predicted
from a majority of 16 neighbors. The Decision Tree and Random Forest model also perform well giving an
accuracy of 97.2% and 98.1% respectively. The Naive Bayes classifier gives an accuracy score of 85.9% and the
Logistic Regression model has an accuracy of 83.2% Finally, we plot the F1 score curve for the KNN model, as
described in Figure 13. From the plot, we can infer that the F1 score for all 5 categories of MOS is over 0.90.
This shows that our model can accurately predict the MOS of new data points with high confidence. Hence, all
the 3 models, that reflect our 3 network slices, can accurately predict the MOS from their respective historical
data.

Figure 12. Results for the third dataset.

Figure 13. F1 Score Curve for the third dataset.
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Across the 3 network slices, we notice that the Random Forest model performs the best for all 3 network
slices. This is due to its ensemble learning capability, it provides an excellent measure to do QoE prediction.
Random Forest models also handle non-linearity well and hence work well with a lot of features in the dataset.
Further, the KNN classifier, which also gave a much better accuracy for datasets 2 and 3, is a much slower
model. This will affect the timing requirements of certain applications. Further, other models such as Logistic
Regression, Naive Bayes classifier, and decision trees did not perform that well. For the decision tree model,
this could be due to the underlying data patterns of decision trees. Naive Bayes makes oversimplified
assumptions of feature independence and that could be the cause for the low accuracy scores for it. Hence,
Random Forest based models provide a much better estimate of predicting the Quality of Experience.

5. Conclusion and Future Work
Video applications and services are expected to dominate next-generation 6G wireless networks. Numerous

emerging applications, like XR, connected cars, surveillance, and control depend on efficient video transmis-
sion and reception. O-RAN and its aspects of open network interfaces are also expected to penetrate more with
the evolution of future cellular networks. In this paper, we have explored different ML models to make
intelligent QoE predictions of different video applications across different network slices of O-RAN. Simula-
tion results on the actual video data set give an accuracy score of 85.43%, 97.91%, and 98.7% across the 3
different 5G network slices. This demonstrates that intelligent O-RANs can be used to efficiently predict the
QoE across network slices. The transfer learning aspect of this where the O-RAN can learn features from each
network slice is something that we are currently working on.

The future scope for this project would include studying data-driven approaches in conjunction with fuzzy
logic inference algorithms to present a robust methodology for modeling QoE in network scenarios. Research
has shown that fuzzy sets and intuitionistic fuzzy sets can be used as a tool for QoE modeling in networks [20].
The future scope for this can include working on more use cases of intelligent O-RANs.
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