
Computer Networks and Communications
https://ojs.wiserpub.com/index.php/CNC

Copyright ©2024 Anup Kumar Paul
DOI: https://doi.org/10.37256/cnc.2120244439
This is an open-access article distributed under a CC BY license
(Creative Commons Attribution 4.0 International License)
https://creativecommons.org/licenses/by/4.0/

Volume 2 Issue 1 |2024| 75 Computer Networks and Communications

Article

FaceLite: A Real-Time Light-Weight Facemask Detection Using
Deep Learning: A Comprehensive Analysis, Opportunities, and
Challenges for Edge Computing

Anup Kumar Paul*

Department of Computer Science and Engineering, East West University, Dhaka, Bangladesh
E-mail: anuppaul@ewubd.edu

Received: 8 February 2024; Revised: 24 April 2024; Accepted: 28 April 2024

Abstract: The edge computing devices running models based on deep learning have drawn a lot of interest as a
prominent way of handling various applications based on AI. Due to limited memory and computing resources,
it is still difficult to deploy deep learning models on edge devices in a production context with effective
inference. This study examines the deployment of a lightweight facemask detection model on edge devices with
real-time inference. The proposed framework uses a dual-stage convolutional neural network (CNN)
architecture with two main modules that use Caffe-DNN for face detection and a proposed model based on CNN
architecture or customized models based on transfer learning (e.g., MobileNet-v2, resNet50, denseNet121,
NASNetMobile, Inception-v3, and XceptionNet) for facemask classification. The study does numerous analyses
based on the models’ performance in terms of accuracy, precision, recall, and F1-score and compares all models
with low disk size and good accuracy as the main priorities for memory-constrained edge devices. The proposed
CNN model for facemask detection outperforms other state-of-the-art models in terms of accuracy, achieving
99%, 99%, and 99% on the training, validation, and testing, respectively, with the facemask detection ~12K
image datasets available on Kaggle. This accuracy is comparable to other transfer learning-based models, and it
also achieves the smallest number of total trainable parameters and, thus, the smallest disk size of all models.

Keywords: facemask, CNN, deep learning, light-weight, transfer learning

1. Introduction
Airborne infections are transmitted through coughing, sneezing, laughing, and close human contact. When

a person with an infectious disease comes into close physical contact with someone who does not, the
microorganism is transferred from one to the other. This is how diseases are spread. The microorganisms cling
to dust particles, water droplets, and respiratory particles in the atmosphere. When a microorganism is breathed,
comes into contact with mucous membranes, or is touched and its secretions remain on a surface, illness results
[1].

The majority of respiratory infections in human-beings are caused by viral infectious agents. Adenoviruses,
coronaviruses (e.g., types 229E, NL63, OC43, and HKU1), the cause of coronavirus disease 2019 [COVID-19],
and common human coronaviruses (e.g., influenza virus, measles, mumps, parainfluenza virus, respiratory
syncytial virus, and rhinoviruses) are among the causative agents. Middle East respiratory syndrome (MERS)
coronavirus and highly pathogenic avian influenza viruses are additional viruses that should be particularly
concerned. Human-beings experiencing a new-onset respiratory illness, including those needing hospitalization,
should be evaluated for these viruses if no other cause has been found [1].

https://orcid.org/0000-0003-0538-1212

Computer Networks and Communications 76 | Anup Kumar Paul

COVID-19, also known as SARSCoV-2 and detected in 2019 has a higher reproductive number than
SARS-CoV, and because of its contagious nature, the WHO has declared COVID-19 a pandemic in March 2020
[2,3]. The virus has spread more rapidly in a short period of time than any other virus. Several reasons are there
for this viral transmission, such as lack of maintaining appropriate physical distance in the society, a lack of
awareness about the nature of the novel virus, and, most importantly, lack of awareness to wear a facemask in
public places. Different researchers have found solid evidences that tells us to wear a facemask can protect a
person from corona viruses and other respiratory diseases spread by other people’s droplets, as well as protect
others from him [4–7] Although researchers have invented vaccines for most of these infectious viruses, they
can only reduce the mortality rate and complications caused by the virus rather than exterminating it. Hence,
wearing a facemask is the only way to protect an individual from getting infected by the virus and thus reducing
the probability of spreading the virus to others [6]. It is highly recommended by WHO to wear a facemask in
public places (inside or outside) where there is a gathering because, by wearing a facemask, one can prevent the
transmission of viruses through the oral or nasal cavity [8]. Various facemasks made of cotton fabrics, surgical
materials, and N95 can provide 50–95% protection against various viruses [9]. In light of the researcher’s
findings, many countries’ governments have issued the slogan "no mask, no service" in every public service
facility and have made wearing a facemask mandatory for all people. Considering the above situations, it is of
immense interest to the researchers to find an effective and lightweight solution for automatic detection of a
facemask. Traditional solutions such as security personnel forcefully stops other peoples who don't wear
facemask to enter any premises in different situations will not work effectively. Thus, automatic detection using
deep learning or machine learning is desirable [10,11].

Deep learning has been proven to be superior to other traditional machine learning algorithms in different
applications, e.g., image processing, big data analysis, natural language processing (NLP), etc. [12–18]. For
example, in the ISLVRC computer vision competition, a deep learning model has outperformed several machine
learning models in classification, detection, and localization tasks since 2012 [19]. However, high accuracy can
only be achieved during the training and testing phases at the expense of a high memory requirement and high
processing costs. Training a deep learning model requires a large amount of data, and to extract useful features
from that input data, the model requires a huge amount of model parameters that need to be tuned using the
backpropagation algorithm along with gradient descent optimization rules. Thus, training a deep learning model
is computationally expensive, and a high memory requirement is needed to store those millions of trainable
parameters. High accuracy and a high memory requirement are the key characteristics of deep learning.
However, a lightweight deep learning model could play a vital role in facemask detection to protect people from
the viral infectious diseases. In practice, a deep learning-based facemask detection model can be deployed in
surveillance systems, Internet of Things (IoT) systems, smart cities, university entrance gates, supermarkets, etc.
places to ensure that all people are wearing a facemask to avoid spreading the virus to others [11].

The deployment strategy of deep learning-based applications are divided into two categories: distributed
edge-based deployment and centralized cloud-based deployment. Cloud-based method is a centralized method
with high processing power and resources. On the other hand, the decentralized approach with low computation
power and limited resources is edge-based. Data must be moved from source edge devices (e.g., sensors, IoT,
smart phones, etc.) to the cloud in order to use cloud-based resources. This imposes several challenges.

1. Scalability: With the increasing number of edge devices, sending data from edge devices to the cloud
results in a bottleneck in the network’s access to the cloud. Furthermore, in terms of using network
resources, it is quite inefficient to upload all the data to the cloud if the deep learning model does not need
all the data from all the sources. It is of great concern if the data sources are bandwidth-intensive, such as
streaming video.

2. Latency: Despite the superior performance of cloud-based solutions, many real-time applications based on
deep learning cannot compromise high latency for end-to-end data transfer. For many applications, real-
time inference is of utmost important factor, such as rapidly processing camera frames from an autonomous
vehicle to make a real-time decision about avoiding an obstacle or applications that depend on voice
commands that need to be processed in real-time to understand the user’s query. However, low latency
requirements of these applications cannot be met using cloud-based solutions; for example, it takes more
than 200 ms for an Amazon web server to process an uploaded camera frame for a computer vision task
[20].

3. Privacy: Users are concerned about uploading private data such as faces, speech, and so on to the cloud
because it is unknown how these data will be treated in the cloud. Also, the user’s behavior can be captured
in the data.

https://orcid.org/0000-0003-0538-1212

Volume 2 Issue 1|2024| 77 Computer Networks and Communications

Edge computing is a feasible alternative to cloud-based solutions in terms of scalability, latency, and
privacy [21–23]. Deep learning models deployed at edge devices have recently been in high demand in a variety
of applications [24–26]. It is reported that the companies that have deployed edge solutions in production will
increase their deployment from 1% in 2018 to 40% in 2024 [27]. According to [28], spending on edge
computing will reach $250 billion in 2024. Edge computing can address scalability issues by adopting a
hierarchical network architecture of edge devices, edge computing servers, and finally, the cloud server that can
provide computing resources and scale as needed, avoiding a network bottleneck in the cloud data center as
shown in Figure 1. Scalability issues can be addressed by putting an edge computing server in close proximity
to the edge devices, which reduces the end-to-end delay and meets the real-time requirements. Privacy issues
can also be addressed, as data can be processed close to edge devices without sending it via the public internet,
avoiding exposure to privacy and security threats.

Figure 1. Application scenarios of deployment of deep learning models in edge devices, edge servers, and cloud servers.

An algorithm that detects facemask is a combination of object detection and classification that localizes and
classifies the facemask in a static image or in a video stream by drawing a bounding box surrounding its extent.
The algorithm of image classification detects the specific category of an image from a possible number of
categories, e.g., for facemask detection, it produces whether an image belongs to the with-mask or without-mask
class. The object localization algorithm finds the region of interest in the image and draws a bounding box with
a certain probability around its extent to identify the masked or unmasked faces. When deep learning is applied
to detect face masks, it gives the best result as compared to a traditional machine learning algorithm. To detect a
facemask from an image, the algorithm must extract many useful features from the image, and the accuracy of
facemask detection is based on those useful features as well as the huge amount of labeled data. A deep learning
algorithm can automatically extract those useful features from an image; however, a machine learning algorithm
needs handcrafted features and human supervision. The Convolutional Neural Network (CNN), which is a type
of deep learning architecture specifically designed to perform image classification and detection tasks. The CNN
architecture has basically two operations: the convolution operation on an image extracts useful features from it
along with a pooling operation to reduce the dimensionality of the image. In CNN, these two operations
constitute a layer. A CNN can have anywhere from 7 to 152 layers. The feature extractor part, also known as
convolutional layers, is stacked with the classifier part, also known as dense layers (fully connected neural
network), to perform an image classification task as shown in Figure 2. Some popular CNN based architectures
are VGG-16 [29], ResNet-50 [30], GoogLeNet [31], MobileNetV2 [32], and so on. Among all the CNN
architectures, MobileNetV2 is immensely used in facemask detection tasks as it is a lightweight classifier
specifically designed for mobile devices [33,34]. It is used along with other object detectors such as "You Only
Look Once" (YOLO) and "Single Shot Detector" (SSD) [35,36].

This paper focuses on facemask detection techniques and provides a narrative analysis in the framework of
edge computing. The reader can clearly understand the benefits and drawbacks of each facemask detection
algorithm, as well as their implementation options in resource-constrained edge devices. They can choose the
suitable facemask detection algorithm according to their application needs. The key major contributions of the
work are as follows:

https://orcid.org/0000-0003-0538-1212

Computer Networks and Communications 78 | Anup Kumar Paul

Figure 2. A typical CNN architecture for the image classification task.

 This paper provides a detailed review of deep learning-based object detection techniques and their
implementation details in the context of edge computing.

 This paper also focuses on various recent literature on algorithms based on facemask detection and
provides a comparison considering performance metrics and implementation possibilities in edge
computing so that the researcher can find the best possibilities, identify gaps if any, and further conduct
research to overcome those gaps.

 Transfer learning is applied to some of the most popular models, such as MobileNetV2, ResNet50,
DenseNet121, InceptionV3, NasNetMobile, and Xception, and finetune them for the task of facemask
classification.

 A lightweight CNN-based architecture (FaceLite) is proposed, which can be comparable to a lightweight
transfer learning-based MobileNetV2 architecture, to classify whether a person is wearing a facemask or
not. The proposed model is trained from scratch. The main advantage of the proposed model is its high
accuracy and significantly reduced complexity, which makes it suitable for deployment on resource-
constrained edge devices.
The rest of the paper is organized as follows: Beginning with a review of the literature on deep learning,

edge computing, and edge computing optimization for various deep learning frameworks, followed by a
discussion of recent research papers on face mask detection. Then different methods for fast inference for deep
learning models were discussed. After that, proposed lightweight CNN model for facemask detection and
different transfer- learning models were discussed and made a comparative analysis among them. Then detailed
experimental evaluation results and their analysis were provided, after that the performance comparison with
other state-of-the-art algorithms are discussed and finally, concluded the paper in the conclusion section.

2. Background and Literature Survey

2.1 Deep Learning Background
Since many of the algorithms covered in this paper are connected to the fundamental workings of deep

learning, this section provides background information on deep learning. Readers interested about more
comprehensive details of deep learning can refer to [37]. Deep learning architecture is based on the concept of
an artificial neural network (ANN), which is inspired by and loosely connected to the biological neurons of the
human brain. Although it is designed to function similarly to the human brain, an ANN consists of three layers,
namely, an input layer, one or more hidden layers, and an output layer, as shown in Figure 3. Between the input
layer and the output layer, one can use many hidden layers. When the number of hidden layers is large, the
depth from the input to the output layer becomes deep, hence the name "deep neural network," and the learning
achieved through this network is called "deep learning." When the output prediction is continuous, it is called a
regression task; on the other hand, when the output prediction is categorical, it is called a classification task. For
both tasks, the input data is presented to the input layer, and then a series of matrix multiplications is performed
in different hidden layers of the ANN. The output of one layer is the input for the next layer. Thus, a series of
forward computations is performed on the input data with the parameter matrix (also known as the weight and
bias matrix) to finally get a prediction at the output layer. For supervised learning, a labelled dataset is available.

https://orcid.org/0000-0003-0538-1212

Volume 2 Issue 1|2024| 79 Computer Networks and Communications

As a result, at the output layer, the predicted value is compared to the true label of the input data to compute a
loss between the predicted and actual values. Depending on the loss, a backpropagation algorithm along with a
gradient descent algorithm is applied from the output layer to the input layer to compute the gradient matrix, and
finally, the individual learnable parameters are fine-tuned using the gradient matrix by applying a suitable
optimization rule (e.g., ADAM, RMS-Prop, etc.). One forward pass using all the input data and subsequently
one backward pass to tune all the trainable parameters are known as an "epoch." Using several epochs, a deep
learning model can be trained and then ready for inference (testing with unseen data). A deep learning model
works well when the input data has many input and output samples (supervised learning). It can also work on
input data without any labelling (unsupervised learning). Different deep learning architectures exist for
processing different types of input. For image and video data, CNN is the default choice. For sequence data such
as natural language processing, speech signal processing, etc., a recurrent neural network (RNN) is used. In
RNN, a feedback loop exists between hidden states to capture the dependencies among sequence data. A
feedforward fully connected neural network architecture, as shown in Figure 3, is used for other types of data.

Figure 3. Artificial neural network architecture with one input layer, multiple hidden layers, and one output layer.

A key point that needs to be understood for most of the deep learning model is that a large number of
trainable parameters make the model slow as it needs to compute a large matrix multiplication in every layer of
the deep neural network, which eventually raises the issue of latency in edge computing. The second key point
is that, in a deep neural network, careful choices of hyperparameters on how to design a deep neural architecture
(e.g., number of hidden layers, number of neurons per hidden layer, different optimization parameters, etc.) that
eventually make this an art rather than a science. Various design decisions lead to trade-offs among performance
metrics. For example, a complex design with a large number of trainable parameters can have higher accuracy
but require higher latency to compute those parameters and more disk space to store those parameters. On the
other hand, a simple design will have a smaller number of parameters, which will solve the latency issues and
require less disk space, but the accuracy will not be high enough for different application needs. Many research
works discussed these trade-offs issues, that will be further discussed in the later sections.

2.2 Deep Learning Performance Measurements on Edge Devices
Selecting or designing the appropriate deep learning model for a specific application is critical as well as

difficult because there are so many hyperparameter choices. A very good understanding of the trade-offs among
accuracy, speed, memory requirements, energy, and other resource limitations of edge computing devices is
helpful for the designer of the deep learning application. Many research papers provide a comparative
performance analysis of these metrics [38]. In the context of edge computing, an important performance
measurement consideration is the testbed on which the model’s performance is tested. Most of the machine
learning and deep learning research’s primary focus is the accuracy metric, and the reported system performance
is from a powerful graphics processing unit (GPU) equipped server. The author also reported the speed and
accuracy trade-offs reported by the Nvidia Titan X gaming GPU in his paper [38]. Another deep learning model,
YOLO, which is a real time object detection model, provides measurements on timing using the same server
GPU [39].

In [40], the author specifically targeted mobile devices and measured the performance of several popular
deep learning models on mobile CPUs and GPUs. Another study performed an accuracy/latency, measuring
analysis on mobile devices using input data dimensionality reduction and discovered that latency is reduced at

https://orcid.org/0000-0003-0538-1212

Computer Networks and Communications 80 | Anup Kumar Paul

the expense of accuracy [41]. Another deep learning model, MobileNets, which is specifically designed for
mobile devices, provides system-level performance in terms of several multiply-add operations that are used for
measuring latency and other performance metrics on different processing capabilities of mobile hardware [42].

Upon understanding the system-level performance, the application developer can choose the right deep
learning model for a particular application. Also, some recent studies show that the automatic choice of
hyperparameters for a deep learning model can be achieved by another machine learning model. For example,
the authors in [43,44] combined reinforcement learning and traditional machine learning algorithms to find a
way of automatically selecting the right hyperparameters for a deep learning model applicable to mobile devices
that is suitable for edge computing devices.

2.3 Common Frameworks for Training and Testing of Deep Learning Models
As deep learning has advanced, it is reasonable and no surprise that researchers are looking for open-source

software libraries and hardware that support the increasing demand for computational workloads. A number of
open-source software libraries and hardware tailored to certain applications are available for deep learning
algorithm testing and training on edge devices. These include Google’s Tensor Processing Unit (TPU),
NVIDIA’s Graphical Processing Unit (GPU), Intel’s Application Specific Integrated Circuits (ASICs), TinyML
(a microcontroller unit for interfacing), cloud computing for training and deployment, etc., that have been
specifically designed to support the heavy computational need for deep learning. Some open-source software,
such as Google’s TensorFlow [45], is an implementation framework that may be used on heterogeneous
platforms and an interface for training and inferring deep learning algorithms. The Raspberry Pi and other edge
devices can execute a deep learning algorithm that was trained with TensorFlow. Another optimized version of
TensorFlow used for IoT devices, known as TensorFlow Lite [46], was proposed in 2017. To improve
performance, mobile GPU support was added later in 2019. However, training a network from scratch using
TensorFlow Lite is not possible. Only on-device inference is possible. It can achieve low latency by
compressing the pretrained deep learning model. To expedite deep learning workloads, Google leverages GPU
and TPU in their data center as part of their cloud infrastructure. Google introduced TPU support for edge
applications in 2016, and it later evolved into the latest edge TPU [47], which is now extremely popular. It can
provide significant power for cutting-edge machine learning while yet being energy efficient. As an example, it
is stated by Google that edge TPU enables users to execute mobile versions of deep learning models such as
MobileNetV2 at nearly 400 frames per second.

Another deep learning framework, Caffe [48], was created with speed, expression, and modularity in mind
by Yangqing Jia’s Berkeley AI research group. For industry deployment and research experiments, Caffe’s
speed is ideal for deep learning models. For example, with a single NVIDIA K40 GPU, Caffe can process up to
60 million images per day. That is, 1 millisecond (ms) per image for inference and 4 ms per image for training.
The latest version, Caffe2, with more recent libraries and faster hardware, is maintained by Facebook. Caffe2 is
recently merged with PyTorch [49], another deep learning framework that focuses on the integration of research
prototypes with production deployment. The PyTorch Mobile [50] runtime beta release allows researchers to
seamlessly go from training a model to deploying it on edge devices while staying completely within the
PyTorch ecosystem. Some of the key features that PyTorch Mobile possesses are the support for different
operating systems, such as IOS, Android, and Linux. Also, it provides APIs that cover the pre-processing and
integration tasks needed for deep learning algorithms to be incorporated into mobile applications.

For efficient and faster deep learning training and inference, the GPU plays a significant role. NVIDIA's
GPUs have long played a significant role in the AI sector. A GPU contains more logical cores (also known as
arithmetic logic units) than a CPU, allowing it to process multiple instructions at once. NVIDIA offers an
amazing range of GPUs for desktop, enterprise, and edge-class computers in addition to developer kits that
facilitate edge deep learning. Most of them have characteristics like tensor cores to speed up deep learning
performance, CUDA (Compute Unified Device Architecture) cores [51], and CuDNN (CUDA Deep Neural
Network) libraries [52]. With the help of NVIDIA’s CUDA-enabled GPU, CUDA cores are used to enable
general purpose computing along with parallel processing capabilities. Alternatively, tensor cores can provide
125 TFLOPS (trillion floating-point operations per second) of optimum performance for matrix calculations in
neural network training and inference, hence scaling the performance of a deep learning model. An interface for
using Tensor cores in deep learning applications is provided by CuDNN libraries.

While the CUDA and CuDNN libraries are useful for training and inferring deep learning models on
desktop computers, they are not designed to meet the needs of current mobile devices with limited processing
capabilities, such as smartphones. To provide experimental GPU capabilities on smartphones, Android
developers are currently utilizing Tensorflow Lite. Researchers are concentrating on edge-specific development

https://orcid.org/0000-0003-0538-1212

Volume 2 Issue 1|2024| 81 Computer Networks and Communications

kits like the NVIDIA Jetson Nano and the NVIDIA Jetson Xavier NX instead of smartphones. Both of them
work with the NVIDIA JetPack SDK, which comes with TensorRT, NVIDIA's high-performance deep learning
inference engine, the bootloader, the Linux kernel, firmware and drivers, the CuDNN libraries, the CUDA
toolkits, and VisionWorks (a software development package for computer vision) [53]. For edge development,
the Jetson Xavier NX is the most powerful platform available, featuring a 384 CUDA and 48 Tensor core
NVIDIA GPU. It can compute up to 6 TFLOPS (FP16) and 21 TOPS (INT8). Intel’s Edison kit, designed
specifically for IoT experimentation, is available for use with IoT devices [54].

2.4 Background on Facemask Detection Algorithm
The facemask detection algorithms have been thoroughly discussed along with their features, performances,

and limitations in this section. For facemask detection, CNN is used by most of the researchers because CNN
architecture has been shown to be superior in image classification tasks. Other researchers went for hybrid
approaches that used a combination of machine learning (ML) and deep learning (DL)-based algorithms. Figure
4 depicts a general flowchart of the working principle of the facemask detection algorithm. From the figure, it
can be seen that the process of facemask detection is a combination of object detection inside an image or video
frame and then classifying the image as being either with or without a mask.

Figure 4. Fundamental framework for facemask detection algorithms.

2.4.1 Object Detection

Object detection is an algorithm for detecting an object of interest from an image or from a video frame
using computer vision. It has brought a revolutionary change to the image processing domain. It can detect
multiple objects inside an image and categorize them as different objects, such as a human face, cats, cars, a
brain tumor, etc., within a split second, and its application domain is expanding day by day. There are two basic
learning algorithms such as object classification and localization exist in deep learning, and are the key
components of an object detection algorithm. Object localization determines an object’s location inside an
image by creating a bounding box surrounding the object. On the other hand, object classification attaches a
label to an image. Face detection is a highly researched object detection category by researchers due to various
application demands. Traditional object detection methods such as the Viola-Jones detector [55], the Histogram
of Oriented (HOG) detector [54], the Scale Invariant Feature Transform (SIFT) detector [56] and the
Deformable Part-Based Model (DPM) [57] detector can detect multiple objects from an image, but these
algorithms have the major drawback that they do not consider the occlusion and have poor generalization ability
and robustness. Because of these limitations, DL-based algorithms have become the mainstream research
method for object detection. DL algorithms are capable of learning contextual information and complex features
as well as efficiently handling occlusion. Compared to object detection, facemask detection is a bit of a
complicated process because it is more difficult to extract features from a masked face than it is to do so without
a mask. Every face mask detection algorithm maintains two stages for face mask detection. In the first stage,
faces are detected from the image, and then in the second stage, the feature is extracted to classify between with-
mask and without-mask faces. Since CNN architecture has been proven to be superior at extracting features
from an image, it is widely used for face mask detection.

Object detection algorithms using the CNN architecture have been categorized into two-stage and one-
stage detectors. A two-stage detector first determines and processes a region of interest (ROI) from the image

https://orcid.org/0000-0003-0538-1212

Computer Networks and Communications 82 | Anup Kumar Paul

using a search algorithm. Then, from each ROI, a CNN feature vector is extracted individually. Some popular
two-stage detectors are region-based CNN (RCNN) [58] fast RCNN [59], and faster RCNN [60]. A two-stage
detector can achieve high precision but suffers from poor real-time performance. On the other hand, a one-stage
detector is based on the concept of regression, directly predicts the coordinates of the ROI, and categorizes the
target in a single step. They bypass the stage of region detection consumed in a two-stage detector. This type of
detector is fast enough to meet the real-time requirement at the expense of low precision. Some examples of
one-stage detectors are You Only Look Once (YOLO) [61] and its variants [39,62]. Single Shot Multibox
Detector (SSD) [63], RetinaNet [64], etc. YOLO can achieve the best performance almost in real-time. SSD
typically yields excellent results when utilized for object detection. The foundation of RetinaNet is a feature
pyramid network.

2.4.2 Facemask Detection

The CNN architecture was used by the majority of existing algorithms for facemask detection because
CNN extracts complicated features with exceptional performance. from images using its convolution and
pooling operations to help classify the image correctly. Some popular CNN models that are used for facemask
detection are MobileNetV2, ResNet50, DenseNet, VGG-16, NASNet-Mobile, etc.

Fan et al. [11] proposed a DL-based single-shot lightweight facemask detector for the embedded devices.
They have used a depth-wise separable convolutional network based on MobileNet as its backbone network and
a feature pyramid network to fuse low-level layers with high level information. To cope with the problem of
using a feature pyramid network to extract complex features, they have also proposed a residual context
attention module (RCAM) and a synthesized Gaussian heatmap regression to focus on extracting the complex
features related to the facemask region. Evaluations on two publicly available datasets reveal that their proposed
model achieved a mean average precision (mAP) that is higher by 1.7% on the Moxa3K [65] dataset and
10.43% on the AIZOO dataset [66] as compared to the YOLOv3-tiny [62] model. However, this method
requires extra computation to generate the Gaussian heatmap, and due to the limitations of the dataset, the model
is unable to discriminate between masks worn appropriately and incorrectly. In order to differentiate between
wearing a mask, not wearing a mask, and wearing a mask incorrectly, Kocacinar et al. [34] devised a two-stage
deep mobile system. They have used the MobineNet, VGG-16, and ResNet models as the base models and the
transfer learning technique to classify among the three classes.

Albalas et al. [67] proposed a model that fused graphs and CNN architecture. A geographical similarity of
facial nodes is measured using a distant graph, and then to compute the correlation between any two facial nodes,
the correlation graph is formulated. Transfer learning is also employed and finally, discriminant graph
convolutions are constructed by fusing the distant and correlation graphs. Experimental results show that their
proposed model can achieve 98% accuracy on two-class classification and 86% accuracy on three class
classification using MAFA dataset [68]. Jiang et al. [69] proposed a model called RetinaFaceMask. The
RetinaFaceMask model is divided into three parts. The backbone network, the neck network, and the head
network are all interconnected. In the backbone network, they used ResNet as the backbone network to extract
features from the image. For the neck network, they employed a feature pyramid network for extreme accuracy.
A detector or classifier makes up the head network in which they have employed a context attention module to
increase the precision of classification. Because of the limited dataset, they also utilized the transfer learning
strategy. However, because of this complex CNN network architecture, the computation overhead is large.

YOLOv2 and ResNet-50 were combined to create a facemask detection model that was proposed by Loey
et al. [70] YOLOv2 is an updated version of YOLO and is a feature extraction and classification algorithm.
ResNet-50 is a lightweight residual network of the original ResNet with only 50 layers. They have used two
datasets, namely the facemask dataset [71] and the medical mask dataset [72], to train and test their model. They
also used a data augmentation strategy and to improve the model estimation of the anchor boxes are utilized.
There were two optimizers used: SGDM and ADAM in their research to obtain a comparative result between
these two optimizers. The average accuracy is only 81%, and their model cannot be used to identify masked
faces from videos.

Face detection using only a traditional ML-based algorithm is not a feasible solution. Therefore, some
researchers combine the DL-based algorithms withML-based classifiers (support vector machines, decision trees,
etc.) to obtain better results. Ristea et al. [73] proposed a model to detect a facemask from a speech signal. Their
suggested model is split into two main sections: (i) using cycle consistency loss to train generative adversarial
networks (GANs) to distinguish utterances between two classes (mask- and mask-free); and (ii) for each
transformed pronunciation, they have assigned two opposite levels using cycle consistency GANs. A ResNet
network with varying layer depths received the original and altered accents as input in the form of spectra. All

https://orcid.org/0000-0003-0538-1212

Volume 2 Issue 1|2024| 83 Computer Networks and Communications

the outputs of different ResNet networks were combined and fed to the SVM classifier to predict the final result.
The model requires a long processing time due to its complex architecture. They compared their results with and
without data augmentation and reported an accuracy of only 74.6%.

A facemask detecting system was proposed by Nieto-Rodriguez et al. [74] to sound an alert when medical
staff members enter the operating room or medical room without wearing a surgical mask. For face mask
detection, they used two detectors (one for face detection and the other for mask detection) and two color filters
(one for each detector). They have used the traditional Viola-Jones detector as the face detector and a variant of
AdaBoost called LogitBoost [75] for detecting face masks. However, it has some problems. For instance,
because it relies on two color filters, any clothes in close proximity to the mask area may produce inaccurate
results. By applying synthetic rotation [76], this problem is solved. Because this model is only trained using
surgical masks and the traditional AdaBoost algorithm, its performance is not as good as that of other DNN
models.

Snyder et al. [77] proposed a facemask detection system that can detect unmasked personnel in the public
area using a robot called Thor. They have utilized three deep learning modules in the robot to achieve this task.
For feature extraction from the images, they have combined the ResNet model and feature pyramid network in
their first module. They used multi-task CNN (MT-CNN) to detect faces from human subjects in the second
module. MT-CNN is used as the face extractor from the video frame introduced by Zhang et. al. [78] and is
widely used in face detection-based research [79]. Then in their third module, they have constructed a neural
network-based model to classify between masked and unmasked faces. They have evaluated their proposed
model using a dataset collected by the robot from public places. The images were taken from distant locations
and at various angles. Because of these challenging scenarios, they reported an F1-score of 87.7%.

A summary of the facemask detection techniques including the models, datasets, results, and areas for
future study is depicted in Table 1.

Table 1. A summary of the facemask detection techniques including the models, datasets, results, and areas for future study.

Literature Used Model Dataset Advantage Disadvantage

[11] RCAM,
MobileNet-V2

AIZOO [66]
Moxa3K [65]

Single Shot Lightweight
Model
Applicable to embedded
device.

Extra computation to generate Gaussian
Heatmap.
Identification between correctly and
incorrectly worn mask is low due to
limitation of dataset.

[69] RetinaFaceMask MAFA-FMD [69] Accuracy is high. Computational Overhead is large.

[70] YOLO-v2,
ResNet-50

MAFA-FMD [71],
MMD [72]

Data Augmentation is used to
enhance the quality of dataset.
Two optimizers are used for
comparative results.

Relatively small dataset.
Accuracy is low.
Cannot be used for video stream.

[34] MobileNet, VGG-16,
ResNet.

Custom made
dataset from 5

datasets.

Real time facemask detection.
Applicable to edge devices.

Accuracy is low.
Dataset is small.

[67] Graphs, CNN MAFA [68] High accuracy on two class
classification. Low accuracy on three class classification.

[77] ResNet, MT-CNN
Custom made

dataset collected by
robot.

Incorporate challenging
scenarios. Accuracy is low.

[33] SRCNet MMD [72]

Increased the resolution of the
images using the SR network.
High accuracy.
Light-weight model.

Small dataset.
Cannot be used for video stream.

[68] LLE-CNN MAFA [68] Large and diverse dataset.
Robust classification.

False detection of occlusion regardless of
facemask.
Sideface orientation affects the accuracy.

3. Materials and Methods
The research work uses a dataset (facemask detection ~12K dataset) from Kaggle that has been released in

the public domain under the Creative Commons Zero (CC0) license, allowing the use of the dataset without any
copyright restrictions. For testing and demonstration purposes, the corresponding author himself was the
participant and used his own pictures.

https://orcid.org/0000-0003-0538-1212

Computer Networks and Communications 84 | Anup Kumar Paul

3.1 Dataset
The model is trained with a facemask dataset [80] from Kaggle. The dataset includes 12000 images of

people wearing or not wearing masks in indoor and outdoor settings. All the images with face masks (6000
images) are scraped from Google, and all the images without face masks (6000 images) are pre-processed with
the CelebFace dataset [81]. Therefore, the dataset is balanced. The dataset is divided into train, test and
validation sets. The data distribution graph is shown in Figure 5. In the dataset, there are various types of images.
The characteristics differ greatly in terms of illumination, occlusion, scale, and poses. For instance, the face can
take up a significant amount of space in certain photos while taking up very little space in others. Faces are also
occluded by some objects and lie in different locations in the image (e.g., the center, left, right, corner, etc.).

Figure 5. Data Distribution

3.2 Pre-processing the Dataset
Before training the model, a set of pre-processing steps are applied to the image data. The mobile device

input requirement is (224 x 224) pixels. Thus, the images have been down sampled to (224 x 224) pixels. In
order to guarantee that the extracted features have an equal distribution range, the images have also been
rescaled to limit the pixels in the range of [0, 1]. Normalization and standardization are then applied using mean
subtraction and division by standard deviation. The dataset has been augmented (rotated, resized, zoomed,
flipped, etc.) to ensure that the model can distinguish the masks and identities of persons in a variety of
situations without being overfitting or underfitting on the dataset. By preprocessing the facial images in the
recommended manner, the trained model can more accurately identify between different angles and perspectives
of similar faces.

3.3 Software Specifications
To implement and deploy the model, TensorFlow and Keras [82] have been used as the main tools.

TensorFlow is a deep learning framework supporting both low-level and high-level APIs. It supports CUDA,
Python, and C++. Google Brain created TensorFlow to handle many machine learning tasks on a single platform.
and provide various high-speed processing units such as a normal CPU, a high-speed Graphical Processing Unit
(GPU), and Tensor Processing Unit (TPU) support. Keras is a high-level neural network API written in Python
that runs on top of TensorFlow. TensorFlow and Keras provide a high-level API to support custom-made
models as well as pretrained transfer learning models to solve a specific problem.

3.4 Light-Weight Facemask Detection Model
Here, proposed framework’s fundamental architecture for face and mask recognition has been discussed.

Two key modules make up the architecture of the two-stage framework. The first module uses the Caffe-DNN
module to do face detection at the initial stage, and the second module uses the proposed lightweight CNN
model (FaceLite) as shown in Figure 6 to accomplish face mask recognition. Six unique CNN models based on
transfer learning are also included in the second stage.
 Face Detection Module: Caffe model [48] which is based on the Single Shot-Multibox Detector (SSD) and

uses ResNet-10 architecture [30] as its backbone to detect faces from the image has been used. For

https://orcid.org/0000-0003-0538-1212

Volume 2 Issue 1|2024| 85 Computer Networks and Communications

conducting object identification and recognition, Caffe models were developed as an efficient and rapid
replacement for previous frameworks.

 Facemask classification Module: The proposed CNN model for classifying face masks has been used in the
second stage, which involves face mask identification. Additionally, in order to create customized models,
transfer learning has been used to develop six pretrained CNNs: MobileNet-v2 [32], Inception-v3 [83],
ResNet-50 [30], DenseNet-121 [84], Xception [85], and NASNet-Mobile [86]. The input for each of these
models is the Region of Interest (RoI) obtained from the face detection module, and their classification-
based results include face mask recognition. The architecture of the suggested CNN model and six
customized models based on transfer learning are covered in the section that follows.

Figure 6. Proposed CNN-based Light-weight Facemask Detection Model.

3.4.1 Proposed Light-Weight CNN Model

An image classification CNN for the face mask identification job has been developed, allowing for the
categorization of input images without reliance on pre-trained models. The goal is to create a simple,
lightweight model that will help find patterns connected to every group of images and lower the dimensionality
of the images.

Because Keras’ functional API is more flexible than Sequential API, the custom model in TensorFlow has
been constructed. It is a method for creating layer graphs that enables the addition of new layers to directed
acyclic graph (DAG). The initial size of the input image to the network in the model definition is 224 x 224
pixels with three channels. A color image that has been scaled to 224 x 224 x 3 pixels for training and testing
purposes is the input for the proposed model. Figure 6 shows the general architecture of the model.

The model’s architecture is made up of ten convolutional blocks, each of which has a convolutional layer
and a ReLU layer as the activation function. Max-pooling layers have been placed carefully after 2, 3, or 4
successive convolutional layers. 16 filters of size 3 by 3 are used in the first two convolutional blocks. Each
filter moves across the entire image and, using the ReLU activation function, outputs a unique 2D activation or
feature map. The resulting volume's spatial dimensions are subsequently reduced by applying size 2 by 2 max
pooling. Convolutional blocks number two, three, and four were added; each of these blocks had 32 filters
layered on top of it. After that, the input dimension was reduced once again by using the max-pooling layer.
Then another three convolutional layers were followed by another max-pooling layer, and finally four
successive convolutional layers were followed by a max pooling layer. Just before connecting the output of the
convolutional layer to the fully connected layer, an average-pooling layer was deployed to reduce the dimension
of the feature map further while retaining the important features extracted by the filters. To extract more features,
an increasing number of filters were used as the model went deeper into the architecture.

The output feature maps of the last convolutional layer must be transformed into one-dimensional array to
produce the prediction. In the model, there is a flatten layer that takes a multidimensional output and linearizes it
such that the dense layer may accept it as input. Then two dense layers were included, each having 128 neurons
are called fully connected (FC) layers. To prevent the network from over-fitting, a dropout layer (dropout ratio
value of 0.4) was included after the initial FC layer. More FC layers provide larger coverage for the entire
spatial dimension of the image and improve interpretation between the features retrieved by the convolutional
blocks and the predictions.

Finally, a dense layer with two output neurons was created with SoftMax as the activation function. As a
result, the number of output nodes in our final dense layer equals the class numbers. The target class
probabilities are produced, with a range of values from 0 to 1, and the aggregate of all values being 1. The

https://orcid.org/0000-0003-0538-1212

Computer Networks and Communications 86 | Anup Kumar Paul

detailed architecture with number of trainable parameters along with the filter size, stride, padding, output image
size after every convolutional and maxpooling operation are shown in Table 2.

Table 2. Details of the proposed FaceLite model architecture.

Layer Type Output Shape Number of Parameters

Conv2D (222, 222, 16) 448
Conv2D (220, 220, 16) 2320

MaxPool2D (110, 110, 16) 0
Conv2D (108, 108, 32) 4640
Conv2D (106, 106, 32) 9248
Conv2D (104, 104, 32) 9248

MaxPool2D (52, 52, 32) 0
Conv2D (50, 50, 64) 18496
Conv2D (48, 48, 64) 36928
Conv2D (46, 46, 128) 73856

MaxPool2D (23, 23, 128) 0
Conv2D (21, 21, 128) 147584
Conv2D (19, 19, 128) 147584
Conv2D (17, 17, 128) 147584
Conv2D (15, 15, 256) 295168

MaxPool2D (7, 7, 256) 0
AvgPool2D (1, 1, 256) 0

Flatten 256 0
Dense 128 32896

Dropout (40%) 128 0
Dense 128 16512
Dense 2 258

Total Trainable Parameters 942770

Overall system architecture of the proposed system is shown in Figure 7. The proposed system is a two
step system where first the proposed facemask model is trained using preprocessed image data. Once training is
complete, the model is saved to the disk for later use. In real time face mask detection from video or image data,
first the face is detected using a face detector with the help of OpenCV and resNet-10-ssd-Caffe model. The
region-of-interest (ROI) that is face is extracted and detected from the image and then fed into the facemask
detector module as an input. Then the proposed trained model faceLite is applied on the detected ROI to classify
between with-mask and without-mask image.

Loading of the
image dataset

Pre-process the
images: data
augmentation

CNN Model Training PhaseData Pre-processing Phase

Loading face
detection model:

resNet10-ssd-caffe

Detecting faces in
images and video

streams using openCV

Extracting the
Region of Interest

(ROI)

Applying the face
mask detector

With mask

Without maskInput Image or
Video

Testing Phase in Real Time Video

Figure 7. Proposed System Overview of Facemask Detection Model.

https://orcid.org/0000-0003-0538-1212

Volume 2 Issue 1|2024| 87 Computer Networks and Communications

3.4.2 Customized Model Based on Transfer Learning

In the transfer learning methodology, a previously trained model on a large dataset is reused as the base
model on a new related task. The main advantage of using transfer learning in classifying medical image data is
that if a model is trained on a large dataset, one can achieve high accuracy with the same model (after fine
tuning) even on a small dataset. In transfer learning, there is no need to train the entire model from the
beginning to fit the model on a dataset. Rather, the base convolutional layer already contains optimized
parameters that are useful for image classification. However, the top layers of the model are specific to the
image classification category and subsequently specific to the old classification task. Thus, it is needed to
unfreeze a few top layers of the model, add a few dense layers to match the new classification category, and
finally train the newly added dense layers along with the classification layer at the output of the model. In this
way, fine-tuning the higher-order feature representations of the image of the base model to make them more
closely connected to the classification of the new task. In this paper, six different base models were used such as
MobileNet-v2, Inceptionv3, Xception, ResNet-50, NASNet-Mobile, and DenseNet-12 and applied transfer
learning methodology to classify faces with and without masks.
 MobileNet-V2: The lightweight architecture of MobileNetv2 is designed to function well on embedded

mobile devices. Its foundation is an inverted residual structure with thin layers serving as bottlenecks at the
residual block's input and output. It applies depth-wise separable convolutions to each color channel to
extract the features. By reducing the non-linearities in n-array layers, it keeps the representational power.
There are two basic building blocks in its architecture. For shrinking, the first and the second residual block
has a stride of 1 and 2 respectively. The two blocks have three layers each. A depthwise convolution is used
for the first layer, a 1x1 convolution using ReLU6 [87] for the second, and a linear 1 x 1 convolution for the
third. The fundamental idea is to employ bottlenecks to encode inputs and outputs while using the inner
layer to encapsulate the transformation from pixels to image categories.

 ResNet-50: ResNet-50 is a significantly more complex CNN-based architecture, but instead of using FC
layers, it uses global average pooling and that's why its size is noticeably reduced. Without impacting the
model’s performance, it trains deep layers using skip connections and batch normalization. The issue of
vanishing gradients makes it challenging to train deep CNNs. ResNet-50, on the other hand, offers a
solution by offering skip connections, also referred to as gated units. It is feasible to train the 152-layer
model with less complexity than the VGG-16 thanks to these gated recurrent connections [26]. Rather than
learning the straight mapping, it applies residual functions for a small number of stacked layers. It can be
trained more quickly as compared to VGG-16 because it has 23 million parameters. With one significant
exception, Resnet-34 is the foundation of the ResNet-50 architecture. That is a modified bottleneck design
building block that uses a stack of three levels rather than two. The skip connections don’t have additional
parameters, which reduces computing complexity and enables the transfer of important information from
one layer to the next.

 Inception-V3: Inception-V3 concentrates on the less powerful computing resources by introducing the
concept of factorized convolutions. It seeks to cut back on parameters without adversely compromising the
network’s effectiveness. It folds the data into convolutions by substituting big convolutions for smaller ones
in order to do this. For instance, replacing one 5 x 5 convolution (5 x 5 = 25) with two 3 x 3 convolutions (3
x 3 + 3 x 3 = 9 + 9 = 18) reduces the parameter from 25 to 18. It also performed factorization into
asymmetric convolutions in a comparable way. It also features an additional classifier that functions as a
regularizer.

 Xception: "Extreme inception" is what Xception stands for. To enhance multi-scale feature extraction, the
Inception model serves as inspiration. The improvements from ResNets and Inception are combined. The
concept of depth wise separable convolution served as the foundation for the design of the Xception model.
The Xception model consists of three main sections: the main flow, the middle flow (which consists of eight
repetitions of the same block), and the exit flow. With the exception of the first and last modules, it has 36
convolutional layers that are organized into 14 modules with linear residual connections. Following all
convolution and separable convolution layers is batch normalization.

 DenseNet-121: The basic CNN design has been modified to create the DenseNet-121 architecture. One 7 x
7 convolution, 58 3 x 3 convolutions, 61 1 x 1 convolutions, four average pooling layers, and one fully
connected layer make up the DenseNet-121 architecture. The key elements of its architecture include
bottleneck layers, growth rate, connectivity, and dense blocks. The CNN’s next convolutional layer receives
the feature map from the preceding layer. In this way, CNN provides L direct connections for L levels. On
the other hand, the core idea of DenseNet-121 is the concatenation of feature maps from previous layers so
that there are L(L+1)/d direct connections for each L layer. The DenseNets utilize the potential

https://orcid.org/0000-0003-0538-1212

Computer Networks and Communications 88 | Anup Kumar Paul

representational power through feature reuse and solve the vanishing gradient problem instead of using
highly deep or wide architecture.

 NASNetMobile: NASNetMobile is short for Neural Architecture Search (NAS) Network. NASNetMobile
is a scalable CNN architecture based on reinforcement learning, made up of cells that serve as the
fundamental structural components. Cells are used for operations like pooling and separable convolution.
Depending on the capacity of the network, these procedures are repeated. There are 5.3 million trainable
parameters and 12 cells in the NASNet mobile architecture.

4. Experimental Results and Performance Analysis
The experiments were caried out on Tensorflow [45] and Google Colaboratory [88] notebooks using

Python and the Keras [89] library to evaluate the proposed model and transfer learning-based customized
models. The model was trained over 50 epochs. The batch size was set at 32, and the loss function was
optimized using the ADAM optimizer with a learning rate of 0.0001 and decaying across the epochs. The base
model was built within the framework of the suggested system, and subsequently included this model in a
mobile environment.

4.1 Performance Evaluation Metric
Accuracy, precision, recall, and F1-score were the four common evaluation metrics utilized to compare the

performance of the proposed model and the customized model based on transfer learning on the with-mask and
without mask datasets. In order to describe the evaluation measures, the terms "True Positive (TP), "False
Positive (FP)," "True Negative (TN)," and "False Negative (FN)" were first defined. Suppose that the two
classes (with-mask and without-mask) in the dataset are referred to as the "positive" and the "negative" classes,
respectively, for a binary classification issue. Then TP refers to those examples being correctly identified as
positive examples belonging to a positive class. Examples that should have been categorized as negative but
were instead placed in the positive category are referred to as FP. An example belonging to the negative class
and correctly categorized by the model is referred to be TN. FN stands for an example that belongs to the
positive class but is mistakenly categorized as belonging to the negative class. The evaluation metrics can be
defined as follows:

 
   

       

class i class i
class i

class i class i class i class i

TP TN
Accuracy

TP TN FP FN




  
(1)

 
 

   

class i
class i

class i class i

TP
Precision

TP FP



(2)

 
 

   

class i
class i

class i class i

TP
Sensitivity

TP FN



(3)

 
   

   

2
1 class i class i

class i
class i class i

Precision Sensitivity
F Score

Precision Sensitivity

 
 


(4)

4.2 Experimental Results
Using evaluation matrices, the experimental findings have been thoroughly discussed in this section. The

experimental findings have been collected from still images. Additionally, a mobile device’s camera is used to
record live videos to gather the experimental data. Two subsections make up the explanation of the results and
in-depth discussion. In the first subsection, the experimental results of the suggested model on a test dataset
were shown, and in the second, the experimental findings of the face detection module were discussed in
conjunction with the Caffe-DNN module to identify facemasks in real-time video images.

4.2.1 Facemask Identification

The model’s training and validation results for the facemask identification task are shown in Figure 8 and
the confusion matrix is shown in Figure 9. The Figure 8 shows that during the training and validation phase, the
accuracy rises steadily to nearly 99%. The model’s continued excellent training and validation accuracy

https://orcid.org/0000-0003-0538-1212

Volume 2 Issue 1|2024| 89 Computer Networks and Communications

demonstrate that neither overfitting nor underfitting might be affecting the model’s capacity for generalization.
Furthermore, in a constrained number of training epochs, the model can rapidly learn and converge.
Additionally, during the training phase, the misclassification rates shown by the loss function are incredibly low,
averaging approximately 0.015, and increase to approximately 0.016 during the validation phase. These
outcomes can also be realized by the confusion matrix shown in Figure 9. From the confusion matrix, we can
see that the proposed model FaceLite predicts only 0.22% images as without-mask images (false negative) and
only 2.29% images were misclassified to with-mask images (false positive).

Figure 8. Training loss and validation accuracy curve of FaceLite Model

Figure 9. Confusion matrix of FaceLite model

The training and validation results for the transfer learning models are shown in Figure 10. Transfer
learning models’ training and validation accuracy are nearly perfect. The sophisticated architecture of the
transfer learning model is the key to achieving such high accuracy. It is also obvious from the confusion matrix,
as shown in Figure 11. All the models’ false-negative and false-positive rates are very low. Among all the
transfer learning-based models, MobileNet-V2’s total training parameters are the lowest and thus have slightly
higher false-positive and false negative rates. Thus, it is obvious from these results that, to achieve high
accuracy, a trade-off must be made to increase the number of parameters and thus the model’s disk size. In that
respect, it can be claimed that the FaceLite model achieves significantly higher accuracy while keeping the
number of trainable parameters the lowest among all the other models. This is a highly desirable characteristic a
lightweight model should possess to be applicable to edge computing devices. To describe and choose the best
discriminating descriptor of facial important features, the proposed model, FaceLite, generated fewer than 1
million parameters with a 99% total accuracy. Furthermore, the proposed model's ability to distinguish both
masked and unmasked faces is demonstrated by the outstanding detection accuracy as measured by recall,

https://orcid.org/0000-0003-0538-1212

Computer Networks and Communications 90 | Anup Kumar Paul

precision, and F1-score. The test dataset results demonstrate the proposed model's exceptional accuracy in
predicting masked faces, with F1-score, precision, and recall all reaching values of 0.99, 0.99, and 0.99,
respectively. Additionally, it achieves high accuracy in predicting unmasked faces in the test dataset, with
precision, recall, and F1-score of 0.99, 0.99, and 0.99, respectively. To achieve this accuracy, the proposed
model’s disk size is only 11.45 MB which is the lowest among all other models’ disk sizes as can be seen from
table 3. This paper’s aim was to build a lightweight model applicable to edge devices while retaining high
accuracy.

(a) MobileNet-V2 (b) ResNet-50

(c) Inception-V3 (d) Exception

(e) DenseNet121 (f) NasNetMobile

Figure 10. Training loss and validation accuracy curve of various transfer learning models.

https://orcid.org/0000-0003-0538-1212

Volume 2 Issue 1|2024| 91 Computer Networks and Communications

(a) MobileNet-V2 (b) ResNet-50

(c) Inception-V3 (d) Exception

(e) DenseNet121 (f) NasNetMobile

Figure 11. Confusion matrix of various transfer learning models.

As a result, the model can detect masks accurately even when they have a variety of colors, styles, shapes,
and coverage regions. Therefore, based on testing results, it can be said that the suggested model has a 99%
accuracy rate in identifying masks. A overview of the performance outcomes derived from the confusion matrix
is shown in Table 3 and attained by various transfer learning-based models in addition to the proposed model.

https://orcid.org/0000-0003-0538-1212

Computer Networks and Communications 92 | Anup Kumar Paul

Table 3. Performance characteristics of various facemask detection models

Model Class Category Precision Recall F1-Score Accuracy Total Parameters Model Size (MB)

FaceLite
With Mask

Without Mask
0.99
0.99

0.99
0.99

0.99
0.99

0.99 9,42,770 11.45

MobileNet-V2
With Mask

Without Mask
0.99
0.99

0.99
0.99

0.99
0.99

0.99 24,22,210 11.50

ResNet-50
With Mask

Without Mask
1.0
1.0

1.0
1.0

1.0
1.0

1.0 2,38,50,242 98.00

Inception-V3
With Mask

Without Mask
1.0

0.99
0.99
1.0

1.0
1.0

1.0 2,20,65,314 91.30

Xception
With Mask

Without Mask
1.0
1.0

1.0
1.0

1.0
1.0

1.0 2,11,24,010 87.00

DenseNet-121
With Mask

Without Mask
1.0
1.0

1.0
1.0

1.0
1.0

1.0 71,68,962 30.90

NasNetMobile
With Mask

Without Mask
1.0
1.0

1.0
1.0

1.0
1.0

1.0 44,05,270 20.90

4.2.2 Deployment in Mobile Environment

To facilitate a quick real-time detection of mask usage, the proposed framework FaceLite was integrated
into an Android-based mobile application. By executing the proposed model locally, TensorFlow Lite could be
used to give mobile devices deep learning capabilities. By significantly extending the deep model response
period, it promoted hardware speedup, minimal memory utilization, and results in portable devices with low-
latency inference efficiency. Facial images were taken using the Android mobile device’s built-in camera when
the model was installed.

The system processed the input in three stages: accuracy with bounding boxes on faces, mask detection,
and face detection. The chosen face detection method (Caffe-DNN) has the following features: it can track faces
in video frames; it can process video frames in real-time; it can recognize and discover facial features; it can
identify facial features; and it can recognize facial expressions. This work employed real-time face detection
using 133 points to represent all facial features. The preprocessing phase was used to resize the image as 224 x
224 pixel values after face detection. The masked facial recognition system's boundaries were also established
by the mobile solution. The system’s digital camera captured an image, which was checked to see if any facial
data was present. If a face was found, its location was surrounded by a frame that displayed details about the
mask’s function and the identity. In accordance with this system, the Android system was modified in mobile
solutions using TensorFlow’s "Object Detection Conical" example. Each face was automatically cropped and
preprocessed before being given into the model, which distinguished between "masked" and "not masked."

Two more bitmaps were defined for processing. For devices with a sensor that was oriented in landscape,
the first step was to rotate the input frame into portrait mode. Each recognized face was depicted using bitmaps,
which were also utilized to trim the discovered face’s position and resize the image to 224 x 224 pixels for the
face detection model’s input. The following choices were selected in our situation: green for "Masked" and red
for "Not Masked." To build an Android application that uses the classes in the face dataset to categorize faces, a
text file with the class names must exist.

Figure 12 shows screenshots of a sample facial image prediction using the proposed FaceLite model. From
the figure, it can be seen that the FaceLite model’s inference time to detect a facemask is only 24 ms. On the
other hand, accuracy is 99.97%. Figure 13 and Figure 14 demonstrate real-time facemask detection (with mask
and without a mask) using different transfer learning models. It can be seen that the accuracy of various transfer
learning models is 100% in detecting whether a person is wearing a facemask or not. However, it can be seen
from Table 4 that the inference times to detect a facemask are 26 ms, 33 ms, 37 ms, 27 ms, 36 ms, and 44 ms for
MobileNet-V2, ResNet-50, Inception-V3, Xception, DenseNet-121, and NasNetMobile, respectively. Table 5
compares the performance of the proposed model FaceLite with other transfer learning models. It is clear that
the proposed model’s inference time on real-time video data is quicker than all other models’ inference time
which is a desirable feature for the implementation of any model on an edge device.

https://orcid.org/0000-0003-0538-1212

Volume 2 Issue 1|2024| 93 Computer Networks and Communications

(a) (b)

Figure 12. Real-time facemask detection using FaceLite model

(a) MobileNet-V2 (b) ResNet-50

(c) Inception-V3 (d) Exception

(e) DenseNet121 (f) NasNetMobile

Figure 13. Real-time facemask detection (with mask) using various transfer learning model

https://orcid.org/0000-0003-0538-1212

Computer Networks and Communications 94 | Anup Kumar Paul

(a) MobileNet-V2 (b) ResNet-50

(c) Inception-V3 (d) Exception

(e) DenseNet121 (f) NasNetMobile

Figure 14. Real-time facemask detection (without mask) using various transfer learning model

Table 4. Performance comparison of FaceLite model with other transfer learning models on real-time video data

Model Inference Accuracy Inference Time (ms)

FaceLite 99.97 24

MobileNet-V2 100 26

ResNet-50 100 33

Inception-V3 100 37

Xception 100 27

DenseNet-121 100 36

NasNetMobile 100 44

https://orcid.org/0000-0003-0538-1212

Volume 2 Issue 1|2024| 95 Computer Networks and Communications

Table 5. Performance comparison with other state-of-the-art facemask detection models

Model Dataset Data Description Total Images Reported Performance

FaceLite
FaceMask

Detection: 12K
Images Dataset [80]

Images without a mask are preprocessed from
the CelebFace collection, whereas images

with a mask are taken from Google searches.

12000 99% (Precision),
99% (Recall),

99% (F1-Score)

Loey [70] FMDD [71] and
MMD [72]

Combination of facemask and medical mask
dataset.

1415 81% (Precision)

Yadav [36] Customized Dataset Author used customized dataset. 3165 91.7% (Precision)

Amit [90]
RMFRD [91],
FMDD [71],

and FFHQ [92]

To avoid bias and scarcity, combined three
datasets.

7855 98.28% (Precision), 100%
(Recall), 99.13% (F1

Score)

Qin [33] MMD [72] Medical Mask Dataset 3835 98.70% (Accuracy)

Jiang [69] FMD [66] Facemask dataset combined by widerface
[93] and MAFA [68]

7959 68.3% (Mean Average
Precision)

Shimming
[68] MAFA [68] Author introduced the dataset 35806 74.6% (Average Precision)

Wei [94] WiderFace [93] and
MaskedFaces [94]

Trained with WiderFace and finetuned with
MaskedFaces.

200 86.6% (Accuracy),
87.8% (Recall)

4.2.3 Limitation of the Proposed Model

Many of the mask-containing photos in the "facemask detection ~12K images" training dataset are
synthetic. Instead of using photoshopped images of people wearing masks, we should collect real images in
order to further refine the face mask detection algorithm. Even though the fake dataset performed admirably in
this instance, the genuine thing is always preferable. Secondly, photos of faces that could "confuse" the
classifier into believing a person is wearing a mask when they aren't should also be gathered; such examples
include bandanas covering the mouth or shirts wrapped around faces. These are all instances of objects that the
proposed face mask detector might mistake for face masks.

In the proposed approach of determining whether or not a person is wearing a mask, there are two steps
involved:

Step 1: Carry out face recognition.
Step 2: On every face, apply the face mask detector.
This tactic has an issue because a face mask covers part of the face by definition. The face mask detector

won't work if the face is sufficiently hidden to prevent the face from being recognized.
One workaround for that issue is to use a two-class object detector that is trained with a with-mask class

and a without-mask class. Two ways that the model can be improved are by combining an object detector with a
designated class.

First, the object detector will be able to automatically recognize people wearing masks when the face
detector would not have been able to since too much of the face is obscured by them. Furthermore, by applying
the object detector first, we can obtain bounding boxes for individuals wearing masks and those that don't in a
single network forward pass do away with the requirement for face detection and the ensuing face mask detector
model. Such a solution is more "elegant" and end-to-end, in addition to being more computationally efficient.

5. Performance Comparison with Other State-of-the-Art Algorithms
Table 5 shows how the suggested FaceLite model performs in contrast to other cutting-edge algorithms. It

is clear that many works have been completed by fusing different datasets together or even by producing
original images. The table includes descriptions of these datasets as well. An overview of the datasets used in
current facemask detection techniques is provided in Table 5, along with their results for comparison to the
proposed FaceLite model.

6. Conclusion
This paper presented a two-stage face mask identification framework optimized for real-time inference on

Android-powered mobile devices. A DL-based framework was built with two primary parts. The proposed CNN

https://orcid.org/0000-0003-0538-1212

Computer Networks and Communications 96 | Anup Kumar Paul

model and six transfer learning-based custom models were utilized in the second module to perform face mask
identification based on the classification, whereas the first module employed Caffe-DNN to process each frame
for face detection. The actual trials were done, and the outcomes were thoroughly discussed. First, the accuracy
and loss curves for the training and validation datasets for the various models were discussed. After that, the
classification report using the confusion matrix was presented and analyzed the predictions based on metrics for
accuracy, recall, precision, and F1-score to determine how well each model performed on the test dataset.
Through efficient inference with the fewest trainable parameters and disk model size compared to all other
transfer learning models, experimental results showed that the proposed CNN model was effective at face masks
classification with an accuracy comparable to six other transfer learning models. Future plans include for
expanding the framework for human tracking problems and analyzing how the framework improvements affect
the accuracy of tracking across various edge devices.

Conflict of Interest
There is no conflict of interest for this study.

References

[1] Nemhauser, J.B. Copyright Page. In CDC Yellow Book 2024: Health Information for International Travel.
Oxford Academic: Oxford, England, https://doi.org/10.1093/oso/9780197570944.002.0004.

[2] Velavan, T.P.; Meyer, C.G. The COVID‐19 epidemic. Trop. Med. Int. Health 2020, 25, 278–280,
https://doi.org/10.1111/tmi.13383.

[3] Wikipedia. COVID-19 pandemic. Available online: https://en.wikipedia.org/wiki/COVID-19_pandemic
(accessed on 5 January 2024).

[4] Tracht, S.M.; Del Valle, S.Y.; Hyman, J.M. Mathematical Modeling of the Effectiveness of Facem
asks in Reducing the Spread of Novel Influenza A (H1N1). PLOS ONE 2010, 5, e9018, https://do
i.org/10.1371/journal.pone.0009018.

[5] Jefferson, T.; Del Mar, C.B.; Dooley, L.; Ferroni, E.; A Al-Ansary, L.; A Bawazeer, G.; van Dri
el, M.L.; Nair, N.S.; A Jones, M.; Thorning, S.; et al. Physical interventions to interrupt or reduc
e the spread of respiratory viruses. Emergencias 2011, 2011, CD006207, https://doi.org/10.1002/146
51858.cd006207.pub4.

[6] Leung, N.H.L.; Chu, D.K.W.; Shiu, E.Y.C.; Chan, K.-H.; McDevitt, J.J.; Hau, B.J.P.; Yen, H.-L.; Li, Y.;
Ip, D.K.M.; Peiris, J.S.M.; et al. Respiratory virus shedding in exhaled breath and efficacy of face masks.
Nat. Med. 2020, 26, 676–680, https://doi.org/10.1038/s41591-020-0843-2.

[7] Fang, Y.; Nie, Y.; Penny, M. Transmission dynamics of the COVID‐19 outbreak and effectiveness
of government interventions: A data‐driven analysis. J. Med Virol. 2020, 92, 645–659, https://doi.

org/10.1002/jmv.25750.
[8] World Health Organization. Advice for the public: Coronavirus disease (COVID-19). Available online:

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public (accessed on 9 April
2020).

[9] Henson, B. How mask antiviral coatings may limit COVID-19 transmission. Available online:
https://www.optometrytimes.com/view/how-mask-antiviral-coatings-may-limit-covid-19-transmission
(accessed on 5 January 2024).

[10] Manzoor, S.; Kim, E.-J.; Joo, S.-H.; Bae, S.-H.; In, G.-G.; Joo, K.-J.; Choi, J.-H.; Kuc, T.-Y. Edge
Deployment Framework of GuardBot for Optimized Face Mask Recognition With Real-Time Inference
Using Deep Learning. IEEE Access 2022, 10, 77898–77921, https://doi.org/10.1109/access.2022.3190538.

[11] Fan, X.; Jiang, M.; Yan, H. A Deep Learning Based Light-Weight Face Mask Detector With Residual
Context Attention and Gaussian Heatmap to Fight Against COVID-19. IEEE Access 2021, 9, 96964–
96974, https://doi.org/10.1109/access.2021.3095191.

[12] Paul, A.K.; Das, D.; Kamal, M. Bangla Speech Recognition System Using LPC and ANN. In Proceedings
of 2009 Seventh International Conference on Advances in Pattern Recognition, Kolkata, India, 4–6
February 2009, https://doi.org/10.1109/ICAPR.2009.80.

[13] Zhang, J.; Yu, K.; Wen, Z.; Qi, X.; Paul, A.K. 3D Reconstruction for Motion Blurred Images Us
ing Deep Learning-based Intelligent Systems. Comput. Mater. Contin. 2021, 66, 2087–2104, https:/
/doi.org/10.32604/cmc.2020.014220.

https://orcid.org/0000-0003-0538-1212

Volume 2 Issue 1|2024| 97 Computer Networks and Communications

[14] Chhowa, T.T.; Rahman, A.; Paul, A.K.; Ahmmed, R. A Narrative Analysis on Deep Learning in IoT based
Medical Big Data Analysis with Future Perspectives. In Proceedings of 2019 International Conference on
Electrical, Computer and Communication Engineering (ECCE), Cox'sBazar, Bangladesh, 7–9 February
2019, https://doi.org/10.1109/ECACE.2019.8679200.

[15] Ma, T.; Benon, K.; Arnold, B.; Yu, K.; Yang, Y.; Hua, Q.; Paul, A.K. (2020). Bottleneck feature
extraction-based deep neural network model for facial emotion recognition. In Proceedings of 10th EAI
International Conference on Mobile Networks and Management, MONAMI 2020, Cyberspace, 10–12
November 2020, https://doi.org/10.1007/978-3-030-64002-6_3.

[16] Arifuzzaman, M.; Hasan, R.; Toma, T.J.; Hassan, S.B.; Paul, A.K. An Advanced Decision Tree-B
ased Deep Neural Network in Nonlinear Data Classification. Technologies 2023, 11, 24, https://doi.
org/10.3390/technologies11010024.

[17] Paul, A.K.; Mou, J.K.; Turna, T. NEURAL NETWORK BASED REAL TIME PNEUMONIA
DETECTION USING TRANSFER LEARNING AND IMAGE AUGMENTATION. Khulna Univ. Stud.
2022, 70–82, https://doi.org/10.53808/kus.2022.icstem4ir.0093-se.

[18] Paul, A.K.; Bhuiyan, Y.S. EchoTrace: A 2D Echocardiography Deep Learning Approach for Left
Ventricular Ejection Fraction Prediction. J. Electron. Electr. Eng. 2024, 1–20, https://doi.org/10.372
56/jeee.3120243824.

[19] Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S. ImageNet Large Scale Visual
Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252, https://doi.org/10.1007/s11263-015-
0816-y.

[20] Satyanarayanan, M. The Emergence of Edge Computing. Computer 2017, 50, 30–39, https://doi.org
/10.1109/mc.2017.9.

[21] Yang, C.-Y.; Lin, Y.-N.; Shen, V.R.L.; Shen, F.H.C.; Wang, C.-C. A Novel IoT-Enabled System for Real-
Time Face Mask Recognition Based on Petri Nets. IEEE Internet Things J. 2023, 11, 6992–7001,
https://doi.org/10.1109/jiot.2023.3313583.

[22] Lin, C.-Y.; Chen, F.-J.; Ng, H.-F.; Lin, W.-Y. Invisible Adversarial Attacks on Deep Learning-Based Face
Recognition Models. IEEE Access 2023, 11, 51567–51577, https://doi.org/10.1109/access.2023.3279488.

[23] He, L.; Liu, G.; Zhou, M. Petri-Net-Based Model Checking for Privacy-Critical Multiagent Systems. IEEE
Trans. Comput. Soc. Syst. 2022, 10, 563–576, https://doi.org/10.1109/tcss.2022.3164052.

[24] Leblond-Menard, C.; Achiche, S. Non-Intrusive Real Time Eye Tracking Using Facial Alignment for
Assistive Technologies. IEEE Trans. Neural Syst. Rehabilitation Eng. 2023, 31, 954–961,
https://doi.org/10.1109/tnsre.2023.3236886.

[25] Ali, M.A.; Haque, M.; Alam, S.B.; Rahman, R.; Amin, M.; Kobashi, S. Medical Personal Protecti
ve Equipment detection using YOLOv7. In Proceedings of 2023 International Conference on Mach
ine Learning and Cybernetics (ICMLC), Adelaide, Australia, 9–11 July 2023, https://doi.org/10.110
9/ICMLC58545.2023.10327939.

[26] Al-Shamdeen, M.J.; Ramo, F.M. Improving Performance of Yolov5n v6. 0 for Face Mask Detecti
on. In Proceedings of 2024 International Conference on Artificial Intelligence in Information and
Communication (ICAIIC), Osaka, Japan, 19–22 February 2024, https://doi.org/10.1109/ICAIIC60209.
2024.10463515.

[27] Weil, A. Can edge computing exist without the edge? part 1: The edge. Available online:
https://www.akamai.com/blog/edge/can-edge-computing-exist-without-the-edge-part-1-the-edge (accessed
on 5 January 2024).

[28] Worldwide Spending on Edge Computing Will Reach $250 Billion in 2024, According to a New
IDC Spending Guide. Available online: https://www.businesswire.com/news/home/20200923005190/e
n/Worldwide-Spending-on-Edge-Computing-Will-Reach-250-Billion-in-2024-According-to-a-New-IDC-
Spending-Guide (accessed on 5 January 2024).

[29] Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556. https://doi.org/10.48550/arXiv.1409.1556.

[30] He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas,
NV, USA, 27–30 June 2016; pp. 770–778, https://doi.org/10.1109/CVPR.2016.90.

[31] Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.;
Rabinovich, A.; Liu, W.; et al. Going deeper with convolutions. In Proceedings of the 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp.
1–9. https://doi.org/10.1109/CVPR.2015.7298594.

https://orcid.org/0000-0003-0538-1212

Computer Networks and Communications 98 | Anup Kumar Paul

[32] Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L. MobileNetV2: Inverted Residuals and Linear
Bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition, Salt Lake
City, UT, USA, 18–3 June 2018, pp. 4510–4520. https://doi.org/10.1109/CVPR.2018.00474.

[33] Qin, B.; Li, D. Identifying Facemask-Wearing Condition Using Image Super-Resolution with
Classification Network to Prevent COVID-19. Sensors 2020, 20, 5236, https://doi.org/10.3390/s20185236.

[34] Kocacinar, B.; Tas, B.; Akbulut, F.P.; Catal, C.; Mishra, D. A Real-Time CNN-Based Lightweight
Mobile Masked Face Recognition System. IEEE Access 2022, 10, 63496–63507, https://doi.org/10.

1109/access.2022.3182055.
[35] Bao, Z.; Yang, S.; Huang, Z.; Zhou, M.; Chen, Y. A Lightweight Block With Information Flow

Enhancement for Convolutional Neural Networks. IEEE Trans. Circuits Syst. Video Technol. 2023, 33,
3570–3584, https://doi.org/10.1109/tcsvt.2023.3237615.

[36] Yadav, S. Deep Learning based Safe Social Distancing and Face Mask Detection in Public Areas for
COVID-19 Safety Guidelines Adherence. Int. J. Res. Appl. Sci. Eng. Technol. 2020, 8, 1368–1375,
https://doi.org/10.22214/ijraset.2020.30560.

[37] Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
Available online: http://www.deeplearningbook.org.

[38] Huang, J.; Rathod, V.; Sun, C.; Zhu, M.; Korattikara, A.; Fathi, A.; Fischer, I.; Wojna, Z.; Song, Y.;
Guadarrama, S.; et al. Speed/accuracy trade-offs for modern convolutional object detectors. In
Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu,
HI, USA, 21–26 July 2017. pp. 7310–7311.

[39] Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 30th IEEE Conference
on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525,
https://doi.org/10.1109/cvpr.2017.690.

[40] Lu, Z.; Rallapalli, S.; Chan, K.; Pu, S.; La Porta, T. Augur: Modeling the Resource Requirements
of ConvNets on Mobile Devices. IEEE Trans. Mob. Comput. 2019, 20, 352–365, https://doi.org/1

0.1109/tmc.2019.2946538.
[41] Ran, X.; Chen, H.; Zhu, X.; Liu, Z.; Chen, J. DeepDecision: A Mobile Deep Learning Framewor

k for Edge Video Analytics. In Proceedings of IEEE INFOCOM 2018 - IEEE Conference on Co
mputer Communications, Honolulu, HI, USA, 16–19 April 2018, https://doi.org/10.1109/INFOCOM.
2018.8485905.

[42] Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W., Weyand, T.; Adam, H. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861,
https://doi.org/10.48550/arXiv.1704.04861.

[43] Tan, M.; Chen, B.; Pang, R.; Vasudevan, V.; Sandler, M.; Howard, A.; Le, Q.V. MnasNet: Platfo
rm-Aware Neural Architecture Search for Mobile. arXiv 2019, arXiv:1807.11626, https://doi.org/10.
48550/arXiv.1807.11626.

[44] Taylor, B.; Marco, V. S.; Wolff, W.; Elkhatib, Y.; Wang, Z. Adaptive deep learning model selection on
embedded systems. ACM Sigplan Notices 2018, 53, 31–43, https://doi.org/10.1145/3299710.3211336.

[45] Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Zheng, X. {TensorFlow}: a system for
{Large-Scale} machine learning. In 12th USENIX symposium on operating systems design and
implementation (OSDI 16), Savannah, GA, USA, 2–4 November 2016, pp. 265–283.

[46] TensorFlow. Tensorflow lite. Available online: https://www.tensorflow.org/lite (accessed on 10 January
2024).

[47] Edge TPU. Available online: https://cloud.google.com/edge-tpu (accessed on 10 January 2024).
[48] Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Darrell, T. Caffe: Convolutional

architecture for fast feature embedding. In Proceedings of the 22nd ACM international conference on
Multimedia, Orlando, FL, USA, 3–7 November 2014, https://doi.org/10.1145/2647868.2654889.

[49] PyTorch. Available: https://pytorch.org (accessed on 11 January 2024).
[50] PyTorch Mobile. Available: https://pytorch.org/mobile/home/ (accessed on 11 January 2024).
[51] CUDA Zone. Available: https://developer.nvidia.com/cuda-zone (accessed on 11 January 2024).
[52] CUDNN. Available online: https://developer.nvidia.com/cudnn (accessed on 11 January 2024).
[53] Tan. J. How to choose hardware for edge ml! Available online: https://www.seeedstudio.com/blog/

2021/04/02/how-to-choose-hardware-for-edge-ml/ (accessed on 11 January 2024).
[54] Dalal, N.; Triggs, B. Histograms of Oriented Gradients for Human Detection. In Proceedings of th

e Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–26 June 2005; pp. 886–89
3, https://doi.org/10.1109/CVPR.2005.177.

https://orcid.org/0000-0003-0538-1212

Volume 2 Issue 1|2024| 99 Computer Networks and Communications

[55] Viola, P.; Jones, M. Rapid Object Detection using a Boosted Cascade of Simple Features. In Proceedings
of the 2001 IEEE computer society conference on computer vision and pattern recognition, Kauai, HI,
USA, 8–14 December 2001, https://doi.org/10.1109/CVPR.2001.990517.

[56] Lowe, D.G. Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE
International Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999; pp. 1150–1157,
https://doi.org/10.1109/ICCV.1999.790410.

[57] Felzenszwalb, P.; McAllester, D.; Ramanan, D. A discriminatively trained, multiscale, deformable part
model. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Anchorage,
AK, USA, 24–26 June 2008; pp. 1–8, https://doi.org/10.1109/CVPR.2008.4587597.

[58] Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Det
ection and Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision a
nd Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587, https://doi.org/10.11
09/CVPR.2014.81.

[59] Girshick, R. Fast r-cnn. In Proceedings of the IEEE international conference on computer vision, 7–13
December 2015, Santiago, Chile, pp. 1440-1448.

[60] Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region
proposal networks. In Proceedings of the Advances in Neural Information Processing Systems 28 (NIPS
2015), Montreal, QC, Canada, 7–12 December 2015; pp. 91–99.

[61] Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object
Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788, https://doi.org/10.1109/CVPR.2016.91.

[62] Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv preprint arXiv:1804.02767.
https://doi.org/10.48550/arXiv.1804.02767.

[63] Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single shot multibox
detector. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands,
11–14 October 2016, https://doi.org/10.1007/978-3-319-46448-0_2.

[64] Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal loss for dense object detection. IEEE Trans.
Pattern Anal. Mach. Intell. 2020, 42, 318–327. https://doi.org/10.1109/TPAMI.2018.2858826.

[65] Roy, B.; Nandy, S.; Ghosh, D.; Dutta, D.; Biswas, P.; Das, T. MOXA: A Deep Learning Based Unmanned
Approach For Real-Time Monitoring of People Wearing Medical Masks. Trans. Indian Natl. Acad. Eng.
2020, 5, 509–518, https://doi.org/10.1007/s41403-020-00157-z.

[66] Chiang, D. Detecting faces and determine whether people are wearing mask. Available online:
https://github.com/AIZOOTech/FaceMaskDetection (accessed on 12 January 2024).

[67] Albalas, F.; Alzu'Bi, A.; Alguzo, A.; Al-Hadhrami, T.; Othman, A. Learning Discriminant Spatial Features
With Deep Graph-Based Convolutions for Occluded Face Detection. IEEE Access 2022, 10, 35162–35171,
https://doi.org/10.1109/access.2022.3163565.

[68] Ge, S.; Li, J.; Ye, Q.; Luo, Z. Detecting Masked Faces in the Wild with LLE-CNNs. In Proceedings of
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26
July 2017; pp. 426–434.

[69] Fan, X.; Jiang, M. RetinaFaceMask: A Single Stage Face Mask Detector for Assisting Control of
the COVID-19 Pandemic. In Proceedings of 2021 IEEE International Conference on Systems, Man,

and Cybernetics (SMC). Melbourne, Australia, 17–20 October 2021, https://doi.org/10.1109/SMC52
423.2021.9659271.

[70] Loey, M.; Manogaran, G.; Taha, M.H.N.; Khalifa, N.E.M. Fighting against COVID-19: A novel deep
learning model based on YOLO-v2 with ResNet-50 for medical face mask detection. Sustain. Cities Soc.
2020, 65, 102600–102600, https://doi.org/10.1016/j.scs.2020.102600.

[71] FMDD: face mask detection dataset. Available: https://www.kaggle.com/datasets/andrewmvd/face-mask-
detection (accessed on 3 February 2024).

[72] Medical mask dataset. Available online: https://www.kaggle.com/datasets/shreyashwaghe/medical-mask-
dataset (accessed on 14 January 2024).

[73] Ristea, N.C.; Ionescu, R.T. Are you wearing a mask? Improving mask detection from speech usin
g augmentation by cycle-consistent GANs. arXiv preprint arXiv:2006.10147. https://doi.org/10.48550
/arXiv.2006.10147.

[74] Nieto-Rodriguez, A.; Mucientes, M.; Brea, V.M. System for medical mask detection in the operating room
through facial attributes. In Pattern Recognition and Image Analysis: 7th Iberian Conference, IbPRIA
2015, Santiago de Compostela, Spain, 17–19 June 2015, https://doi.org/10.1007/978-3-319-19390-8_16.

https://orcid.org/0000-0003-0538-1212

Computer Networks and Communications 100 | Anup Kumar Paul

[75] Friedman, J.; Hastie, T.; Tibshirani, R. Additive logistic regression: a statistical view of boosting
(With discussion and a rejoinder by the authors). Ann. Stat. 2000, 28, 337–407, https://doi.org/10.1
214/aos/1016218223.

[76] Lienhart, R.; Kuranov, A.; Pisarevsky, V. Empirical analysis of detection cascades of boosted classifiers
for rapid object detection. In Pattern Recognition: 25th DAGM Symposium, Magdeburg, Germany, 10–12
September 2003, https://doi.org/10.1007/978-3-540-45243-0_39.

[77] Snyder, S.E.; Husari, G. Thor: A Deep Learning Approach for Face Mask Detection to Prevent the
COVID-19 Pandemic. In Proceedings of SoutheastCon 2021, Atlanta, GA, USA, 10–13 March 2021,
https://doi.org/10.1109/SoutheastCon45413.2021.9401874.

[78] Zhang, K.; Zhang, Z.; Li, Z.; Qiao, Y. Joint Face Detection and Alignment Using Multitask Casc
aded Convolutional Networks. IEEE Signal Process. Lett. 2016, 23, 1499–1503, https://doi.org/10.1
109/lsp.2016.2603342.

[79] Kim, J.H.; Poulose, A.; Han, D.S. The Extensive Usage of the Facial Image Threshing Machine for Facial
Emotion Recognition Performance. Sensors 2021, 21, 2026, https://doi.org/10.3390/s21062026.

[80] Face mask detection 12k images dataset. Available online: https://www.ka ggle.com/datasets/ashishj
angra27/face-mask-12k-images-dataset (accessed on 15 January 2024).

[81] Large- scale celebfaces attributes (celeba) dataset. Available online: http://mmlab.ie.cuhk.edu.hk/proj
ects/CelebA.html (accessed on 15 January 2024).

[82] Keras documentation: Keras applications. Available online: https://keras.io/api/applications/ (accessed on
15 January 2024).

[83] Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for
Computer Vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. https://doi.org/10.1109/cvpr.2016.308.

[84] Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In
Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI,
USA, 21–26 July 2017; pp. 2261–2269, https://doi.org/10.1109/CVPR.2017.243.

[85] Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July
2017.

[86] Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning Transferable Architectures for Scalable Image
Recognition. In Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Salt Lake City, UT, USA, 18–23 June 2018, https://doi.org/10.1109/CVPR.2018.00907.

[87] ReLU6: A Modified Version of Rectified Linear Unit. Available: https://serp.ai/relu6/ (accessed on 22
January 2024).

[88] Bisong, E. Google Colaboratory. In Building Machine Learning and Deep Learning Models on Google
Cloud Platform: A Comprehensive Guide for Beginners; Apress: Berkeley, CA, USA, 2019; pp. 59–64,
https://doi.org/10.1007/978-1-4842-4470-8_7.

[89] Keras Documentation. Available online: https://keras.io (accessed on 26 December 2018).
[90] Chavda, A.; Dsouza, J.; Badgujar, S.; Damani, A. Multi-Stage CNN Architecture for Face Mask Detection.

In Proceedings of 2021 6th International Conference for Convergence in Technology (I2CT). Maharashtra,
India, 2–4 April 2021, https://doi.org/10.1109/I2CT51068.2021.9418207.

[91] Wang, Z.; Huang, B.; Wang, G.; Yi, P.; Jiang, K. Masked Face Recognition Dataset and Application.
IEEE Trans. Biom. Behav. Identit- Sci. 2023, 5, 298–304, https://doi.org/10.1109/tbiom.2023.3242085.

[92] FFHQ: Flickr-faces-hq dataset (ffhq). Available: https://github.com/NVlabs/ffhq-dataset (accessed on 3
February 2024).

[93] Yang, S.; Luo, P.; Loy, C.C.; Tang, X. WIDER FACE: A Face Detection Benchmark. In Proceedings of
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 27–30 June 2016, Las
Vegas, NV, USA; pp. 5525–5533.

[94] Bu, W.; Xiao, J.; Zhou, C.; Yang, M.; Peng, C. A cascade framework for masked face detection. In
Proceedings of 2017 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and
IEEE Conference on Robotics, Automation and Mechatronics (RAM), Ningbo, China, 19-21 November
2017, https://doi.org/10.1109/ICCIS.2017.8274819.

https://orcid.org/0000-0003-0538-1212

	1.Introduction
	2.Background and Literature Survey
	3.Materials and Methods
	4.Experimental Results and Performance Analysis
	5.Performance Comparison with Other State-of-the-Art
	6.Conclusion

