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Abstract: The sharing of private information is a daunting, multifaceted, and expensive undertaking. Furthermore,

identity management is an additional challenge that poses significant technological, operational, and legal obstacles.

Present solutions and their accompanying infrastructures rely on centralized models that are susceptible to hacking and

can hinder data control by the rightful owner. Consequently, blockchain technology has generated interest in the fields of

identity and access control. This technology is viewed as a potential solution due to its ability to offer decentralization,

transparency, provenance, security, and privacy benefits. Nevertheless, a completely decentralized and private solution that

enables data owners to control their private data has yet to be presented. In this research, we introduce DeAuth, a novel

decentralized, authentication and authorization scheme for secure private data transfer. DeAuth combines blockchain,

smart-contracts, decentralized identity, and distributed peer-to-peer (P2P) storage to give users more control of their private

data, and permissioning power to share without centralized services. For this scheme, identity is proven using decentralized

identifiers and verifiable credentials, while authorization to share data is performed using the blockchain. A prototype was

developed using the Ethereum Blockchain and the InterPlanetary Files System, a P2P file sharing protocol. We evaluated

DeAuth through a use-case study and metrics such as security, performance, and cost. Our findings indicate DeAuth to be

viable alternative to using centralized services; however, the underlying technologies are still in its infancies and require

more testing before it can supplant traditional services.
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1. Introduction

Cloud services have become an increasingly popular option for personal users and businesses looking to store, manage,

and process data online. By leveraging the power of the internet and remote servers, cloud services enable users to access a

wide range of applications and services without the need for local hardware or software. In addition to offering convenience

and accessibility, cloud services also provide several benefits to personal users and businesses, including cost savings,

scalability, and improved collaboration. As a result, the adoption of cloud services has grown significantly in recent years,

with more and more organizations turning to the cloud to meet their computing needs [1].

However, this rapid growth has led centralization of data, data which includes personal and private information.

Google, Facebook, and Amazon have access to vast amounts of data through their various products and services [2]. While

companies often use this data to improve their services, target advertising, and develop new products, users must agree to
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trust that these same companies will protect their data. Centralization of data, specifically personal identifiable information

(PII), attracts hackers who want steal valuable information. In 2018, Facebook suffered a data breach that exposed the

personal information of 87 million users [3], attackers were able to gain access to the personal information of the affected

users, including their names, email addresses, and phone numbers. Google Cloud Services has been hacked on multiple

occasions. In March of 2018, Google was hit with a data theft that affected over 500,000 Google Cloud customers which

resulted in names, email address and passwords being stolen [4]. In addition, there have been several more instances

of companies being hacked which resulted in private information in the last 5 years including large companies such as:

Equifax [5], Uber [6], eBay [7] and more.

Managing large amounts of data and its users is difficult. Companies often rely on trusted third parties which use

centralized models such as Public Key Infrastructure (PKI) [8]. Even though PKI been proven to be effective and secure

if well managed, it comes at the cost of being complex, challenging to implement, expensive and open to being a single

point of failure [9]. Solutions such as Federated Identity and Single Sign-On (SSO) mitigated management complexity

for both providers and users; however, building trust between two or more entitles is difficult and comes with risk that

some entities cannot afford [10]. For example, eBay allows sign in with a Google Gmail account, however there no banks

that we know of that allow SSO into accounts with Gmail. Furthermore, Federated Identity have not been successful in

addressing the widespread problem of passwords or mitigating the risks of privacy violations, security breaches, identity

theft, and impersonation associated with the use of passwords [11].

Managing data and users in traditional cloud storage systems requires well a fine grain level of access control.

Attributed Based Access Control (ABAC) and Role Based Access Control (RBAC) are both effective in achieving such

control [12]. Through these models, data owners enforce a policy that defines attributes or roles a data requester must have

to access and decrypt the data. However, ABAC and RBAC rely on a centralized model in which trusted third party called

a Private Key Generator (PKG) is required to create and distribute private keys. This puts the PKG in vulnerable position.

It becomes a single point of failure and must be trusted not to abuse its power in managing private keys. If comprised,

it has the ability decrypt all the user’s data. One industry that relies on well managed users and strict access control to

information is healthcare. There are several challenges that current healthcare systems struggle with, including the difficulty

in understanding how decisions are made, lengthy procedures and delays in diagnosis and communication, time-consuming

and costly insurance processes, and issues related to privacy, security, data ownership, and control [13–15].

Blockchain is a type of distributed ledger technology (DLT) that consists of a growing list of records, called blocks,

which are linked and secured using cryptography [16]. Each block contains a cryptographic hash of the previous block, a

timestamp, and transaction data. The decentralized nature of blockchain technology allows it to operate without a central

authority and makes it resistant to modification of the data. This makes it a secure and transparent method for storing and

transferring data and has led to its widespread adoption in a variety of industries such as the automotive, construction and

pharmaceutical industry [17–19].

Immutability, traceability, transparency, and privacy are potential benefits blockchain brings and have been proposed

to improve identity management and access control. Blockchain-based management systems aim to address issues of data

centralization and traditional identity management. Furthermore, rather than relying on a centralized authority to grant

and revoke access, blockchain-based systems allow users to securely prove their identity and authorization status using

cryptographic keys. This decentralized approach has the potential to increase the security and reliability of access control

systems, as it reduces the risk of a single point of failure or vulnerability. Current research however has yet proposed a

scheme to combine decentralized identity and access control to create an ecosystem that is completely private, secure, and

ultimately give the user more control of their PII.

1.1 Contributions

This research introduces a framework to unite blockchain, decentralized identity, and distributed peer-to-peer (P2P)

storage to give users more control of their PII, and permissioning power to share private data without centralized services.

The contributions are as follows:
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• We propose DeAuth, a novel scheme for decentralized authentication and authorization that facilitates the secure

sharing of private data. Identity is proven using decentralized identifiers and verifiable credentials, while authorization

to share data is performed using the blockchain. Through DeAuth, data owners can manage who has access to their

data and how it is used, thus mitigating the risks of unauthorized access by malicious third parties.

• We further present detailed description of the components, functions and algorithms that make up DeAuth.

• We demonstrate a use case scenario and implement a working prototype based on that scenario using the Ethereum

[20] blockchain to demonstrate DeAuth’s viability.

• We present a present a performance and cost evaluation of the protype compared to using a traditional (non-blockchain)

cloud database. We additionally discuss the security concerns of using DeAuth.

The remainder of this paper is structured as follows: Section 2 introduces related works in the fields of blockchain-

based access control decentralized identity. Section 3 provides essential background knowledge which DeAuth build

upon. In Section 4, we detail DeAuth’s components, architecture, functions, and algorithms. Section 5 presents the

prototype implementation and development details for creating an application to share private health records. Section 6

provides a security analysis, specifically pertaining to the blockchain, digital wallet and encryption. Section 7 reports on

the prototype’s performance and cost results. Section 8 discusses the limitation of the study and key findings. Lastly, in

Section 9 we conclude with main insights and opportunities for future works.

1.2 Aims and Scope

The primary aim of this research is to introduce DeAuth, its fundamental concepts, algorithms, and implementation

details. Additionally, this study aims to demonstrate the practical applicability and viability of DeAuth through the

development of a functional prototype, supplemented by preliminary evaluations. These preliminary evaluations serve

as a foundational framework for subsequent testing and experimentation. The scope of this research is delimited to the

development and evaluation of DeAuth within the confines of specific technologies, such as the Ethereum blockchain,

which helped facilitate prototype development. Nonetheless, the implications of our findings are positioned to resonate on

a broader scale.

2. Related Works

In this section, we review pertinent literature about decentralized access control and its potential pivotal role in within

industries such as healthcare. Furthermore, we introduce related research about Self-Sovereign Identity (SSI), enhancing

our understanding of the broader landscape.

2.1 Blockchain-Based Access Control

Blockchain-based access control (BBAC) refers to the use of DLT to manage and verify the permissions of users

within a given system. This approach offers several advantages over traditional access control methods, including increased

security, transparency, and decentralization. With a decentralized system, there is no single point of failure, making it more

resilient to attacks and tampering. Additionally, the use of cryptographic techniques in conjunction with the blockchain

ensures that access permissions are verifiable and tamper-evident, providing a high level of trust and accountability. Overall,

the adoption of BBAC has the potential to significantly enhance the security and integrity of various systems and processes.

Current cloud services leverage access control models such as RBAC and ABAC to achieve fine-grained access

control. RBAC is a model of access control that determines whether a user is granted access to a particular resource based

on their role within an organization, while ABAC determines whether a user is granted access to a particular resource

based on their attributes, rather than their identity or membership in a particular group. While RBAC and ABAC provide

fine-grain access control feature, those models are derived from ID Based Encryption (IBE) [21] and Attribute Based
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Encryption (ABE) [22, 23] which require a trusted third party to create and manage private keys. This inherently creates

a reliance on a centralized authority. Additionally, both RBAC and ABAC rely on polices that determine which roles

or attributers grant access. The polices rely on a generating services or nodes called Policy Decision Point and Policy

Administration Point. If these services or nodes fail, then data which users are trying to access become unavailable [24].

As a solution, studies by [25–27] have been proposed. The schema, described in [25], delegates responsibility for

private key management to the user or entity that owns the data, thereby eliminating the need for a PKG. In another

approach, the authors in [27] have proposed a smart contract-based authentication mechanism known as RBAC-SC,

which provides decentralized RBAC for use in trans-organizational operations. This mechanism leverages blockchain to

ensure secure and transparent access control within a decentralized setting. Furthermore, in [26], the authors propose a

blockchain-based ABAC solution that not only eliminates the need for a central authority, but also reduces or eliminates

costs for service providers. This approach is expected to improve the efficiency and effectiveness of access control, thereby

enhancing security, and reducing operational costs.

2.1.1BBAC in Healthcare

Blockchain technology has the potential to revolutionize various aspects of the healthcare industry by improving

efficiency, security, and interoperability of data handling. One key area where blockchain is being utilized in healthcare is in

the management of Electronic Health Records (EHRs) and Electronic Medical Records (EMRs). Additionally, data such as

those originating from devices such heartrate and blood pressure monitors should be handled with property authentication

and authorization procedures [28]. By using DLT, healthcare providers can securely store and share patient data with

authorized parties in a transparent and verifiable manner. This can help to reduce errors and improve the accuracy of

patient records, while also enabling better communication and coordination among healthcare professionals.

Recent surveys have shown that blockchain technology is increasingly being proposed as a potential solution to

various problems in the healthcare sector [29–31]. A recurring theme across these studies is the management of EHRs,

which has been identified as the most targeted area for blockchain research. In a study conducted by [29], it was noted that

the healthcare industry faces general challenges such as data fragmentation, security, and privacy, and that blockchain

technology can provide a robust solution to address these issues. The papers reviewed in this survey primarily focused on

new schemes for improving EHR and EMR systems.

Interoperability between blockchain and legacy data management systems was also identified as an area of interest.

In [31], the potential of blockchain technology for patient data and identity management was investigated, with the

authors concluding that EHRs and Patient Health Records are at the core of blockchain applications in healthcare. Overall,

these surveys indicate that blockchain technology has the potential to address various challenges in the healthcare sector,

particularly in the management of EHRs and interoperability between legacy systems and blockchain-based solutions.

2.2 Self-Sovereign Identity

SSI is a concept in digital identity management in which individuals have full autonomy over their personal data

and identity information [10, 11, 32–34]. This differs from traditional, centralized identity management systems, which a

centralized authority, such as a government or corporation, controls and manages an individual’s identity. In SSI, individuals

are the custodians of their own identity information, and can selectively disclose this information to various parties as

needed. This can be achieved by utilizing DLT to secure and tamper-proof the storage of identity information.

One of the key benefits of SSI is that it empowers individuals to have greater control over their personal data and

identity information. This can help to protect privacy and enable people to access services and participate in online

transactions more easily. Another key benefit of SSI is that it can help to reduce the reliance on centralized authorities and

intermediaries, which can improve security and reduce the risk of data breaches. Additionally, SSI can help to promote

interoperability and reduce the siloing of identity information, which can make it easier for individuals to access services

and transact online.

SSI is confronted with a multitude of challenges, ranging from adoption and interoperability to technical complexity,

security, and trust [10]. To overcome these obstacles, scholars have proposed various solutions, including the Self-Sovereign
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Identity BasedAccess Control (SSIBAC) model, as introduced by the authors in [35]. This approach offers an access control

framework for cross-organizational identity management by integrating traditional access control models and blockchain

technology. Decentralized authentication is followed by centralized authorization, ensuring secure and reliable identity

verification. To further enhance privacy, Zero Knowledge Proofs (ZKP) have been utilized [36]. ZKP is a cryptographic

technique that enables one party, the prover, to demonstrate the veracity of a statement to another party, the verifier, without

revealing any additional information. This feature is especially beneficial in the context of SSI, as it allows individuals to

authenticate their identity to others without disclosing their personal information.

3. Background Knowledge

This section provides background knowledge on the foundational technologies upon which DeAuth’s components

and architectural framework are built on. These encompass: blockchain, smart contracts, decentralized identity and the

InterPlanetary File System.

3.1 Blockchain and Smart Contracts

The blockchain is a decentralized, immutable, and cryptographically secure digital ledger that was first introduced in

a white paper by [37]. In this paper, the blockchain serves as the foundational technology that facilitates the operation of

Bitcoin, a type of cryptocurrency, and the corresponding Bitcoin protocol. Nakamoto’s motivation for creating Bitcoin and

the Blockchain was to develop a secure, electronic peer-to-peer cash system that was not under the control of a single

entity. The blockchain maintains a record of transactions, which, in the case of Bitcoin, refer to the sending and receiving

of Bitcoin.

A smart contract is a program that runs on the blockchain. The concept of a smart contract was first proposed by Nick

Szabo and defined as a computerized contract transaction protocol [38]. Ethereum was the first blockchain to introduce the

smart contract to its protocol and allowed users to code and extend the functionality of a blockchain beyond recording

transaction of digital currency [20]. Once on the blockchain, smart contracts reside at a specific address and cannot be

deleted.

A smart contract is written similar to writing a class in object-oriented programming, see Figure 1. In Ethereum, the

contracts are written in a programming language called Solidity. Moreover, the Ethereum Virtual Machine (EVM) [39] is

the computation engine that enables smart contract functionality and manages the state of the blockchain. After a contract

is written, it is compiled and submitted as a transaction to the blockchain. The transaction is known as contract deployment

transaction and like any other transaction, it must be verified by and propagated to all nodes on the network. To interact

with the smart contract, users submit a transaction using their wallet, which then calls and executes a specific function

within the contract.

Figure 1. Example smart contract that stores and retrieves an integer to and from the blockchain.
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3.2 Identity Management

3.2.1Centralized and Federated Identity

Decentralized identity is focused on placing identity control in the hands of its owner. This approach differs from the

two existing identity management models: centralized and federated [40]. In a centralized model, shown in Figure 2, an

identity provider takes charge of managing and authenticating user identities across an organization. This model provides

a centralized control point for user identities, which facilitates the management and security of user access to multiple

systems and applications within the organization.

Figure 2. Centralized identity model.

In a federated model, two or more centralized systems establish trust allowing one system to authenticate an entity for

another, see Figure 3. This is typically achieved with a third-party identity provider, such as Microsoft Active Directory or

Google, that manages and authenticates the user’s identity. The user’s identity is then shared among the various systems and

applications that the user needs to access, eliminating the need for the user to remember and manage multiple sets of login

credentials. This approach helps to increase security, reduce administrative overhead, and improve the user experience [41].

SSO is a solution derived from Federated Identity, which allows users to access multiple systems and applications

with a single set of login credentials. This process simplifies the user experience by eliminating the need for users to

remember and manage multiple usernames and passwords. Additionally, SSO reduces the risk of password-related security

breaches. Upon successful verification of the user’s identity, the identity provider issues a security token, such as a JSON

Web Token, which includes the user’s identity and other relevant information. The systems and applications that the user

needs to access can then use this token to authenticate the user and grant access.

One of the key benefits of SSO is that it reduces administrative overhead by eliminating the need to manage multiple

sets of login credentials [42]. This can be especially useful in organizations with large numbers of users, as it can greatly

reduce the burden on IT staff. Additionally, SSO can improve security by reducing the risk of password-related security

breaches, as well as making it easier to detect and respond to unauthorized access attempts.

While providing convenience to end users, there are privacy challenges involved in the federated model due to the

large volume of exchanging personal identifiable information across organizations [43]. This challenge additionally incurs

cost due to the increased security infrastructure needed to share valuable information across domains using loosely coupled

network protocols [41].
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Figure 3. Federated identity model.

3.2.2Decentralized Identity

Decentralized identity is a management paradigm that relies on cryptography and distributed ledger technology to give

entities more control over their identity. The entity assumes full responsibility of their personal indefinable information.

In a decentralized identity system, identity is proved with digital signatures [44]. The system is comprised of multiple

components which we define below:

• Decentralized Identifier (DID): a unique identifier, that unlike a traditional identifier that is created by a centralized

service (e.g., an email address), is instead created by the owner themself [45]. DIDs are assigned a public/private key

pair, thus can be digitally signed. Depending on its purpose, DIDs can either be public or private [46]. Moreover,

they can be used for establishing secure communication channels. The DID syntax has been defined by the W3C

[47]. There are two main parts the specification method and the identifier. The specific method defines how to read

and write a DID and its DID Document. The identifier is a unique data string that represents the DID. An example of

a DID is:

did:btcr:xyv2-xzpq-qrst-n5pk

This DID is associated with a Bitcoin address and is used to identify the owner of the address in a decentralized

system. The prefix did:btcr indicates that this is a DID on the Bitcoin blockchain, and the string of characters that

follows is the unique identifier for the DID owner.

• DIDDocument (DDO): a DDO is a digital document that is used to verify the identity of an individual or organization

in a decentralized system. DDOs contain information about the identity of the individual or organization, including

their name, address, and other relevant details. They can also include public keys, which can be used to authenticate

the identity of the DID document owner and enable secure communication, see Figure 4 [47]. Every DID has an

accompanying DDO. The DDO can be stored on the blockchain itself or another location (i.e., off-chain) and mapped

to a DID using a DID Resolver [46].
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Figure 4. Example DID document.

• Distributed Ledger: while a blockchain is not required for decentralized identity, they provide a ready-made

infrastructure for managing data in a decentralized way [10]. Additionally, transactions related to DIDs, DDOs and

credentials can be notarized. This in turn provides proof when data was created and provides an electronic seal to

reveal when tamping has occurred. An example DLT platform for managing a decentralized identity network is

Hyperledger Indy [48].

• DID Resolver: a DID resolver is a piece of software that is responsible for resolving DIDs to their corresponding

DDO. It allows users to look up and retrieve DID documents using the corresponding DID. This is accomplished by

querying the ledger on which the DID is stored and returning the DID document that is associated with the DID. The

DID resolver is designed to work in a decentralized environment and is typically implemented as a software library

or API that can be integrated into other applications or systems. Works such as [35, 49] have used the blockchain

and smart contracts to implement a DID resolver.

• Verifiable Credential (VC): A VC is a digital document that contains a set of claims about an individual or

organization that can be independently verified by a third party. VCs are designed to be self-sovereign, i.e., that

the individual or organization that holds the credential has control over it and can use it to prove their identity or

other attributes without relying on a centralized authority. They can be used to prove a wide range of attributes,

including personal information (e.g., name, date of birth), professional qualifications, and other relevant details, see

Figure 5 [47]. VCs are often issued by trusted organizations, such as schools, government agencies, or professional

associations, and can be verified by anyone who has access to the credential and the necessary tools to check its

validity. Due to personal and private information being stored within the documents claims, VCs are not stored on

public database or ledger, but rather on the owner’s storage device and managed by a software known as a digital

wallet [50].
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Figure 5. Example verifiable credential.

• Verifiable Presentation (VP): a VP is a digital document that contains a set of claims about an individual or

organization that has been attested to by a trusted third party. It is the document that is generated and presented

to a verifier upon their request to validate claims about a subject. One main difference between VCs and VPs is

that claims within VPs are derived from one or more credential. Another difference is that a VP contain both the

cryptographic signature from the issuer who issued the VC and additional signature from subject who generated

the VP. This is to prevent a replay attack [47]. The additional signature contains a challenge the verifier must solve

upon verification. An important aspect of a VP is that the subject is given the choice to selectively reveal only

the information that is necessary for a specific purpose, while still maintaining control over their own identity and

personal information.

• Claims: a claim is a statement about an individual or organization that can be proven or disproven. Claims are a key

component of VCs and VPs and are used to prove the identity of an individual or organization, known as the subject,

in a decentralized system. Examples of claims are their name, date of birth, or professional qualifications. Claims

can be proven or dis-proven using cryptographic techniques, which allows for the creation of a tamper-evident

records, the verifiable credential.

• Credential Schema: a credential schema is a standardized set of rules and guidelines that defines the structure and

format of a verifiable credential. They include information about the types of claims that can be made in a verifiable

credential, as well as the format and structure of the credential. Credential schemes are used to ensure that verifiable

credentials are interoperable, thus allowing for the easy exchange and verification of verifiable credentials across

different systems and contexts.

Decentralized identity is a rapidly evolving field that is gaining increasing attention from both academia and industry.

It can be implemented with or without DLT if it supports the necessary features and capabilities. The following are list

networks and platforms being developed and used today: uPort (https://uport.me/), Sovrin (https://sovrin.org/), SelfKey

(https://selfkey.org/) and Civic (https://www.civic.com/). The authors in [10] provide an evaluation of each of the mentioned

platforms along with the challenges and limitations.
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3.3 InterPlanetary File System

The InterPlanetary File System (IPFS) is a distributed file system protocol that aims to make the internet more resilient

and scalable [51]. It is based on a P2P network architecture, in which nodes communicate with each other to store and

retrieve data. In contrast to traditional client-server architectures, in which data is stored on centralized servers and accessed

by clients through network requests, IPFS allows users to access data directly from other nodes in the network.

An integral component of IPFS is the content identifier (CID), which serves as a unique identifier for files or content

within the network. A CID is a unique identifier that is used to identify and locate a file or piece of content within the

IPFS network. CIDs are generated by hashing the file and result in a fixed-length string of characters that are unique

to the specific content, see Figure 6. The resulting CID is used to locate and retrieve the content. An example CID is

QmV8RgHXhv7n68EoyYG5N8rGZn3vZ5z5LcN5Z8uAVhX9y7. Users can then use the CID to retrieve the content from the

IPFS network.

Figure 6. Illustrating the process of creating a CID. A file is first partitioned into smaller sized data chunks. Then hashed into a Merkle Tree with the root
hash becoming the CID.

IPFS allows for the decentralization of data storage and retrieval. This means that data is not stored on a single central

server, but rather is distributed across a network of nodes. This reduces the risk of data loss or downtime, as data can still

be accessed even if one or more nodes go offline. Additionally, the decentralized nature of IPFS can make it more efficient

and faster to retrieve data, as it allows users to access data from the node that is closest to them, rather than having to make

a request to a central server that may be located far away. Overall, IPFS has the potential to significantly improve the

speed, resilience, and scalability of the internet.

4. Proposed Scheme

In this section, we give a comprehensive description of DeAuth’s concepts, components, and architecture. We explain

their purposes, inner workings and how they are interconnected. Moreover, we explain the programmatic functions and

algorithms underpinning DeAuth’s functionality, offering a thorough examination of its operations.

4.1 Concepts and Components

DeAuth integrates three concepts within a decentralized system: identity management, authentication, and

authorization (i.e., access control) in order to share private data. Users are identified by private keys, public keys,

blockchain addresses, DIDs, VPs and VCs. An identity management system is necessary to store and manage those

identifies. Authentication is necessary such it allows users to verify who they say they are. In DeAuth, authentication

proves a user owns (i.e., has the private keys to) a DID and signatures in a VC or VP. Authorization is necessary to dictate

who is allowed to share and obtain another user’s private data. Now we introduce the components necessary to support the

aforementioned concepts.

DeAuth is comprised of three main components: the wallet, smart contracts, and IPFS all of which are unified by

the blockchain, depicted in Figure 7. The wallet’s main responsibilities are identity and blockchain address management.
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All users must have a wallet to hold an identity and interact with smart contracts. The smart contracts contain DeAuth’s

business logic. There are two smart contracts, one to manage the creation and lookup of DIDs and the other to submit

authorization messages; both of which are discussed upcoming in Section 4.1.2. The last component is IPFS. Authorization

messages and private user data are not stored on the blockchain to minimize the memory growth rate and uphold privacy.

Rather they uploaded and stored to a IPFS node that is hosted by third-party service, making the data available for sharing.

Users have the option to self-host an IPFS node, providing benefits latter discussed in Sections 6.3 and 8.2. We elaborate

on each the components the following sections.

Figure 7. DeAuth components.

4.1.1Wallet

The (digital) wallet enables users to oversee their identity and engage with the blockchain through smart contracts.

Wallets are predominantly deployed as desktop, mobile, or web applications, each tailored to meet specific requirements

contingent upon the system in which they are integrated. For instance, wallets incorporated into decentralized identity

systems are designed to manage DIDs, whereas wallets integrated into blockchain systems primarily oversee blockchain

addresses and facilitate the submission of transactions to the blockchain. Given that DeAuth constitutes a hybrid application

integrating both decentralized identity and blockchain functionalities, the wallet requires a multifaceted feature set to

accommodate these dual responsibilities. The features of DeAuth’s wallet encompass the following:

• Generation of public and private keys.

• Creation, retrieval, and revocation of DIDs.

• Storage of addresses, DIDs, and VCs.

• Verification of VCs and VPs.

• Creation of blockchain addresses.

• Communication with the blockchain.
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• Interaction with smart contracts.

4.1.1.1Key Management

The DeAuth wallet operates as a deterministic wallet, employing a hierarchical deterministic (HD) key generation

method [52]. In HD key generation, both private and public keys originate from a common secret or seed. Importantly, as

long as the seed remains unchanged, an identical set of keys can be reliably regenerated. Conversely, non-deterministic

wallets adopt an alternative approach, generating each key from distinct, randomly generated seeds, thereby precluding the

replication of the same keys. This characteristic affords both deterministic and non-deterministic wallets the capability to

generate a virtually limitless number of keys. To ensure compatibility across multiple blockchain platforms, our wallet

adheres to standardized wallet implementation protocols, including those specified in BIP32 [53] and BIP44 [54].

A deterministic wallet proves advantageous for DeAuth and similar blockchain applications for several compelling

reasons. In the event a user inadvertently deletes their wallet along with its associated keys, the sole possession of their

seed facilitates the seamless recovery of the same set of keys. Furthermore, keys are systematically organized within

deterministic wallets, akin to the hierarchical structure of files and folders on a hard drive, depicted in Figure 8 [55]. Lastly,

deterministic wallets possess the unique ability to generate public keys independently of private keys, rendering them

suitable for deployment on potentially insecure server environments.

Figure 8. Example of HD key generation in a blockchain wallet.

4.1.1.2Blockchain Address and Identity Management

Blockchain addresses (we refer to blockchain address(es) as just address(es) for the rest of the paper for brevity) and

DIDs are both derived from public keys and are stored in the digital wallet. For the wallet to accommodate DIDs and

distinguish whether a public key was used to create an address or DID, we utilized the BIP44 standard. BIP44 defines a

standard framework for organizing keys in an HD wallet [54]. This adaptation allows the wallet to be used with multiple

different cryptocurrencies and to support different use cases. The BIP44 levels are:

m / purpose / coin type / account / change / address index

The “m” stands for “master seed” and is constant; all other levels are represented with an index value (0, 1, 2, ...,

etc.) and together form a path. The path is necessary when generating a public/private key pair. An example path is

m/44/60′/0/0/0, the typical path of the first key pair. The 44 represents the BIP44 standard and the 60 is the constant value

for the Ethereum Blockchain. More coin types can be found in [54].

In DeAuth, we employed the account and change levels to accommodate DID management. First, we placed a rule at

the account level such that even values represent accounts used for blockchain address and odd values represent accounts

used for DIDs. Furthermore, we added an additional rule at the change level. Originally value 0 is used for external chain

and 1 for internal chain; external chain is used for addresses that are meant to be visible outside of the wallet (e.g., for
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receiving payments) and internal chain is used for addresses which are not meant to be visible outside of the wallet and is

used for return transaction change. In DeAuth, 0 is now used to create public addresses and DIDs while 1 is used to create

private addresses and DIDs. Recall private DIDs are not published on the blockchain and shared only between participants

to establish private communications between wallets. Example paths for addresses and DIDs are shown below:

• m/ 44′/ 60′/0 /0/0—public blockchain address

• m/ 44′/ 60′/0 /1/0—public blockchain address

• m/ 44′/ 60′/1 /0/0—public DID

• m/ 44′/ 60′/1 /1/0—private DID

4.1.1.3Agents and Services

Agents are used to facilitate interactions between users and perform a range of services. They function as intermediators,

aiding users with identity management and enabling identity verification to external parties. In DeAuth, these agents are

seamlessly integrated into the wallet software and are made accessible throughApplication Programming Interfaces (APIs).

Services are generally public and integrated into a DDO, see Figure 9. Services that agents perform in DeAuth are:

• Message transmission.

• Message and file encryption/decryption.

• Authenticate and verify DIDs, VCs and VPs.

• Wallet information management.

Figure 9. Example of a service defined in a DDO.

4.1.2Smart Contracts and Authorization Messages

DeAuth utilizes two smart contracts, the identity contract and authorization contract. The source code is shown

in Appendixes Figures A1 and A2. The Identity Contract is responsible for creating and looking up DIDs, while

the authorization contract is responsible for submitting authorization messages that control data sharing permissions.

Furthermore, only one Identity Contract is required to be deployed; however, there can be many authorization contracts

deployed. The smart contract’s address is included as a service in a DDO so that wallet holders know where to send

transactions to, see Figure 10.
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Figure 10. Example of smart contract definition in a DDO.

4.1.2.1Authorization Messages

Authorization messages regulate data sharing permission in a secure and transparent manner. Additionally,

authorization messages enable a comprehensive record of all the permissions requested and granted for data sharing

between users. They are stored and shared using IPFS. Their CID is recorded and submitted as a transaction to the

blockchain via the Authorization Contract; we discuss the authorization message submission sequence in the Section 4.2.

Each authorization message is labeled with a type identifier that describes the functionality of the message. Currently,

there are five message types; however, can be extended in future works:

1. RequestData: request data not owned by the requesting party.

2. AskPermission: ask permission from the owner to share data with the requesting party.

3. AllowPermission: owner grants approval for the transfer of the user’s private data.

4. RejectPermission: owner declines the transfer of a user’s private data.

5. ShareData: share data with requesting party.

Messages are divided into two categories: non-data (Figure 11) and data (Figure 12). We use JavaScript Object

Notation (JSON) [56] to define the schema. All types except the ShareData message type uses the non-data schema.

Figure 11. Non-data authorization message schema.

The data schema uses the same property fields as the non-data schema and has additional fields for the CID of the

encrypted data being shared, and the CID of the encrypted session key; we discuss the session key next in Section 4.1.3.

Figure 12. Data authorization message schema.
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4.1.3Data Storage and Encryption

DeAuth uses IPFS for storing and sharing data such as authorization messages and files. Data is costly to store on the

blockchain. Given the substantial cost associated with storing large volumes of data on the blockchain, IPFS serves as an

off-chain storage layer. Only the DIDs and CIDs are retained on the blockchain. Moreover, the requested private data is

shared only when an AllowPermission message is submitted by the data’s owner. The nature of this data can encompass a

variety of file types, including documents, images, audio, and videos. Prior to sharing, the data is assumed to be stored on

the user’s hard drive or other storage mediums—e.g., cloud, external flash drive, etc.

In the interest of safeguarding user privacy and anonymity, authorization messages undergo encryption using the

recipient’s public key prior to submission. This public key is derived from a private DID specifically created to facilitate

private communication between two designated users. Furthermore, it is imperative to note that shared private data

undergoes encryption as well. Within the IPFS framework, all data is inherently public and thereby accessible to all users

within the network. Non-encrypted data is particularly susceptible since it remains in plaintext form. To address this

security concern, DeAuth employs AES encryption using a randomly generated symmetric key, denoted as k—i.e., a

session key [57]. Key k itself is encrypted with the requester’s public key and is then stored on the IPFS network, thus

allowing the requester to retrieve and use k for decryption. We further discuss the storage and encryption algorithms in

Section 4.2.2.

4.2 Architecture

DeAuth’s architecture is comprised of two main schemes, authentication and authorization. The authentication scheme

involves two sequences, DID authentication and VC verification, illustrated in Figure 13. In DID authentication, a subject

proves to verifier they are the owner of a DID, while in VC verification, a subject proves to a verifier that the claims in a

VC have been digitally signed by an issuer.

Figure 13. Two authentication services in DeAuth: (a) DID authentication and (b) VC verification. DID authentication has four main steps: (1) Verifier
sending a challenge, (2) Subject resolves the Verifier’s DID, (3) Subject sends back challenge response and (4) Verifier resolves Subject’s DID. VC
verification has three main steps: (1) Issuer sends Subject a VC, (2) Subjects sends Verifier a VP, and (3) Verifier verifies the Issuers digital signature
within the VP.

Figure 13a illustrates DIDs are authenticated through a challenge-response process and DID resolution. Both sequences

are shown in Figure 14. To pass the challenge, the verifier sends the subject a random string (i.e., challenge) and requires

the subject to encrypt it with both its private key and the verifier’s public key. The encrypted challenge is sent back to

the verifier to decrypt the response with their secret key and the subject’s public key. The subject passes the challenge if

the string remains unchanged. The verify and subject obtain the others public keys through DID resolution, where the
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blockchain and IPFS serve as a DID Resolver (Section 3.2.2). In DID resolution, a DID is looked up on the blockchain via

the Identity Contract (Section 4.1.2) to get DDO’s CID. The DDO can then be retrieved from IPFS using the CID.

Figure 14. DID authentication and resolution sequence diagram.

DID authentication is necessary for VC verification. Figure 13b shows there are three main steps: (1) issue, (2)

present, and (3) verify. The entire sequence is illustrated in Figure 15. When a verifier requires a VC (e.g., to prove one

meets a specific age requirement), the subject must first request a VC from a trusted issuer. The subject and issuer perform

DID authentication on each other before the issuer can add claims, sign, and send a VC. It is assumed the VC is sent over a

secure connection using DIDs; we discuss this feature later in Section 5.1.2. The VC is saved in a wallet and the subject

can now request access to the verifier’s service. In response, the verifier requests a VP. The subject generates a VP, derived

from a VC, and adds a signature using their private key—refer to Section 3.2.2 about reply attack. Before sending the VP,

the subject and verifier authentication each other’s DID. Lastly, the VP is sent to the verifier and verifies the signatures

from both the subject and issuer.
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Figure 15. VC verification sequence diagram.

Figure 16 illustrates the authorization scheme and how private data is shared after users are authenticated. In this

scheme, are three types of users the Data Manager (DM), Data Owner (DO) and Data Requester (DR). The DM is an entity

that manages and stores private data about a DO. DMs cannot share this data without a DO’s permission. The DR is the

user that is requesting data that belongs to DO and is managed by a DM. Users create and submit authorization messages

request private data, allow permission, and share that data to one another.

Authorization messages are created by the users, saved to IPFS, and submitted to the blockchain via the Authorization

Contract. All messages are encrypted before being saved to IPFS. Figure 17 shows the sequence of this process between a

sender and receiver. The sender first creates a message—e.g., RequestData, AllowPermission, etc. Next the sender and

receiver perform DID resolution which allows both to obtain the others’ public key. The message is then encrypted with

the receiver’s public key. The sender saves the encrypted message to IPFS, obtains the CID, and submits the CID to the

blockchain. A TID is generated from the submission and is sent to the receiver. The receiver looks up the TID on the

blockchain to retrieve the CID, then uses the CID to retrieve the encrypted messages. Last, the receiver uses their private

key to decrypt the message to reveal its contents in plain text.
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Figure 16. DeAuth authorization scheme. The scheme is made of six main steps: (1) the DR submits a RequestData message, (2) the DM submits
a AskPermission message, (3) DO submits a AllowPermission message, (4) DM shares DO’s private data through IPFS, (5) DM shares a ShareData
message and (6) DR retrieves DO’s private data through IPFS.

Figure 17. Sequence diagram for submitting an authorization message within the authorization scheme.
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4.2.1Functions

In this section we define all major functions used in authentication and authorization schemes. They are categorized

into six categories: (1) general, (2) wallet, (3) smart contract, (4) identity, (5) authorization message and (6) data.

1. General Functions:

• sk, pk←genKeyPair (seed,path)—generates a private (i.e., secret) key (sk) and public key (pk) pair.

• k←genSessionKey()—generates a session key (k) for data encryption.

• CIDm←lookupTID(TID)—looks up a blockchain transaction identifier (TID) on the blockchain and returns the

IPFS CID for an authorization message (m).

2. Wallet Functions:

• createPublicConn(DID1, DID2)—creates a public connection between two wallets using two distinct public DIDs.

• createPrivateConn(DID*
1,DID

*
2)—creates a private connection between two wallets using two distinct private DIDs.

• true | false← authenticateDID(DID | DID*)—authenticates a public or private DID by sending the owner a

challenge using the pk associated with the DID; the pk is found in the DDO. Returns true if the owner has the

associated sk to solve the challenge; false otherwise.

• true | false← authenticateVP(VP)—authenticates a VP. Return true if VP’s owner and issuer can verify the

signatures attached with the VP; false otherwise.

• send(DIDsender, DIDreceiver, VP | DID | TID)—sends a VP, DID, or TID to a user’s wallet.

3. Smart Contract Functions:

• TID←publishDID(DID,CIDDDO)—calls the method in the Identity Contract to store both a DID and CIDDDO on

the blockchain, which results in making the DID public.

• CIDDDO← lookupDID(DID)—calls the method in the Identity Contract to look up a DID and return the CIDDDO

associated with a DID.

• TID← submitMessage(t,CIDmCT)—calls the method in the Authorization Contract to submit an encrypted

authorization message (CIDmCT) to the blockchain labeled with type t.

4. Identity Functions:

• DID←createDID(pk)—creates a DID from a public key.

• DDO←createDDO(DID)—creates a DDO from a DID.

• signature←extractProof(DDO | VP)—extracts and returns the proof (i.e., digital signature) from a DDO or VP.

• true | false←verifyProof(signature, pk)—verifies a signature using a public key. Returns true if verified; false

otherwise.

• pk←extractPublicKey(DDO)—extracts a public key from a DDO.

• pk←retrievePublicKey(DID)—returns a public key associated with a DID. This function is comprised of multiple

functions; its details are found within Algorithm 3 in the next section.
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• DID*CT
i ←encryptPrivateDID(pk,DID*)—encrypts a private DID with a public key so that the private DID can be

sent securely.

5. Authorization Message Functions:

• mt←createMessage(t, DIDsender, DIDreceiver)—creates a non-data authorization message of type t.

• mShareData←createDataMessage(’ShareData’, DIDsender, DIDreceiver, CIDfCT
, CID

kCT
)—creates a data authorization

message of type ShareData.

• mCT←encryptMessage(pk, m)—encrypts an authorization message with the receiver’s public key.

• m←decryptMessage(sk, m)—decrypts an authorization message with a receiver’s private key.

6. Data Functions:

• fCT←encryptFile(k, f)—encrypts file(s) with a session key.

• f←decryptFile(k, fCT)—decrypts file(s) with the corresponding session key.

• CID←saveToIPFS(mCT | DDO | fCTk )—saves data to IPFS and returns a CID. Authorization messages and files are

encrypted before saving.

• mCT | DDO | fCTk ←retrieveFromIPFS(CID)—retrieves data from IPFS using a CID.

4.2.2Algorithms

In this section, we describe the algorithms used within DID authentication, VC verification and authorization. The

algorithms are composed of the functions defined previously in Section 4.2.1. There are nine algorithms and are summarized

Table 1.

Table 1. Table of algorithms used with the authentication and authorization schemes.

Algorithm Name Scheme Description

1: Create Public DID DIDAuthentication Create DIDs and DDOs for participants in the network.
2: Authenticate DID DIDAuthentication Verifier sends Subject a challenge to authenticate DID.
3: Create Private DID VC Verification Create a private DID for encrypting authorization messages and establishing private connections.
4: Request VC VC Verification Subject requests a VC from Issuer.
5: Verify VP VC Verification Verifier verifies signatures in VP.
6: Request Data Authorization DR requests private data from DM, owned by DO.
7: Ask Permission Authorization DM asks permission from DO to share private data with DR.
8: Allow Permission Authorization DO gives permission to DM to share private data with DR.
9: Share Data Authorization DM encrypts DO’s private data and shares it with DR.
10: Retrieve Data Authorization DR retrieves private data and decrypts it.

Algorithm 1 creates DIDs and DDOs for all users n in the network N, then publishes them to the blockchain, which

results in publicizing those DIDs. The first key pair and DID represents the wallet. First, sk and pk pairs are generated

(line 2). Next, the DIDs and DDOs are created with each user’s pk (line 3). The DDO is stored on IPFS and theCIDDDO is

returned (line 4). Last, each DID and CIDDDO is published to the blockchain via the Identity contract (line 5).
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Algorithm 1 Create Public DIDs

1: for n ∈ N do

2: skn,pkn←genKeyPair(seed, path)

3: DIDn,DDOn←createDID(pkn)

4: CIDDDOn
←saveToIPFS(DDOn)

5: publishDID(DIDn,CIDDDOn
)

6: end for

Algorithm 2 authenticates a DID using a challenge-response process (refer to Figure 14). Verifier nV generates a

random string, challengens , and sends it to Subject nS (line 2–3). In response, challengens must be encrypted by both nV ’s

public key and nS’s private key, then sent back to nV . To do this, ns looks up nV ’s DID, DIDnV , on the blockchain to get the

CID to its document,CIDDDOnV
(line 4). WithCIDDDOnV

, nV can retrieve DDOnV from IPFS and extract the public key to

obtain pknV
(line 5–6). The challenge is encrypted by pknV

and sknS to form challengeCT
nS
, then sent back to ns (line 7–8).

For decryption, challengeCT
nS

must be decrypted by both pkns and sknV . Thus, similar to lines 4–6, nV performs the

same functions to obtain pknS
(lines 9–11). The challenge can now be decrypted and verified that its content matches the

original challenge that was sent to nS.

Algorithm 2 Authenticate DID

1: Let nS,nV∈N
2: challengenS←generateChallenge() >Verifier

3: send(DIDnV ,DIDnS ,challengenV)

4: CIDDDOnV
←lookupDID(DDOnV) > Subject

5: DDOnV←retrieveFromIPFS(CIDDDOnV
)

6: pknV←extractPublicKey(DDOnV)

7: challengeCTnS←encryptChallenge(sknS ,pknV , challengenS)

8: send(DIDnS ,DIDnV ,challenge
CT
nS
)

9: CIDDDOnS
←lookupDID(DIDnS) > Verifier

10: DDOnS←retrieveFromIPFS(CIDDDOnS
)

11: pknS←extractPublicKey(DDOnS)

12: challengenV←decryptChallenge(sknV ,pknS ,challenge
CT
nS
)

13: verifyChallenge(challengenS ,challengenV)

Algorithm 3 sends a private DID to another user. Recall private DIDs are used to establish private communication

and are not published on the blockchain (refer to Section 3.2.2). First, a key pair is generated by user ni and will only by

known to user n j; the key pair represented as sk∗ni, n j
and pk∗ni, n j

(line 2). Private DID, DID∗ni,n j
and DDO∗ni,n j

, are created

from pk∗ni, n j
(line 3). Before DID∗ni,n j

can be sent to n j, it must be encrypted with n j’s public key pkn j
, which obtained by

looking up DIDn j , retrieving DDOn j from IPFS and extracting pkn j
(lines 4–6). We substitute lines 4 to 6 with function

retrievePublicKey(DID) for the rest of the algorithms. Once pkn j
has been extracted from DDOn j , it is used to encrypt

DID∗ni,n j
and sent to n j (line 6–8).
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Algorithm 3 Send Private DID

1: Let ni,nj∈N where i 6=j
2: sk*ni,nj ,pk

*
ni,nj
←genKeyPair(seed,path)

3: DID*
ni,nj

,DDO*
ni,nj
←createDID(pk*ni,nj)

4: CIDDDOnj
←lookupDID(DIDnj)

5: DDOnj←retrieveFromIPFS(CIDDDOnj
)

6: pknj←extractPublicKey(DDOnj)

7: DID*CT
ni
←encryptPrivDID(pknj ,DID

*
ni
)

8: send(DIDnj ,DID
*CT
ni

)

Algorithm 4 sends a VC to another user. Before Issuer nI sends Subject nS their verifiable credential VCnS , a private

connection is initiated between two private DIDs, DID∗nS,nI
and DID∗nI ,nS

(line 2). Once established, nI sends VCnS to nS’s

wallet (line 3). VCnS does not need to be encrypted since the private connection encrypts all communication between nS

and nI .

Algorithm 4 Send Verifiable Credentials

1: Let nS,nI∈N
2: createPrivateConnection(DID*

nS,nI
,DID*

nV,nI
)

3: send(DIDnS ,VCnI)

Algorithm 5 verifies the digital signatures (proofs) in a VP. For this algorithm, Subject nS is having their VP verified

by Verifier nV . Recall from Section 3.2.2 a VP is derived from a VC and contains signatures from both nS and Issuer nI .

First nS creates V PnS from one of their credentials VCnS (line 2). A private connection is established between nS and nV

before the VP is sent (line 3). Two signatures are then extracted from V PnS , one from nS and the other from nI (line 5).

Last, signaturenS
and signaturenI

are verified using nS’s and nI’s public key (lines 6–8).

Algorithm 5 Verify Verifiable Presentation

1: Let nS,nV,nI∈N
2: VPnS←createVerifiablePresentation(VCnS) > Subject

3: createPrivateConnection(DID*
nS,nV

,DID*
nV,nS

)

4: send(VPnS ,DIDnV)

5: signaturenS,signaturenI←extractProof(VPnS)

6: for n ∈ [nS,nI] do
7: pkn←retrievePublicKey(DIDn)

8: true | false←verifyProof(signaturen,pkn)

9: end for

Algorithm 6 is used by the DR to request private data managed by the DM and owned by the DO. DR, DM, and

DO is represented as nDR, nDM and nDO respectively. First, nDR creates a RequestData authorization message mRequestData

with DIDnDR and DIDnDO (line 2). nDR then retrieves pknDM
associated with DIDnDM in order encrypt mRequestData (line 3).

mCT
RequestData is saved to IPFS and nDR obtainsCIDmCT

RequestData
. In the final step, nDR submitsCIDmCT

RequestData
to the blockchain

(line 6).
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Algorithm 6 Request Data

1: Let nDO,nDR,nDM∈N
2: mRequestData←createMessage(’RequestData’,DIDnDR ,DIDnDO)

3: pknDM←retrievePublicKey(DIDnDM)

4: mCT
RequestData←encryptMessage(pknDM ,mRequestData)

5: CIDmCT
RequestData

←saveToIPFS(mCT
RequestData)

6: TIDRequestData←submitMessage(’RequestDat’,CIDmCT
RequestData

)

Algorithm 7 is used by the DM to ask the DO’s permission to share private data with the DR. First, nDM looks up

T IDRequestData to obtain CIDmCT
RequestData

from the blockchain (line 2). nDM then uses CIDmCT
RequestData

to retrieve mCT
RequestData

from IPFS and decrypts it with their secret key sknk . Next, the nDO’s and nDR’s public DIDs are extracted from mRequestData

(line 5) and nDM uses the DIDs to create mAskPermission (line 6). The authorization message is encrypted with pk∗nDO,nDM
,

extracted from DID∗nDO,nDM
(line 7). The encrypted message, mCT

AskPermission, is saved to IPFS andCIDmCT
AskPermission

is returned

(line 8). Last, nDM submitsCIDmCT
AskPermission

to the blockchain and obtains T IDAskPermission (line 9).

Algorithm 7 Ask Permission

1: Let nDO,nDR,nDM∈N
2: CIDmCT

RequestData
←lookUpTID(TIDRequestData)

3: mCT
RequestData←retrieveMessageFromIPFS(CIDmCT

RequestData
)

4: mRequestData←decryptMessage(sknDM ,m
CT
RequestData)

5: DIDnDO ,DIDnDR←extractDID(mRequestData)

6: mAskPermission←createMessage(’AskPermission’,DIDnDR ,DIDnDO)

7: mCT
AskPermission←encryptMessage(pk*nDO,nDM ,mAskPermission)

8: CIDmCT
AskPermission

←saveToIPFS(mCT
AskPermission)

9: TIDAskPermission←submitMessage(’AskPermission’,CIDmCT
AskPermission

)

Algorithm 8 is used by the DO to give the DM permission to share their private data with a DR. First, nDO looks

up the transaction receipt T IDRequestData sent from nDM and obtainsCIDmCT
RequestData

(line 2). nDO uses the CID to retrieve

mCT
RequestData from IPFS (line 3) and decrypts it with sk∗nDO,nDM

(line 4). Next, nDO’s and nDR’s public DID are extracted from

mAskPermission; nDO now knows who is requesting their private data. In this algorithm, we assume nDO allows permission,

as opposed to rejects permission, and creates the AllowPermission authorization message mAllowPermission (line 6). nDO then

retrieves pkDM (line 7) and uses it to encrypt mAllowPermission (line 8). The encrypted messaged mCT
AllowPermission is saved to

IPFS, and nDO obtainsCIDmCT
AllowPermission

. The last line, CIDmCT
AllowPermission

is submitted to the blockchain.
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Algorithm 8 Allow Permission

1: Let nDO,nDR,nDM∈N
2: CIDmCT

AskPermission
←lookUpTID(TIDAskPermission)

3: mCT
AskPermission←retrieveMessageFromIPFS(CIDmCT

AskPermission
)

4: mAskPermission←decryptMessage(sk*nDO,nDM ,m
CT
AskPermission)

5: DIDnDO ,DIDnDR←extractDID(mAskPermission)

6: mAllowPermission←createMessage(’AllowPermission’,DIDnDO ,DIDnDR)

7: pknDM←retrievePublicKey(DIDnDM)

8: mCT
AllowPermission←encryptMessage(pknDM ,mAllowPermission)

9: CIDmCT
AllowPermission

←saveToIPFS(mCT
AllowPermission)

10: TIDAllowPermission←submitMessage(’AllowPermission’,CIDmCT
AllowPermission

)

Algorithm 9 is used by the DM to share the DO’s private data with the DR. First, nDM looks T IDAllowPermission on the

blockchain to obtainCIDmCT
AllowPermission

(line 2). nDM then uses the CID to retrieve mCT
AllowPermission (line 3) and decrypts the

authorization message with sknDM (line 4). nDO’s and nDR’s public DID is extracted from mAllowPermission (line 5). Next,

nDM generates a random session key k (line 6) and encrypts nDO’s data file(s) fDO (line 7). nDM then retrieves pk∗nDR,nDM

from DID∗nDR,nDM
and encrypts k (line 8). f CT

DO and k are saved to IPFS and nDM obtains CID fCT and CIDkCT respectively

(lines 9 and 10). With all the required information, nDM creates a ShareData authorization message (line 11) and encrypts

the message with pk∗nDR, nDM
(line 12). nDM saves the message to IPFS (line 13) and submitsCIDmCT

ShareData
to the blockchain

(line 14). In the last line, nDM sends blockchain transaction T IDAllowPermission to DR using DIDDR (line 15).

Algorithm 9 Share Data

1: Let nDO,nDR,nDM∈N
2: CIDmCT

AllowPermission
←lookUpTID(TIDAllowPermission)

3: mCT
AskPermission←retrieveMessageFromIPFS(CIDmCT

AllowPermission
)

4: mAllowPermission←decryptMessage(skDM,m
CT
AllowPermission)

5: DIDnDO ,DIDnDR←extractDID(mAllowPermission)

6: k←generateEncryptionKey()

7: fCT←encryptData(k,f)

8: kCT←encryptKey(pk*nDR,nDM,,k)

9: CID
kCT
←saveToIPFS(kCT)

10: CID
fCT
←saveToIPFS(fCT)

11: mShareData←createMessage(’ShareData’,DIDnDO ,DIDnDR ,DIDkCT
,DID

fCT
)

12: mCT
ShareData←encryptMessage(pkDID*

DR,DM
,mShareData)

13: CIDmCT
ShareData

←saveToIPFS(mCT
ShareData)

14: TIDShareData←submitMessage(’SendData’,mCT
ShareData)

15: send(DIDDM,DIDDR,TIDShareData)

Algorithm 10 is used by the DR to retrieve DO’s data from IPFS. First, nDR look ups T IDShareData from the blockchain

to obtain CIDmCT
ShareData

(line 2), then uses the CID to retrieve mCT
Share from IPFS (line 3). Next, nDR decrypts mCT

Share with

sk∗nDR,nDM
(line 4). The CIDs are extracted from mShareData (line 5) and used to retrieve the encrypted session key kCT and

file(s) f CT (lines 6 and 7). Before f CT can be decrypted, kCT must be decrypted first using sk∗nDR,nDM
to reveal k (line 8).

Last, f CT is decrypted with k and nDR is now in possession of nDO’s private data (line 9).
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Algorithm 10 Retrieve Data

1: Let nDO,nDR,nDM∈N
2: CIDmCT

AllowPermission
←lookUpTID(TIDShareData)

3: mCT
ShareData←retrieveFromIPFS(CIDmCT

ShareData
)

4: mShareData←decryptMessage(skDID*
DR,DM

,mCT
ShareData)

5: CID
kCT

,CID
fCT
←extractDID(mShareData)

6: kCT←retrieveFromIPFS(CID
kCT

)

7: fCT←retrieveFromIPFS(CID
fCT

)

8: k←decryptKey(sk*nDR,nDM,,k
CT)

9: f←decryptData(k,fCT)

4.3 Real World Use Case Scenario

In this scenario, we have Alice who is experiencing chest pain and decides to make an appointment to see a physician.

In the past she has gone to Hospital A (HA) but has recently enrolled in medical insurance at her workplace which offers a

different provider. Prompting Alice to register as new patient at Hospital B (HB). To register, she uses a driver’s license

VC, obtained from the Department of Motor Vehicles (DMV), to prove her identify. Alice presents a VP, and HB verifies

the signatures belong to both Alice and the DMV. In Section 5.1.4, we later show how this process was implemented in the

prototype.

During her visit, the physician at HB recommends a new treatment for Alice’s chest pain, but first needs to review

historic medical history to ensure the treatment will not have ill side-effects. HB requests Alice’s health records from HA

using a DeAuth application. HA can only share her private EHR upon Alice’s permission. In this scenario, Alice is the

DO, HA is the DM and HB is the DR, thus HA can only share Alice’s EHR with HB with her permission. The scenario is

represented in Figures 18 and 19. We make the following assumptions prior to the scenario taking place:

• All users have a digital wallet that is able to perform all functions described in Section 4.2.2.

• Users have an internet connection that allows the wallet to interact with smart contracts on the blockchain, IPFS and

other users’ wallet.

• All users have a created a public DID published to the blockchain.

• Identity authorities, such the DMV, participate in decentralized identity and have infrastructure to issue and verify

VCs.

• HA, being the DM, has deployed an Authorization Contract and is monitoring the contract for transactions.
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Figure 18. First three steps of EHR sharing use case scenario: (1) Request Data, (2) Ask Permission and (3) Allow Permission.

In Figure 18, step 1, HB submits a RequestData authorization message to obtain Alice’s EHR (refer to Algorithm 6).

To do so, HB first creates mRequestData. The authorization message is encrypted with pkHA
, which is extracted from DIDHA ,

then saved to IPFS. HB completes the request by submitting CIDmCT
RequestData

to the blockchain.

In Figure 18, step 2, HA submits a AskPermission authorization message to get Alice’s permission to share her EHR

with HB (refer to Algorithm 7). HA first looks ups T IDReqeuestData to retrieveCIDmCT
RequestDATA

, then uses the CID to retrieve

mCT
RequestData. HA decrypts mCT

RequestData with skHA and now knows HB is requestingAlice’s EHR. HA creates mAskPermission and

encrypts with a pk∗Alice,HA
, which was extracted from DID∗Alice, HA

; recall using DID∗Alice, HA
is to ensure Alice’s anonymity

on the network (refer to Section 4.1.3). The encrypted message, mCT
AskPermission, is saved to IPFS. HA submits the CID of

the encrypted message, CIDmCT
AskPermission

, to the blockchain and obtains T IDAskPermission. To complete the step, HA creates a

private connection with Alice and sends T IDAskPermission to her.

In Figure 18, step 3, Alice submits an AllowPermission authorization message to give HA permission to share her

EHR with HB (refer to Algorithm 8). Alice first looks up T IDAskPermission on the blockchain and obtains CIDmCT
AskPermission

.

Next, she retrieves mCT
AskPermission from IPFS and decrypts the message with sk∗Alice,HA

. Alice now becomes aware that HA is

requesting permission to share her EHR with HB. Alice then creates mAllowPermission and encrypts it with pkHA
. Alice saves

mCT
AllowPermission to IPFS and obtainsCIDmCT

AllowPermission
. Alice then submits the CID to the blockchain.

In Figure 19, step 4, HA submits a ShareData authorization message to share Alice’s EHR HB (refer to Algorithm 9).

HA looks up T IDAllowPermision from the blockchain to obtain CIDmCT
AllowPermission

. HA uses the CID to retrieve mCT
AllowPermission.

HA decrypts the message with skHA and now knows that Alice has granted them permission to share her EHR with HB.

HA prepares to encrypt Alice’s EHR files f by generating a session key k. HA uses k to encrypt f, and after encrypts k

with pk∗HB,HA
. HA uploads f CT and kCT to IPFS and obtainsCID fCT andCIDkCT . With all the necessary information, HA

can create mShareData and encrypt it with pk∗HB,HA
. HA saves mCT

ShareDATA to IPFS and obtains CIDmCT
ShareData

. HA submits

CIDmCT
ShareData

to the blockchain and obtains T IDShareData. To end this step, HA creates a private connection with HB and

sends T IDShareData to HB.

In Figure 19, the 5th and final step, HB retrieves the encrypted session key and files from IPFS (refer to Algorithm 10).

HB first looks up T IDShareData from the blockchain to obtainCIDmCT
ShareData

. HB then usesCIDmCT
ShareData

to retrieve mCT
ShareDATA

from IPFS. Next,HB decryptsmCT
ShareData with sk∗HB,HA

to revealmShareData.CID fCT andCIDkCT are extracted frommShareData.
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The CIDs are used to retrieve f CT and kCT from IPFS. HB then decrypts kCT with sk∗HB,HA
to reveal k. Last, HB uses k to

decrypt f CT and can now read Alice’s EHR.

Figure 19. Last two steps of EHR sharing use case: (4) Share Data and (5) Retrieve Data.

5. Prototype Implementation

In this section, we provide an overview of the tools and methods that were used in the development of a prototype

DeAuth application. The first iteration relied on a centralized service to simulate the functionality of a blockchain, as well

as data storage. In the second iteration, decentralized services were integrated to enable the application to operate in a

decentralized manner. The following technologies were used to develop the application:

• Next.js (https://nextjs.org/)—a React framework to create to web applications.

• Firebase (https://firebase.google.com/)—Google’s back end as a service and cloud storage service.

• Web3.Storage (https://web3.storage/)—a service to store files accessible via IPFS.

• Ganache (https://archive.trufflesuite.com/ganache/)—a local Ethereum blockchain node.

5.1 Application Development

5.1.1Wallet User Interface

The bulk of the development efforts were dedicated to designing and implementing the wallet interface and its

associated functionalities. The wallet user interface (UI) was built with Next.js and segmented into three display sections:

messaging, DIDs and VCs, and a dedicated section to display details such as VC signatures, see Figure 20a–c.
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Figure 20. Wallet UI with three sections: (a) wallet, authorization submissions and authorization messages, (b) VCs and DIDs and (c) details view.

The messaging section of the UI displays messages sent from other wallets (i.e., wallet messages), authorization

message submissions to the blockchain and the authorization messages themselves. The wallet messages serve to alert the

owner that another user’s wallet has requested DID or VC verification; they are not to be confused with authorization

messages. Furthermore, wallet messages notify the wallet owner when an authorization message has been submitted to

the blockchain and are the intended recipient. Each message is associated with specific actions that can be undertaken

in response. For instance, in Figure 21a the user can either accept or reject a DID authentication request message. The

complete catalogue of wallet messages created in the prototype is itemized in Table 2.

Table 2. List of wallet messages, their descriptions, and their follow up actions.

Wallet Message Type Description Follow-UpActions

DID_AUTH_REQUEST another wallet requested DID authentication request accept or reject
ACCEPT_DID_AUTH_REQUEST DID authentication request accepted send challenge

DID_CHALLENGE DID authentication challenge sent respond to challenge
DID_CHALLENGE_RESPONSE DID challenge decrypted verify response
ID_CREDENTIAL_REQUEST another wallet requested a VC select a VC

ID_PRESENTATION VP generated and signed verify VP
AUTHORIZATION_MESSAGE authorization message submitted to blockchain look up T IDm

Computer Networks and Communications 28 | Phillipe Austria, et al.



Figure 21. Example wallet messages: (a) DID_AUTH_RQUEST—the wallet was sent a DID authentication request and accepted the request. (b)
DID_CHALLENGE—the wallet was sent an authentication challenge and responds to the requester to validate the DID.

The authorization submissions section of the UI displays the authorization message submissions that have been looked

up from the blockchain with a TID and are waiting to be retrieved from IPFS. Upon being designated as the receiver

of an authorization message, the wallet is notified with a wallet message. The TID associated with the authorization

message submission is looked up on the blockchain (Figure 22a) and the CID is shown in authorization submission section

(Figure 22b). For prototype and demonstration purposes, we manually trigger each step with a button click to retrieve

the authorization message. Those steps are: (1) Retrieve the authorization message from IPFS, (2) Decrypt the message

with a private key, and (3) Store the decrypted message within the wallet. In a production application, these steps would

presumably automatically when a submission is made.

Figure 22. Screenshot of a SendData authorization message. (a) The wallet message shows the submission TID, which is used to lookup the IPFS CID
on the blockchain. (b) Using a CID, the wallet can retrieve the message from IPFS. After, the wallet decrypts and stores the message.

The authorization messages section in the wallet UI displays plain text authorization messages after they have been

retrieved from IPFS and decrypted. Each authorization message type has a specific set of actions that can be taken in
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response. For example, when a RequestData is received, a button is displayed asking user, the DM, to ask permission from

the DO to share their data. Figure 23 comprehensively catalogs the various types of authorization messages, along with

their associated actions.

Figure 23. Various authorization messages and follow up actions displayed in the UI: (a) Data Request, (b) Ask Permission, (c) Allow Permission and (d)
Share Data.

The DID/VC section of the wallet UI (Figure 20b) displays the DIDs and VCs that are associated with the wallet.

Upon the creation of a new wallet, a key pair is generated, and the public key is encoded in base58 to yield the wallet’s

public DID. Our prototype did not include the capability to create new public or private DIDs, but would be a necessary

feature in a production application.

5.1.2Wallet Messages

Our prototype did not encompass the development of a fully functional P2P wallet messaging system, as this aspect

was not the central focus of the research. Nevertheless, we save this feature for future iterations of the application, drawing

upon the specifications and protocols outlined in the DIDComm (https://identity.foundation/didcomm-messaging/spec/)

framework to provide a secure, private communication methodology built atop the decentralized design of DIDs. In lieu

of a functional messaging system, we simulated messaging activity by storing messages in a JSON file. These wallet

messages are exchanged between wallets for the purpose of DID authentication, as well as for transmitting TIDs associated

with authorization message submissions.

5.1.3Blockchain and Data Storage

Initially, we developed a prototype leveraging Google Firebase, which served a dual role in the capacity of both the

blockchain and the storage mechanism for files. Within this context, DDOs and authorization messages were also saved to

Firebase. To facilitate these operations, a Firebase API (https://firebase.google.com/docs/storage) was used to implement

of calls to store and retrieve data from Firebase. In essence, these calls simulated smart contract calls to the blockchain.

In the second iteration of our prototype, we eliminated Firebase and replaced its calls with smart contracts functions,

while employing Web3.Storage for storing data to IPFS. The Identity and Authorization contracts were designed and

compiled using the Remix (https://remix.ethereum.org/) editor. For initial smart contract testing we used Ganache, a local

Ethereum node. Thereafter, we conducted testing on the live Goerli Ethereum test network.
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5.1.4Obtaining a Verifiable Credential

Upon wallet creation, it does not initially contain a VC. To acquire a VC, a driver’s license VC was simulated to

be obtained from the DMV. In this scenario, it is assumed that after a subject applies for a driver’s license, they register

their DID with the DMV. The DMV then allows users to obtain a digital version of their driver’s license, which is the

VC. Figure 24 shows a screen of the prototype where the subject enters their wallet DID to receive VC. After the DID is

submitted in the form, the DID owner will receive a wallet message to begin the DID authentication process.

Figure 24. Screenshot of the DMV form to obtain a driver’s license VC.

Upon obtaining the VC, it is displayed in the central portion of the wallet UI as seen in Figure 25a. The user can view

specific details of the VC by clicking on it, which will be displayed on the right-hand side of the wallet UI, see Figure 25b.

These details include the digital signature that was generated by the DMV’s private key. Additionally, we implement the

functionality to request VC verification by the Issuer. By clicking the lock symbol on the top right of the credential in

Figure 25a, sends a request to the DMV’s wallet to validate the VC’s signature.

Figure 25. Screenshot of: (a) the verified driver’s license VC from the DMV and (b) the VC detail which includes the issuer’s signature.

5.1.5EHR Implementation

In the prototype, we implemented the use case scenario for sharing EHRs (Section 4.3). This implementation comprises

three primary functionalities, which are illustrated in Figure 26: (a) patient registration, (b) patient data request and (c)

sharing patient EHR to another hospital.
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Figure 26. Screenshot of the various forms: (a) patient registration, (b) patient data request and (c) sharing patient EHRs.

Like Alice in Section 4.3, a user (subject) registers with HA as a patient and then HB requests the patient’s EHR from

HA. The user first registers as a patient with HA and obtains a second VC as proof of being a patient. While real-life

registration generally requires the patient to provide detailed medical information, in our prototype, only the identity

needs to be verified. After submitting their DID, the patient receives a message to prove their identity with a VC. The

patient selects their driver’s license VC, generates a VP, and sends the VP to HA, see Figure 27. HA validates both patient’s

signature and the DMV’s signature. Once the VP is validated, HA sends the patient a new VC.

Figure 27. Screenshot of views when receiving a VC. (a) Patient signs and sends a driver’s license VP. (b) The Details View shows the patient’s digital
signature along with the original Issuer’s signature. (c) After signature validation, HA sends the patent a VC which confirms they are a now a registered
patient.
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5.1.6Libraries and Source Code

Table 3 provides an overview of the important libraries and their corresponding versions utilized in the development

of the DeAuth prototype. These libraries played a crucial role in the functionality of the application, such as the UI design

and the integration of blockchain and storage mechanisms. Additionally, numerous other libraries were utilized for the

infrastructure and organization of the application. All these libraries can be searched and accessed through npmjs.com

(https://www.npmjs.com/). The source code for the smart contracts are in the Appendixes Figures A1 and A2; the rest of

the protype source code is hosted on our Gitlab repository (https://gitlab.com/paustria/unlv-dissertation/).

Table 3. Main libraries for the DeAuth prototype.

Library Name Version Description

abi-decoder 2.4.0 helper library to decode smart contract call input
base-58 0.0.1 provides helper functions to encode and encode in base58
firebase 9.1.16 api package to interact with Google Firebase
ganache 7.7.7 api package to interact with Ganache Ethereum local node
hdkey 2.0.1 hierarchical deterministic key library to generate BIP32 compliant wallet keys

truffle/hdwallet-provider 2.1.8 library used to create a Ethereum provider that auto-signs transactions
virgo-crypto 4.2.2 a cryptography library used for performing encryption
web3.js 1.8.2 a collection of libraries to interact with an Ethereum node

6. Security Analysis

In this section, we examine the security risks and concerns associated with the primary components of DeAuth,

focusing specifically on the blockchain and wallet. Additionally, we offer insights into data encryption and storage reliability

when using IPFS.

6.1 Blockchain Consensus Mechanism

DeAuth relies on the blockchain as the fundamental component and security layer of the system. As such, it inherits

the security concerns that are inherent in blockchain technology. There has been extensive research conducted on the

security of blockchain [58, 59]. The 51% attack is one of the most significant security threats to blockchains and is also

relevant to DeAuth [60]. The approach taken to carry out such an attack depends on the consensus mechanism employed

by the blockchain.

The DeAuth prototype was developed using the Ethereum blockchain, which has recently transitioned from the PoW

consensus mechanism to the Proof of Stake (PoS) mechanism. However, the risk of a 51% attack persists as it does with

PoW, albeit with higher economic risks for the attacker(s) [61]. To control 51% of the staked ETH, the attackers would

need to possess a considerable amount of Ether (ETH), which is held by validator nodes. As of September 2023, there

were 806,759 validator nodes with a combined 24,619,309 ETH staked. To conduct a 51% attack, an attacker would need

own 51% of the staked ETH, which is valued more than $20 billion based on an ETH price of $1636 per ETH.

Moreover, the PoS consensus mechanism provides an opportunity for the community to mount a counterattack against

a 51% attack [61]. In the event of such an attack, honest validator nodes can choose to continue building on the minority

chain and disregard the attacker’s fork while encouraging other nodes to do the same. They can also forcibly remove the

attacker from the network, resulting in the destruction of their stacked ETH, which creates an even stronger economic

disincentive for an attacker to launch a 51% attack.

6.2 Wallet Vulnerabilities

In DeAuth, wallets and their corresponding private keys are stored on the device owned by the user, giving them full

control over their identity. However, this approach entails both security and privacy benefits, as well as the responsibility

of protecting the private keys from theft. Losing the private keys could lead to the unauthorized control of DIDs and VCs,
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a situation akin to identity theft. If an attacker steals the mnemonic phrase used to generate the private keys, they would

be able to access all the private keys. Additionally, since DeAuth’s wallet contains blockchain private keys for signing

transactions, an attacker with access to the keys would have the ability to spend any currency associated with those keys.

The immutability of DIDs on the blockchain implies that revocation of a DID is a challenging task, and for this reason,

revocation mechanisms have been proposed [47]. These mechanisms allow issuers to publish a revocation status for a

particular DID, which is verified prior to validating its proof. However, this approach presents certain drawbacks, such as

the potential for the revocation list to become unwieldy and have negative impacts on system performance. To address

these limitations, current research efforts have proposed space-efficient and high-performance implementation solutions

[32].

The theft of a pneumonic seed phrase can have more severe consequences than the theft of a few keys, as the attacker

would be able to generate all the private keys of the wallet. Thus, it is imperative to safeguard the seed and only share it

with trusted peers for backup purposes. Additionally, forgetting the seed can be equally detrimental; if the wallet is deleted

and the seed is forgotten, the owner will lose complete access to the private keys. To mitigate this risk, wallet providers

today encourage seed phrase owners to write down the phrase and make it an explicit step before using the wallet. Recent

research has also proposed using the Shamir Secret Sharing algorithm to recover forgotten keys [62, 63].

6.3 Encryption and Reliability

Data is not encrypted on IPFS by default, which was intentional by its creator to prevent application developers from

being limited due to a lack of modularity, flexibility, and futureproofing [64]. However, in DeAuth, authorization messages

are encrypted using RSA encryption, and files are shared with AES encryption. Both RSA and AES are widely used and

secure encryption algorithms that are approved by NIST [65, 66]. The strength of the encryption depends on the length of

the key used, but the security of the system ultimately relies on the proper management of the keys themselves [67]. In

DeAuth, when a new DID is created by the wallet, the private key of the DID is used as a seed to generate an RSA key pair.

Therefore, it is crucial to keep the wallet’s private keys secure.

There is an additional consideration that relates to storage network reliability in DeAuth. Although IPFS serves as the

protocol for sharing files between nodes, the protocol alone does not determine metrics such as data redundancy, durability,

and availability. These are common storage metrics included in Service Level Agreements of storage providers such as

Amazon S3, Dropbox, and Google Drive. A study conducted in [68] found that Sia, one of the earliest blockchain-based

storage services, exhibited similar redundancy, durability, and availability compared to centralized cloud services. That

said, these metrics are primarily dependent on the storage network architecture and implementation, and not the blockchain

itself.

For our prototype, we used Web3.Storage, a service that uses both IPFS and Filecoin, a blockchain based storage

network [69]. Web3.Storage provides public gateway and hosts multiple IPFS nodes to ensure availability and redundancy,

then utilizes the Filecoin network for storage durability. The public gateway simply allows users to IPFS without having

to install IPFS software and self-host a node. Information regarding the number of IPFS nodes hosted by Web3.Storage

were not disclosed in their documentation and thus storage metrics are unknown. To achieve a level of redundancy that is

comparable to Google Cloud, Web3.Storage would need to replicate data a minimum of two times across their nodes.

In DeAuth, it is recommended files retrieved from IPFS are stored locally or to personal storage network. That way

the user has their own copy and do not need to continuously fetch the same files from IPFS. Files saved to local storage

would be decrypted, but remain encrypted on IPFS. Furthermore, while the authorization messages are stored on IPFS, it is

also recommended to store them locally for quick access when needed.

7. Prototype Results and Analysis

The purpose of this section is to offer a comparative analysis of the primary operations involved in DeAuth, as

implemented in two distinct prototype versions. Specifically, we compare a centralized version that employs Firebase, with

a decentralized version that utilizes Ethereum and Web3.Storage. To achieve this goal, we present a detailed examination
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of both the time performance and cost results for each prototype. For additional performance testing, we hosted a local

IPFS. Table 4 shows the operations that were measured and analyzed. By comparing the performance metrics of the

two prototypes, we aim to provide valuable insights into the relative advantages and disadvantages of centralized versus

decentralized implementations of DeAuth.

Table 4. Operations and their services used.

Operations Firebase Ethereum Web3.Storage

Saving an authorization message x x
Retrieving an authorization message x x

Submitting an authorization message transaction x x
Retrieving an authorization message transaction x x

Storing various sized data x x
Retrieving various sized data x x

7.1 Time Performance

Figure 28 shows the average time to save and retrieve authorization messages from storage. Saving to Web3.Storage

took approximately 1.4 s longer than saving to Firebase. Retrieving messages were comparable between the two.

Figure 28. Average time to save and retrieve authorization messages from storage.

The results comparing the average time for submitting and retrieving an authorization message transaction are

presented in Figure 29. Recall that authorization messages are first saved to storage, followed by a blockchain submission

via the Authorization Contract. Using Firebase resulted in a significantly faster submission time of 0.370 s, whereas

Ethereum took 15.101 s. On the other hand, retrieving a transaction from Ethereum was faster with 0.283 s, but it was still

slower than Firebase, which took 0.114 s.

Figure 29. Measured time to (a) submit and (b) retrieve authorization message transaction.
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Figure 30 shows the average times to upload different sized files to Firebase and Web3.Storage. Image files and

binary files were used for this test. It can be observed that, for files of size 1 MB, 10 MB, and 1000 MB, the time taken to

upload to Firebase was faster than to Web3.Storage. The difference in time increased as the file size increased. Notably,

for a 1000 MB file, Firebase was on average approximately 59 s faster than Web3.Storage. However, for the 100 MB

file, Firebase surprisingly took longer to upload than Web3.Storage. We speculate reasons this unexpected observation in

Section 8.

Figure 30. Upload times of various file sizes to storage.

Figure 31 shows average time to download various sized files to local storage. We measured the time to download

the 1 MB, 10 MB, 100 MB and 1000 MB files to local storage. For this metric, we included our local IPFS node when

downloading the 100 MB and 1000 MB files. The results indicate that the average download times for Firebase and

Web3.Storage were similar for all file sizes. Using our own IPFS node however, showed a significant 90% download time

improvement for both the 100 MB and 1000 MB files.

Figure 31. Download time of various files sizes from storage.

7.2 Costs

In this section, we report on the cost of DeAuth’s main operation transactions, which fall into two categories: deploying

contracts and smart contract function calls. The reported ETH amounts include miner fees. The ETH price at the time

of testing was $1719.74/ETH. Table 5 presents the cost of performing DeAuth’s main operations on the to the Ethereum

Blockchain, Goerli Network. The cost to deploy the Authorization and Identity contract was $4.46 and $4.97 respectively.

The cost to submit an authorization message and publish a DID was $0.094 and $1.13 respectively.
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Table 5. Cost of operations on Ethereum.

Operation Ether (ETH) USD

deploy authorization contract 0.002701 $4.46
deploy identity contract 0.002786 $4.97

submit authorization message 0.000568 $0.94
publish DID 0.000632 $1.13

Table 6 summarizes the costs associated with storing one GB of data per month on these platforms, including the

download bandwidth cost. The prices listed reflect the current “pay as you go” rates, as both services offer promotions that

provide free initial storage. Firebase charges a rate of $0.03/GB*mo for storage and $0.12 for bandwidth, which results

in a total cost of $0.15/GB*mo. It is assumed a DR downloads files to their local machine after being shared by a DM,

thus the reason we total the storage and bandwidth. In contrast, Web3.Storage charges a higher rate of $0.08/GB*mo for

storage but does not charge for bandwidth.

Table 6. Cost of Storage.

Operation Firebase Web3.Storage

storage ($/GB*mo) $0.03 $0.08
bandwidth ($/GB*mo) $0.12 -

total $0.15 $0.08

8. Discussions

In this section, we analyzed the performance and cost results presented in the preceding section, offering our

interpretation of significant findings. Prior to delving into the discussions, we address the limitations identified within this

study that could potentially impact our interpretations.

8.1 Research Limitations

While this primary aim of this paper is to introduce a scheme to authenticate users and authorizing permissions

in decentralized system, it is essential to recognize limitations within the study. Firstly, constraints are inherent in

the services and technologies employed to construct both iterations of the prototype, notably Firebase, Ethereum, and

Web3.Storage. We acknowledge that these choices can impact the performance and cost outcomes, which may exhibit

variance if alternative providers were selected. Despite the comparison provided between centralized and decentralized

implementations, the absence of additional testing does not detract from the study’s core objectives, which focus on

demonstrating DeAuth’s feasibility within a decentralized framework, rather than emphasizing its performance or cost-

effectiveness. The comprehensive examination and benchmarking of DeAuth against other centralized providers are

reserved for future investigations.

Furthermore, while other cloud database providers were available, Google Firebase was selected for its simplicity

and ease of prototyping with minimal overhead. A prior comparison conducted by authors [70] evaluated several cloud

database providers, concluding that Amazon Relational Database Service (https://aws.amazon.com/rds/) offered superior

performance, while Firebase was deemed suitable for personal use, such as prototypes, aligning with the intended purpose

of this study. Similarly, various blockchain were considered. Although several blockchain options existed, Ethereum’s

development tools eased prototype development. Section 8.2 mentions potential alternatives to enhance performance and

reduce costs, yet a comprehensive evaluation comparing various blockchains is deferred to future studies.

One notable limitation pertains to the assumptions underlying the practical application of DeAuth in real-world

settings. Specifically, our study operates under the assumption that existing identity authorities, such as the DMV issuing

driver’s licenses and the Department of State issuing passports, already possess requisite technical infrastructure to facilitate
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the implementation of DeAuth and its associated functionalities. This assumption further extends to entities responsible for

issuing other VCs. For instance, in the scenario outlined in Section 4.3, the hospital would have DeAuth integrated into its

existing systems to effectively issue VCs and share EHRs. Indeed, there is a substantial development and maintenance

costs of necessary infrastructure and software. A comprehensive investigation into the precise expenses involved in the

implementation of DeAuth is deferred to future research endeavors.

Last limitation is related to the usage of Web3.Storage. The results in Section 7.1 included self-hosting an IPFS

node. Self-hosting an IPFS is not a prerequire in DeAuth, users may lack the desire or inability to self-host an IPFS node.

Therefore, an alternative is to pay a provider to access an IPFS network and distribute the data across multiple nodes. It is

important to note that using a third party for an IPFS gateway, such as Web3.Storage, does not designate it as a centralized

data custodian, as it does not control who can access and retrieve data. Section 8.3 provides some cost comparisons using

alternative IPFS services.

8.2 Performance

The research community is aware of the performance limitations of the blockchain [71, 72]. Unlike normal databases,

for each transaction, miners are required to validate the transaction, mine a new block and propagate it to every node in the

network. Furthermore, there is a limit on the number of transactions per second (TPS) that each block can accommodate.

The Ethereum (2.0) blockchain, for example, has an average block time of approximately 12 s and can process 27–30 TPS.

The impact of these limitations is reflected in Figure 26, where it takes approximately 15 s to submit an authorization

message transaction on the Ethereum blockchain, whereas it occurs nearly instantaneously using Firebase.

In the context of DeAuth, optimizing performance is crucial, as users may not be willing to wait for 12–20 s for

authorization message transactions to be confirmed. Moreover, a data manager, such as the hospital in our use case, may

receive numerous requests to share data, requiring efficient processing. To address these concerns, we recommend the

utilization of high-performance blockchains, such as Polygon and Avalanche, for the future DeAuth implementations [72].

In terms of file uploading, including images, Firebase demonstrated a faster upload time compared to Web3.Storage.

Although there was no significant difference for small-sized files, uploading a 1 GB file was completed approximately

one minute faster on Firebase (Figure 27). Web3.Storage hosts its own IPFS nodes and distributes a copy of the uploaded

file(s) to each node. Unfortunately, implementation details of Web3.Storage were not disclosed and may have an impact on

upload time. It is important to note that the upload time of Web3.Storage does not reflect the performance of the IPFS

protocol itself. For future research, we plan to evaluate other IPFS services such as Filebase (https://filebase.com/) and

Infura (https://www.infura.io/) and compare their upload times to those of Firebase.

We examined the performance of Firebase and Web3.Storage with regards to file downloading times. Our findings

indicate that both services exhibit comparable download times. It is likely that this is because both services require the

files to be downloaded through a single connection in a gateway server. To explore the potential benefits of leveraging the

IPFS network, we self-hosted an IPFS node and measured the time required to retrieve (i.e., download) files. Results in

Figure 31 demonstrated that downloading files using a self-hosted node was significantly faster than both Firebase and

Web3.Storage. IPFS operates in a P2P fashion and can download pieces of files from multiple nodes simultaneously. Thus,

it is recommended that users host their own IPFS node if they can.

8.3 Costs

In DeAuth, there are two main expenses that need to be considered, namely the cost of using the blockchain and

the cost of storing data. In the centralized iteration, there are no costs associated with deploying contracts or submitting

authorization message. However, data storage costs are more with Firebase (Table 6).

For the decentralized iteration, one DID contract is required for the entire scheme and one authorization contract is

required per data manager. Additionally, each participant needs to publish a DID to make it public. At this point, costs

are still relatively low. However, costs become a concern when submitting authorization messages to the blockchain,

as submitting a message on Ethereum costs approximately $1 (Table 5). An entire authorization sequence consisting of
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RequestData, AskPermission, AllowPermission, and ShareData, requires four messages, which amounts to $4. This could

be a cost concern for DMs who receive many requests to share files.

One solution to address the cost issue is to divide the costs between DR and DM, with the former paying for the

RequestData and ShareData messages, and the latter paying for the AskPermission and AllowPermission messages.

However, the cost of submitting authorization messages remains unchanged. Another approach to address this issue is to

use a blockchain with lower miner fees. We tested deploying the contract and submitting authorization messages on the

Polygon [73] blockchain. Table 7 shows the cost of deploying a contract and submitting a message is approximately $0.03

and $0.002, respectively. This solution reduces authorization messaging costs significantly.

Table 7. Cost of operations on Polygon.

Operation Polygon (Matic) USD

deploy authorization contract 0.025 $0.03
deploy identity contract 0.0268 $0.03

submit authorization message 0.001713 $0.002
publish DID 0.00147 $0.002

Table 8 presents alternative hosting services such as Infura, Filebase, and Fleek (https://fleek.co/), which are other

IPFS file hosting services. The prices offered by these hosting services are relatively similar. It is important to note that

DeAuth’s scheme is to enable data sharing among users, rather than provide a data storage solution. Thus, in DeAuth,

IPFS is only necessary to facilitate file exchanges between users. Generally, DMs will manage and store files on their

own device or network before being requested by a DR, and similarly DRs will download the files from IPFS to their own

storage device or network. As a result, IPFS hosting services are not essential if users are willing to host their own IPFS

node. In an ideal scenario, both DRs and DMs would host their own IPFS node, which eliminates the cost of using IPFS

hosting services.

Table 8. Cost to store data on alternative hosting services.

Item Amazon S3 Infura Filebase Fleek

storage ($/GB*mo) $0.023 $0.08 $0.10 $0.12
bandwidth ($/GB*mo) $0.09 $0.12 $0.05 $0.05

total $0.11 $0.20 $0.15 $0.17

9. Conclusions

In this research, we introduced DeAuth, a novel decentralized authentication and authorization scheme for secure

private data sharing. DeAuth employs blockchain technology, decentralized identity, and P2P distributed storage to

enable users to have more control over their PII and allow uses to have permissioning power to share their private data

without using centralized services. Authentication is achieved by verifying DIDs and VCs, while authorization is managed

by submitting authorization messages to the blockchain via smart contracts. We demonstrated DeAuth’s viability by

developing a prototype, with the Ethereum blockchain and IPFS, to authenticate hospital patients and authorize sharing of

private health records. Furthermore, we presented preliminary performance and cost evaluation of the protype compared to

using a traditional cloud service. Our work has shown that DeAuth is a promising solution for secure private data sharing

in a decentralized system.

Testing between our centralized and decentralized protype versions showed that decentralization comes at a

performance cost. However, using a self-hosted IPFS node when retrieving large files from IPFS took significantly

less time than downloading from Firebase, demonstrating an advantage of IPFS’s P2P network. Furthermore, the cost of

implementing DeAuth largely depends on the blockchain used to deploy smart contracts and submit authorization messages.
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Using Ethereum incurred higher costs compared to using Firebase. Although, using an alternative blockchain such as

Polygon can greatly reduce costs due to lower miner gas fees.

9.1 Future Works

This research represents an exciting contribution to the decentralized technology field. However, several crucial

features omitted from our prototype warrant attention. These include the capability to generate multiple public and private

DIDs, facilitate wallet-to-wallet messaging, and establish secure connections between wallets using private DIDs for data

transfer, such as VCs. Additionally, the integration of attributes and roles into the schema could enable the implementation

of fine-grained access control.

Expanding the study’s scope to encompass performance optimization, cost effectiveness and improved security

remains a prospect for future endeavors. This entails improving the architecture and conducting a more comprehensive

analysis and evaluation, comparing various centralized cloud services and decentralized technologies. Furthermore, a

meticulous cost and security analysis is warranted for the development of a production ready DeAuth application.

Additionally, further use-case studies and analysis are required to strengthen the practical application of DeAuth

in real-world scenarios. Potential application domains include supply chain management, pharmaceuticals, education

credentialing, legal services, and finance.

Nomenclature

Encryption Nomenclature

Term Description

sk secret or private key

pk public key

CT cipher text

m plain-text authorization message

mCT encrypted authorization message

t authorization message type

k session key

kCT encrypted session key

f plain-text file(s)

f CT encrypted file(s)

Computer Networks and Communications 40 | Phillipe Austria, et al.



Decentralized Identity and Systems Nomenclature

Term Description

S subject

I issuer

V verifier

VC verifiable credential

VP verifiable presentation

DID public decentralized identifier

DIDCT Encrypted DID

DID* private DID

DID*CT Encrypted DID*

DDO DID document

DO data owner

DM data manager

DR Data requester

TID blockchain transaction identifier

CID IPFS content identifier
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Appendix

Smart Contract Source Code

Figure A1. Identity smart contract in the DeAuth prototype.

Figure A2. Authorization smart contract in the DeAuth prototype.
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