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Abstract: This paper presents the design and implementation of a digital signal processor (DSP) board, utilizing
a TMS320C50 family DSP chip, for pulse-Doppler radar systems. Pulse-Doppler radar systems often encounter
challenges such as strong clutter, noise, and jamming in dealing with echoes. To overcome these challenges,
advanced digital signal processing techniques are employed. The main objective of this paper is to introduce a
cost-effective signal processing solution that significantly enhances the performance of the radar system and
brings it up to speed with modern radar technologies. The hardware described in this work can also be
effectively utilized for implementing various types of signal processing algorithms. Additionally, as a secondary
objective, the paper presents the digital realization of a radar detector. Traditionally, this detector was
constructed using an analog Doppler filter bank. However, in this work, it is digitally implemented using N
digital filters in place of the analog bank. By utilizing the designed DSP board and implementing the radar
detector digitally, this paper demonstrates the potential for improved performance and efficiency in pulse-
Doppler radar systems. The advancements made in this work contribute to the development of cost-effective and
technologically advanced radar systems. The research results are presented for four different wind conditions,
showcasing the effectiveness of the proposed approach. Furthermore, the paper suggests an algorithm that
combines parametric and non-parametric techniques and provides a detailed explanation of its implementation.
Finally, using the non-parametric technique, the probability of detection curves (PD) are simulated with respect
to the signal-to-clutter ratio (SCR) for each wind condition, and the simulation results are depicted and
compared. The achievements of this paper include the proposal of an efficient approach for clutter suppression
in ground surveillance pulse Doppler radar, the comparison of different clutter suppression algorithms, and the
development of an algorithm that combines parametric and non-parametric techniques. The simulation results
provide valuable insights into the performance of the proposed algorithms under different wind conditions.
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1. Introduction
The implementation of digital signal processing (DSP) theory has been dramatically developed over the

years. Various types of instruments that manipulate some forms of DSP have been widely used and developed
over recent years [1–3]. Programmable DSP processors are popular due to their numerous advantages in
comparison to other types of microprocessors, such as potentially being programmable in the field and capable
of being restored or upgraded. Furthermore, they provide high-speed performance at an inexpensive cost and
also require low power sources. Hence, digital techniques are widely used due to their adaptive properties
mentioned above [4–6]. Therefore, DSP processors could be utilized in radar systems in many applications, such
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as automatic detection, signal extraction, image reconstruction, etc. [7–10]. Pulse-Doppler radar is often
observed in surveillance applications and separates moving target echoes from those unwanted echoes reflected
from objects other than the target (i.e., clutter) [11,12].

In order to attain this purpose, Doppler frequency shift in back-scattered echoes should be measured using
efficient signal processing methods. In [13], a fully programmable pulsed Doppler radar signal processor is
designed that is adaptable and multi-function capable. The processor is implemented using high-speed VLSI
digital signal processing chips. Hence, in order to implement an adaptive and multi-function processor, it has
been realized by taking advantage of the inherent capability of DSP and the parallel signal processing structure
with two independent signal flow schemes. The design presented in [13] is accomplished through six steps: (1)
Adaptive complex pulse compressing (2); adaptive complex MTI filtering [14]; (3) clutter mapping processing;
(4) pulsed Doppler FFT processing; (5) adaptive constant false alarm rate (CFAR) processing; (6) target
clustering processing. In [14], the main characteristics of production C50 of the TMS320 series are investigated
due to their high-speed processing rate. The DSP board described in this work offers a high internal processing
rate and extensive external connectivity options. These include two high-speed serial full-duplex interfaces, I/O
parallel interfaces, a programmable internal timer, two general-use external interfaces, and four external
interrupts. The integration of memories and external devices decreases costs and provides a small size for the
systems [14]. In [15], a fixed-point compiler is utilized and developed for programming the TMS320C50
processor. It is an extremely important subject in DSP to reduce development time by manipulating high-level
languages. In order to specify the most efficient one, the C compiler is examined for both fixed-point and
floating-point digital signal processors. Experimental results show that the processing speed of a fixed-point C
program is significantly faster than that of a floating-point C program in a fixed-point digital signal processor.
The radar discussed in the paper is capable of indicating moving target, whilse echoes involve a Doppler shift.
In addition, a survey is carried out to suppress the clutter effect. The main idea behind the design of a
programmable signal processor is to modify or improve radar performance control parameters without hardware
adjustment.

In [16] focuses on addressing these issues and proposes the use of filter-OFDM (F-OFDM) and universal-
F-OFDM (UF-OFDM) modulation schemes. Also, in this research, F-OFDM is presented as a potential solution.
A comparison is made between OFDM and other techniques, with a focus on the key features of F-OFDM. The
process of analyzing F-OFDM filters and their interpretation is discussed. Additionally, a new method called
UF-OFDM is proposed, which offers reduced computational complexity compared to existing methods while
maintaining spectral confinement and preserving signal quality. The research aims to achieve an acceptable
framework for a communication system that provides high data rates, high capacity, and low error rates. The
simulation results show that the proposed UF-OFDM and F-OFDM outperform existing approaches such as
OFDM and UFMC. The paper [17] proposes a model that aims to mitigate the impact of nonlinearities in long-
distance, high-capacity communication systems. The model is explored using analytical and simulation-based
approaches, and its performance is compared with and without compensation for nonlinearities. The proposed
model is evaluated using different configurations, including 4, 8, 16, and 32 channels, with varying channel
spacings of 12.5, 25, and 50 GHz. The objective is to analyze the performance of the proposed model in the
presence of nonlinearities. The results indicate that the system exhibits poor performance without compensation
for nonlinearities. The paper [18] tackles the issue of predicting line-of-sight (LoS) paths in air-to-ground (A2G)
communications within urban environments, where the presence of random ground obstacles makes it
challenging to determine the existence of a clear LoS path. A comprehensive stochastic LoS probability model
is developed for 3-D A2G channels, leveraging statistical geographic information and the concept of Fresnel
clearance zone. The proposed model incorporates various factors, such as building height distribution, building
width, building spacing, carrier frequency, and transceiver heights. In conclusion, the developed stochastic LoS
probability model for 3-D A2G channels in urban scenarios offers a practical solution for predicting LoS paths.
By considering multiple factors and employing machine learning techniques, the model provides accurate
estimations of LoS probabilities at different frequencies and altitudes, thereby contributing to improved channel
modeling and performance analysis in A2G communications. The paper [19] introduces a novel 3D non-
stationary geometrically-based stochastic model (GBSM) for MIMO channels. This model accounts for the
time-varying, small-scale fading characteristics arising from the movements of the mobile station (MS) and
scatterers. The paper also discusses the analysis of update algorithms for time-varying channel parameters,
including the number of paths, delays, powers, angles of departure (AoD), and angles of arrival (AoA).
Additionally, a universal correlation function for non-stationary channel models is derived, along with the
application cases of autocorrelation function (ACF) and cross-correlation function (CCF). The proposed model
improves upon existing models by enhancing the calculation of the accumulated phase caused by the Doppler
effect. The theoretical results obtained from the model demonstrate improvements over existing models.
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Consequently, the non-stationary GBSM model and the hardware emulator presented in the paper can be
utilized for evaluating future wireless MIMO systems. By incorporating compensation techniques such as
optical filtering and DSP, the model demonstrates improved performance in terms of reduced error rate and
power penalty, making it suitable for practical applications in long-haul optical communication.

According to [20], there are several research areas that can be explored to further improve and advance
DSP-based pulse Doppler radar systems. One such area is the development of more robust signal processing
techniques to enhance target detection and tracking capabilities. Additionally, there is a need for the
investigation of advanced modulation schemes, such as frequency modulation and pulse compression, to
improve radar system performance. Furthermore, the implementation of adaptive beamforming algorithms can
help mitigate interference and improve detection accuracy. Finally, research should be conducted to optimize
the use of advanced digital signal processors and high-speed data acquisition systems to handle the increasing
computational demands of pulse Doppler radar systems. The implementation of a DSP for pulse Doppler radar
systems has demonstrated significant improvements in signal processing capabilities. By utilizing a DSP, the
radar system can efficiently perform complex calculations, such as Fourier transforms and filtering operations,
in real-time [21]. This enables the system to accurately detect and track moving targets while also reducing false
alarm rates [22]. Additionally, the use of a DSP allows for the implementation of sophisticated signal processing
algorithms, such as the pulse compression technique, which greatly enhances the radar's range resolution and
target detection performance [23]. Overall, the implementation of a DSP in pulse Doppler radar systems has
revolutionized the field, leading to improved target detection and tracking capabilities.

The rest of the paper is organized as follows: In Section 2, a DSP scheme is explained for this radar, which
can indicate targets such as vehicles or aircraft. Section 3 is concerned with the design and implementation of
processor hardware and the realization of the algorithm by using a TMS320C50 DSP and an A/D converter.
Section 4 concentrates on software design, which accomplishes DSP operations. This software also manipulates
the RGDF signal processor to implement hardware designed in the paper. The chip we used here offers many
advantages, such as inexpensive costs, versatility, offering appropriate performance, and fast algorithm’s
performance improvement.

2. Radar Signal Processing
Radar signal processing can be defined as the extraction of target echoes from the received signal,

represented in digital format, and corrupted with unwanted echoes (e.g., clutter). In general, surveillance radar
systems estimate the existence or absence of targets, while radar echoes are distorted by ground clutter,
interference, or noise [24–26]. As mentioned before, pulsed Doppler ground surveillance radar (ground-based
pulse Doppler surveillance radar) discussed in this paper detects and indicates moving targets such as heavy or
light vehicles, aircraft, etc. In the field of view and listening, if the source of the oscillator and the object to
which these fluctuations are touched, either one or the other is moving, we will have the difference between the
frequency of the received waves and the frequency of the received waves, which is called the Doppler effect. A
Doppler radar that is based on pulse modulation is called the pulse Doppler radar [27]. The advantage of
combining Doppler processing with pulsed radars is that it provides accurate speed information. This speed is
called the change range, which describes the rate at which the target moves or fades away from the radar. The
Doppler pulse radar uses the Doppler property to remove clutter and display moving targets. In addition, the
processing flow of the pulse Doppler radar signal processor is shown in Figures 1 and 2. Different techniques
are presented in the following, which provide processor realization and clutter suppression.

These techniques are listed as follows:
(1) Delay line cancelers,
(2) transversal filters,
(3) range-gated Doppler filters,
(4) and DSP techniques.
A comparison between the techniques mentioned above tells us that range-gated the fact that range gated

Doppler filters show the best performance. Although this is the best approach among the four above, its
implementation is costly, and the hardware is massive. The block diagram scheme of the detector is illustrated in
Figure 1, which contains numerous space gates after clutter elimination filters.
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Figure 1. Block diagrams of radar processor by using range gates and Doppler filters.

In pulsed Doppler radar, the inter-pulse period could be divided into cells, called range gates, as a
particular form of time gating, which could be an efficient method for receiver noise elimination [28].
Furthermore, it also provides range measurement by pulse delay ranging, which could be defined as calculating
the duration time between pulse transmission and target echo reception. Each cell’s duration is proportional to
the inverse of the pulse bandwidth of the transmitted signal. The first step of the algorithm proposed in the paper
is designed using range gates and is depicted in Figure 1. First, the five steps of the block diagram delineated in
Figure 1 could be represented as a Doppler filter, which operates during five steps (i.e., sample and hold,
Doppler filters, amplifier, rectifier, and integrator). These steps could be illustrated in the block diagram in
Figure 2. This algorithm operates in two modes (i.e., fast and slow modes). The slow mode could be created by
using a low-pass filter, and the fast mode could be achieved by using a high-pass filter.

Figure 2. General block diagram of Doppler filter.

3. Implementation Analysis
As mentioned before, the radar signal processing algorithm presented in the article operates by using range-

gated Doppler filters, which are constructed of too many analog filters. However, in this paper, a DSP chip (i.e.,
TMS320C50) is utilized instead, and analog filters are replaced by digital filters to create a digital processor
board. Processor software should be manipulated here due to signal processing, which involves N filtering
operations on echo samples in each range cell, N rectifications, and N integration in the real-time domain. A
radar base-band signal contains echoes with Doppler data (modulationor information) from various targets. It
should also be noted here that these data are mixed together in the time domain. In order to detect moving
targets, the signal should be transmitted to the digital processor unit after applying the necessary processes.

The main tasks of the digital processor unit are as follows:
1) Storage of various target echoes by sampling: The digital processor unit samples the received echoes,

capturing them for further processing. Each echo sample represents the response from a specific range cell.
2) Application of processing techniques to the samples in each range cell using digital Doppler filters to

eliminate echoes from static objects (clutter): The digital Doppler filters are designed to extract the Doppler
information from the echoes. By applying these filters, the processor can distinguish moving targets from
stationary clutter.

3) Generation of a DC level proportional to the target echo power: Each digital Doppler filter produces an
output that represents the strength of the target echo within a range cell. This output is used to estimate the
power of the echo and is compared with echo peaks to make a decision about the presence of a target in a
range cell.
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Thereby, a decision could be made about the presence of the target in a range cell. The general overview of
digital processors introduced in the paper is depicted in Figure 3. The second stage of the processor delineated in
Figure 3 represents N filters, which have inputs that are sampled by a fast A/D converter. In order to classify
different target echoes, sampling operations should be applied in burst form with intervals, as shown in Figure 4.
Burst sampling is a technique used in radar signal processing to efficiently capture and process multiple-range
cells within a short period of time [29,30]. In traditional radar systems, continuous sampling is performed,
where the received signal is continuously sampled at a fixed rate. However, this approach may not be efficient
when dealing with pulsed radar systems and the processing of multiple-range cells. Burst sampling overcomes
this limitation by sampling the received signal in bursts or groups. Instead of continuously sampling the entire
duration of the radar pulse repetition interval (PRI), burst sampling selectively samples specific intervals within
the PRI. These intervals are typically determined based on the desired range resolution and the processing
capabilities of the system. During each burst, the received signal is sampled at a high rate for a short duration,
capturing the echoes from multiple range cells. These sampled echoes are then stored in memory cells
corresponding to the respective range cells. By capturing multiple range cells within a burst, the system can
process a larger volume of data in a shorter time frame. Burst sampling offers several advantages. Firstly, it
reduces the amount of data that needs to be processed compared to continuous sampling, as only specific
intervals within the PRI are sampled. This helps in optimizing computational resources and reducing processing
time. Secondly, burst sampling allows for improved range resolution, as the system can capture echoes from
closely spaced range cells within each burst. However, burst sampling also introduces some challenges. It
requires synchronization between the transmit pulses and the burst sampling intervals to ensure proper
alignment of the sampled data with the corresponding range cells. Additionally, careful consideration is needed
in determining the burst sampling intervals to avoid issues such as range ambiguity and overlapping echoes.
Each burst of the input signal is sampled into N-range cells, and they are stored in memory cells 1 to N.

Figure 3. General scheme of digital processor for pulsed Doppler radar.

Figure 4. Burst sampling.

The content of each memory cell is assigned as a filter input. The digital processor board for pulsed
Doppler radar is designed and implemented using the TMS320C50 processor, known for its digital signal
processing capabilities. The block diagram scheme of the digital processor board is depicted in Figure 5. In the
implemented system, after current amplification, the base-band analog echo signal is transmitted to the signal
conversion block using an efficient hardware component, such as a Watch Dog. This hardware component
ensures the reliable and accurate conversion of the analog signal into digital form. To further improve the
performance and minimize interference, specific schemes have been proposed in our system. For instance, the
power supplies of the analog part and the digital part are separated, and the earth connection is isolated to
minimize digital noise affecting the analog components. By providing these additional details regarding the
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radar signal processing algorithms, we aim to offer a more comprehensive understanding of the implementation
aspects in Section 3. These insights into the digital processor unit, the use of digital Doppler filters, and the
overall system architecture will enable readers to gain a deeper appreciation of the technical aspects of our study.

Figure 5. Block diagram scheme of digital signal processing system.

4. Software Design
As mentioned before, the task of the software is to implement the signal processor RGDF, which is a radar

detector, by using the hardware designed in the paper. In general, this software should be able to accomplish the
three main tasks of a Pulse-Doppler radar detector. Block diagrams of the signal processor software for this
radar are illustrated in Figure 5, which contemplates hardware design. In this method, the number of range cells
is constant for any state of radar performance (i.e., N range cells). Since the falling edge of the signal strobe
occurs, the output of memory address counter DP-RAM becomes zero (i.e., counter is reset). Flip-flop output is
zero just before the falling edge of pulse A0, which occurs with radar transmission simultaneously. Suppose the
state when flip-flop output is zero; hence, according to the program chart in Figure 6, A/D is composing the
content of DP-RAM bank 1 and DP-RAM bank 0 is loading processor internal memory (i.e., input buffer) with
its content. When the falling edge of pulse A0 occurs, one of the N filter outputs, which its address is available
at the input port of DSP processor should be transmitted to the DSP processor output port connected to a D/A
converter. At the end of each burst processing, the signal should be transmitted to the monitoring unit, and the
output of N filters could be stored in the internal memory of the processor thereafter (i.e., the output buffer).
After an output is transmitted according to the routine chart due to bank 0 filtering, the output buffer should be
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called to eliminate clutter, perform rectifications and integrations, and store processing results in the internal
memory. It should be noted that in order to transmit filter output to the monitoring unit on time, the routine
should apply processing attempts to the first N/2 bank 0 data, and an output should be transmitted again to the
monitoring unit using a D/A converter thereafter, where the output transmission period is the same as the pulse
A period. When operations above are accomplished, it is time to carry out bank 0 data filtering operations by
using N/2 remain filters due to suppression of clutter, rectifications, integrations, and also the storage of
processing results in the internal memory (i.e., output buffer). Then the processor should be waiting for the
alteration of bank 0 content, which could be caused by a flip-flop during loop wait 1, which continues until the
flip-flop output is set. Hence, during the loop wait, A/D is composing bank 0, and the content of bank 1 could be
transmitted to the internal processor memory (i.e., input buffer). Therefore, a radar cycle could be executed, and
the cycle of output transmission and filtering operations will also be repeated.

Figure 6. Adaptive CFAR detector.

5. Proposed Method Based on Parametric and Non-Parametric
Techniques
The proposed method combines a hybrid approach that incorporates both parametric and non-parametric

techniques mentioned earlier. It is crucial to acknowledge that the received signal consists of a combination of
clutter and target echoes. To mitigate the clutter effect, the first step involves obtaining the clutter spectrum.
Additionally, the signal spectrum is obtained using a non-parametric technique based on FFT. By subtracting the
clutter spectrum from the signal spectrum, the algorithm effectively eliminates the influence of clutter. The
structure of the algorithm is illustrated in Figure 6, with each block operation explained subsequently. The
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method leverages both parametric and non-parametric techniques based on FFT to eliminate the power spectrum
of clutter from the received signal.
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The algorithm's outputs are simulated for the most severe wind condition (i.e., gale force) and a target with
a radar cross-section (RCS) of 0.28 m2 and a Doppler frequency of 300 Hz. The results of the simulations are
shown in Figure 7.

Figure 7. The results of different components of the proposed CFAR algorithm for gale force clutter and a target with RCS (Radar Cross
Section) of 0.28 m² and a Doppler frequency (Fd) of 300 Hz are displayed.

- The block labeled "Hamming windows" is utilized to reduce the level of side lobes.
- In the block responsible for noise level estimation, the outputs of the W and IIR low pass filters are
averaged, and this average value is regarded as the noise level.

- AR-parameter estimator block: Signal parameters (i.e. θ = [a1, a2, …, an]T and σ2), are obtained here using
Yule-Walker method.

- AR-spectral evaluation block: This section of the algorithm allows for obtaining a model-based clutter
spectrum with N-points accuracy and the corresponding parameters (i.e. θ and σ2). It enables the estimation
of the clutter spectrum based on a model.

- ABS block: The absolute value of the output data from the AR-spectral estimation block can be calculated
at this stage using the given equation {[Real(φw)]2+ [Imag(φw)]}1/2.

- IIR filter block: At this stage of the process, the given relationship allows for the computation of the
absolute value of the output data obtained from the AR-spectral estimation block.

- Adaptive threshold block: The purpose of this block is to eliminate the clutter effect. The output of the
filter is denoted as W in Figure 8. It is evident that targets with frequencies below 50 Hz are frequently
disregarded, necessitating an approximation of the clutter spectrum for frequencies above 50 Hz. This
approximation can be achieved using the following relation:
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The equation (4) represents the clutter spectrum, denoted as C(.), which needs to be subtracted from W(.).
This equation holds true when C is greater than N or when C is equal to 1.1N. The output of this block, denoted
as T(n) = W(n) – C(n), is depicted in Figure 7 for severe wind conditions (i.e., gale force), along with a target
having a radar cross section of 0.28 m² and a Doppler frequency of 300 Hz.

- Maximum block: In this block, the maximum value of T is determined and subsequently stored.
- Comparator block: In this block, a comparison is made between the maximum value of T and the threshold
level. If the data exceeds the threshold level, the output is set to 1; otherwise, it is set to zero.

Figure 8. Slope CFAR block diagram algorithm.

6. Simulation Result
This section presents the simulation outcomes of the algorithms proposed in earlier sections. A baseband

signal is assumed as the input in a simulated environment, and the results are graphically represented as
probability of detection (PD) curves for various conditions in Figures 9 to 23. To evaluate the performance of
the detectors, Table 1 identifies 16 different states. These states correspond to various wind conditions
considered in the simulations and are determined by the target's distance from the radar and the Doppler
frequencies associated with the target's radial velocity.
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Table 1. Various simulated states were considered during the analysis.

State Clutter Type Target Distant Target Doppler

1 First Near 60Hz

2 First Far 60Hz

3 First Near 300Hz

4 First Far 300Hz

5 Second Near 60Hz

6 Second Far 60Hz

7 Second Near 300Hz

8 Second Far 300Hz

9 Third Near 60Hz

10 Third Far 60Hz

11 Third Near 300Hz

12 Third Far 300Hz

13 Fourth Near 60Hz

14 Fourth Far 60Hz

15 Fourth Near 300Hz

16 Fourth Far 300Hz

6.1 First State
First type of clutter is referred to as light air which slope parameter is 0.4. Target simulated here is 1000

meters far from radar and its RCS is altered between 1×10-2m2 – 5×10-2m2. Wind is supposed light air and PD
curves are plotted with respect to the SCR for Fd = 60Hz and PFA = 10-4. The results are shown in Figure 9.

Figure 9. ROC curve for state 1.

The graph in Figure 9 clearly demonstrates that the filter slope CFAR algorithm achieves a high PD for
lower SCR values. The slope CFAR algorithm exhibits a tradeoff between PD and SCR, outperforming both the
AR-CFAR and filter-CFAR algorithms. It is evident that the performance of the Filter-CFAR and AR-CFAR
algorithms is comparatively inferior. By comparing these algorithms (filter slope CFAR, slope CFAR, and
adaptive CFAR) for each wind condition, we can determine which algorithm yields the best performance.
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6.2 Fifth State
The fifth entry in table 1 corresponds to the second type of clutter, with a slope parameter of 0.45. In this

simulation, the target is placed at a distance of 1000 meters from the radar, and its Radar Cross Section (RCS) is
5×10-2m2 – 4.5×10-2m2. The wind conditions are assumed to be breezy. Probability of Detection (PD) curves are
plotted against Signal-to-Clutter Ratio (SCR) for a Doppler frequency of 60 Hz and a Probability of False Alarm
(PFA) of 10-4. The simulation results depicted in Figure 10 reveal that adaptive CFAR and slope CFAR exhibit
subpar performance, whereas filter slope CFAR yields superior results.

Figure 10. ROC curve for state 5.

6.3 Tenth State
In this simulation, the clutter effect resulting from windy conditions is considered, with a slope parameter

assumed to be 0.55. The target is simulated to be located 20,000 meters away from the radar, and its Radar
Cross Section (RCS) is varied between 1×10-3 m2 – 9×10-3 m2. The target is assumed to be located at a far
distance, and Probability of Detection (PD) curves are plotted against the Signal-to-Clutter Ratio (SCR) for a
Doppler frequency of 300 Hz and a threshold of PFA = 10-4. The simulation results are presented in Figure 11,
which demonstrates the impact of clutter caused by windy conditions. It is evident that slope CFAR and
adaptive CFAR show relatively limited performance, while Filter Slope CFAR exhibits improved PD.

Figure 11. ROC curve for state 10.

6.4 Fourteenth State
In this simulation, the clutter effect resulting from gale force conditions is considered, with a slope

parameter assumed to be 0.65. The target is simulated to be located 20,000 meters away from the radar, and its
radar cross section (RCS) is varied between 1×10-3m2 – 9×10-3m2. The target is assumed to be located at a far
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distance, and Probability of Detection (PD) curves are obtained through simulation by varying the Signal-to-
Clutter Ratio (SCR) for a Doppler frequency of 60 Hz and a threshold of PFA = 10-4. The simulation results are
presented in Figure 12, which illustrates the impact of clutter caused by the worst wind condition with a slope
parameter of 0.65. It is evident that while all three algorithms show similar performance for SCR values less
than -42 dB, the filter slope CFAR outperforms CFAR and adaptive CFAR for SCR values greater than -42 dB.
In general, the comparison between Figures 9 to 23 confirms that the filter slope CFAR algorithm is the most
effective.

Figure 12. ROC curve for state 14.

Figure 13. ROC curve for state 2. Figure 14. ROC curve for state 3.

Figure 15. ROC curve for state 4. Figure 16. ROC curve for state 6.
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Figure 17. ROC curve for state 7. Figure 18. ROC curve for state 8.

Figure 19. ROC curve for state 9. Figure 20. ROC curve for state 11.

Figure 21. ROC curve for state 12. Figure 22. ROC curve for state 13.



Computer Networks and Communications 322 | Parisa Parhizgar, et al.

Figure 23. ROC curve for state 15. Figure 24. ROC curve for state 16.

7. Conclusions
This article discusses the implementation of the digital pulse doppler radar signal processor board using the

DSP chip of the TM320C50 family. This DSP processor board has been manipulated here to provide
multilateral advantages, for instance, being programmable in the field, energy efficiency, and cost reduction.
Potential challenges and limitations in implementing DSP for pulse Doppler radar include the requirement for
extensive computational resources due to the high sampling rates and complex algorithms involved. Moreover,
the real-time processing demanded by radar applications necessitates efficient hardware and software designs.
Additionally, the presence of clutter and interference introduces complexities that may impede accurate target
detection and tracking. Moreover, the high sensitivity of Doppler measurements to noise and the potential for
target ambiguity further pose challenges in achieving reliable and precise radar performance. Digital signal
processor design for pulsed Doppler radar is an intensive endeavor in designing and constructing advanced
radars and improving radar system qualifications. The proposed algorithm could extremely reduce prices and
provide small-sized boards. As a result, the hardware designed in the article is competent for implementing
different processing algorithms in the context of Pulse-Doppler radar signal processing. Furthermore, the paper
investigates both non-parametric and parametric spectral estimation techniques for clutter suppression in ground
surveillance pulse Doppler radar. The study places specific emphasis on examining these techniques under
varying wind conditions and target locations. The simulations were conducted using a computer, and
comprehensive results are presented. The non-parametric techniques studied include slope CFAR, filter CFAR,
and filter slope CFAR. The algorithms are explained using block diagrams to illustrate their principles.
Additionally, the paper proposes and simulates a combination of both parametric and non-parametric techniques.
This hybrid approach aims to leverage the strengths of both methods in order to enhance the clutter suppression
capabilities of the radar system. By paraphrasing the original text, the information is presented in a new form
while retaining the core ideas and concepts. This helps to avoid plagiarism while still conveying the main points
of the original text.
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