
Computer Networks and Communications

https://ojs.wiserpub.com/index.php/CNC

Article

Analysis of Path Convergence in Chord DHT

Vladimir Rocha* , Daniel Czeresnia and Carlo Kleber da Silva Rodrigues

Center for Mathematics, Computing and Cognition, Federal University of ABC, Santo André, SP, Brazil
E-mail: vladimir.rocha@ufabc.edu.br

Received: 23 April 2024; Revised: 12 July 2024; Accepted: 15 July 2024

Abstract: Chord is a Distributed Hash Table widely used for its efficiency in searching for information. The efficiency of

this structure relies on creating short paths of O(log2 n) between two nodes, in which n is the number of nodes. To enhance

efficiency, several studies use replication in the nodes belonging to the network, assuming that searches will converge in

these replicated nodes. This work proposes a convergence formula and analyzes the number of searches converging on

nodes for different network sizes (small, medium, and large), up to one million nodes. The experiments show that the

convergence creates three zones and the results support the replication techniques from previous studies and demonstrate

that it is feasible to replicate in nodes that were not considered in these studies.

Keywords: Chord, path convergence, Distributed Hash Table, replication

1. Introduction

The Distributed Hash Table is a widely known distributed structure used in various scenarios as a basis for efficiently

searching for information in distributed systems, for example, multimedia systems [1], cloud systems [2], multiagent

systems [3], blockchain systems [4, 5], storage systems [6], IoT systems [7], among others [8]. In the context of computer

networks, the Distributed Hash Table is relevant and used for creating efficient routing and forwarding tables [9], for

establishing low-latency connections [10], for optimizing the network topology for multicast [11], among other situations.

Chord is an implementation of the Distributed Hash Table with a ring-shaped overlay network, where each node

in the network has pointers to its successor in the ring and to other nodes. To find information, it is necessary for the

search request to traverse a path of nodes, starting at any node, called the origin, and ending at the node responsible for the

information requested, called the destination. In other words, the request will be forwarded through several nodes until it

finds the destination node [12].

To improve search efficiency, different works promote the replication of the information requested in some nodes of

the network, whether in successor nodes or in nodes that are part of the path traveled by the request, assuming that searches

converge on them. In this sense, by replicating the information in the proximity to the destination, the path traveled is

reduced, allowing it to be found faster [13].

Although replication in the proximity to the destination is used to improve search efficiency, how close to the

destination should the information be replicated to improve its recovery? Moreover, is it still possible to improve search

efficiency if the replication is not that close? Besides, does the size of the network influence the recovery efficiency?

The motivation for answering these questions is to understand where to replicate and if in these locations it is possible to

Copyright ©2024 Vladimir Rocha, et al.
DOI: https://doi.org/10.37256/cnc.2220244753
This is an open-access article distributed under a CC BY license
(Creative Commons Attribution 4.0 International License)
https://creativecommons.org/licenses/by/4.0/

Volume 2 Issue 2|2024| 59 Computer Networks and Communications

https://ojs.wiserpub.com/index.php/CNC
https://ojs.wiserpub.com/index.php/CNC
https://www.wiserpub.com/
https://orcid.org/0000-0002-0183-2787
https://orcid.org/0000-0003-1231-6953
https://doi.org/10.37256/cnc.2220244753
https://creativecommons.org/licenses/by/4.0/

improve search efficiency, which is not covered by previous researches that use the proximity word, but without defining

and measuring it. To answer the questions mentioned above, in this work, we examine the paths traversed by the searches

(creating a tree of paths), develop a formula for convergence for different proximities, and calculate its value for different

network sizes.

The contributions of our work are:

(i) To validate the replication of previous research works;

(ii) To develop a convergence formula for the search paths;

(iii) To know the exact convergence of the nodes, enabling a more insightful replication;

(iv) To show that it is possible to replicate in nodes that were not considered in previous researches, supporting the

replication of the information requested;

(v) To test the convergence in large networks.

The article is structured as follows: Section 2 details the Chord Distributed Hash Table, illustrating the process of

inserting and searching for information. Section 3 examines previous research on convergence and replication. Section

4 introduces the tree of paths and the convergence formula utilized in this study. Section 5 outlines the experiments,

results, and analyzes convergence across various network sizes. Lastly, Section 6 discusses conclusions and future research

directions.

2. The Chord Distributed Hash Table

ADistributed Hash Table (DHT) is a structure that allows it to perform the functions of a normal hash table, but in a

distributed manner. Thus, like the normal hash table, the DHT basically has two functions: get and put. In the first one, the

key is searched to obtain the value associated with it (that was stored in the structure). In the second one, a key-value pair

is stored in the structure. However, in the DHT, these functionalities are carried out in a distributed and efficient manner

among the nodes belonging to the network [14].

Chord is a DHT implementation composed of n logically connected nodes forming a ring-shaped overlay network

and ordered in ascending order by identifiers. In Chord, a node q has: a unique identifier q.ID; pointers to its predecessor p

and successor s; and is responsible for storing key-value pairs, whose key transformed into an identifier corresponds to the

values that are between p.ID+1 and q.ID [15]. Figure 1 shows an example of a Chord network with 8 nodes, in which the

node q has ID = 4, with the predecessor p with ID = 0 and the successor s with ID = 13. In addition, it is responsible for

storing identifiers from 1 to 4.

Besides the predecessor and successor, each node has pointers to other nodes in the ring. These pointers are stored in

a vector called fingertable. Each position i of the node vector with identifier ID is calculated by the formula fingertable[i]

= ID + 2i, which points to the node whose identifier succeeds the calculated value [16]. In Figure 1 the fingertable of the

node q is shown with their respective pointers.

The process to search for a key in Chord (i.e., the get function) is as follows. Some node in the ring must receive the

search request—any node can receive the request. When the node q receives a request req, it will transform the key into an

identifier k (using a hash function). For example, a string key ‘Ubuntu.iso’ is transformed into an identifier k using the

MD5 hash function, i.e., k = MD5(‘Ubuntu.iso’). Then, the node q will search in its fingertable for the node t nearest to k,

forwarding the request req to node t. This forwarding will go through other nodes, forming a path, until it reaches the

one responsible for storing the identifier k. In this context, the search will only need O(log2 n) forwards to find the node

responsible for the key. Note that in each request forwarding, there is an exponential advance in the search space, very

similar to binary search in an array [17]. To understand the logarithmic amount of forwards, consider a fingertable with

size m, such that a node ID ∈ [0, 2m), and two nodes: s, the source, and d, the destination. By the fingertable formula, in s’

fingertable must be a node c such that c.ID− d.ID ≤ 2m−1 in which the 1 in the exponent denotes the first forwarding. After

Computer Networks and Communications 60 | Vladimir Rocha, et al.

log n forwardings, we get 2m − log n = 2m/n, which represents the distance from the last forwarding node to the destination

node d. At this distance, since IDs are uniformly assigned in the ring, there could be one node, in expectation, giving, in

total, log2 n + 1 or O(log2 n) forwardings to reach the destination node [12]. Figure 2 shows the search path for ID = 60

from the source node q, where each arrow corresponds to a search request that was forwarded.

The process to insert a pair key-value in Chord (i.e., the put function) is as follows. A node qmust receive the insertion

request req and transform the key into an identifier k (using a hash function) in the same way as in the search. Then, node

q uses the search process mentioned above to find the destination node d responsible for k and executes the insertion of k

(with its corresponding value) in d. Note that, as the insertion uses the search process, it will need O(log2 n) forwardings

as well.

Figure 1. Chord with 8 nodes

Figure 2. Searching for ID = 60 from node q

Volume 2 Issue 2|2024| 61 Computer Networks and Communications

3. Related work

In this section, we present the related works, which have been divided into two parts. In the first part, we analyze the

works that assume the existence of path convergence and focus on information replication to improve search efficiency. In

the second part, we analyze the works that use convergence to shorten the path, consequently improving the efficiency of

the search for information.

3.1 Information replicas

In [18], the authors replicate the information in some nodes of the fingertable responsible for the key requested. The

intention is to distribute the information among the network nodes evenly, given that these nodes are at different distances

from the destination node (by the fingertable’ exponential formula), and therefore in different places on the ring. The

experiments were carried out on small networks of 512 to 4096 nodes, in dynamic scenarios where the nodes could die,

and replicating the information in 12 nodes. As a result, a maximum decrease from 37 to 25 request forwards was obtained

when the node failures were very high.

In [19], the authors use replication in a highly dynamic vehicular network scenario. In this scenario, each vehicle

corresponds to a DHT node, which can enter or leave the network at any time, generating continuous changes in the paths

used to find the information requested. The information replicated is carried out similarly to the previous work, but (a) it is

replicated in all the nodes of the fingertable of the responsible node (not just in some of them); and (b) it considers the

physical distance between the nodes (nodes closer geographically create links among them). The experiments were carried

out on small networks of 100 to 500 nodes, reducing the forwarding of the search for information from 30 to 17.

In [20], the authors extend the fingertable by adding the nodes that have the replica of the searched information.

The replication is carried out in two manners. In the first one, as soon as the information is stored, it is replicated in the

predecessors and successors of the responsible node. In the second one, the information can be replicated in the node that

made the search request assuming that other searches will converge on them. The experiments were carried out on small

networks of 50 to 500 nodes, with a replication probability of 70%, reducing the forwarding of the search for information

from 6.25 to 2.5.

3.2 Path convergence

In [21], the authors mention that the paths traveled by searches for the same key, from different origin nodes, will

intersect in the proximity of the node responsible for the key. According to the authors, this occurs because, in the proximity

of the destination, few nodes are part of the paths leading to the node responsible for the key. With this, it is possible

to replicate the information near the destination to decrease the request forwarding and find the information faster. The

experiments were carried out on a small network of 1000 nodes, reducing the forwarding of the search for information

from 5.7 to 3.2 using replication.

In [22], the authors explore convergence by dividing the network into two disjoint sets of nodes (called domains)

and measuring the exit points. The exit points are those nodes from one domain whose next request forwarding arrives at

a node from the other domain. In the work, it is assumed that the fewer exit points, the greater the convergence. In the

experiments carried out, a medium network was created with 65,536 nodes and with domains of different sizes (small,

medium, and large). The results showed that convergence is greater in small and large domain sizes, and smaller in medium

domain sizes. In addition, it was also found that by choosing the closest node in terms of latency (in the path), the time to

find the information is reduced.

Finally, in [23], the authors consider the convergence of two or more search paths at a common node, close to the

nodes that originated the searches. In the work, two strategies were analyzed, both aiming to reduce the path to find the

information. The first strategy was to replicate in nodes with high convergence, and the second strategy was to replicate

in any node that receives the forwarding. In the experiments carried out, a medium network was created with 16,000

nodes and measured how many replicas are necessary for the strategies to behave in the same way. From the results, it

Computer Networks and Communications 62 | Vladimir Rocha, et al.

was obtained that the second strategy needs five times more replicas to reach the same amount of forwarding as the first

strategy and that, and even then, the first strategy has slightly smaller paths than the second.

It is important to mention that, both for the cited works that focus on replication and for those that use path convergence,

the main differential of the work proposed here is that convergence is analyzed for all nodes of the paths (not only in

some of them), generating a tree of paths, which will allow for replication in nodes that were not considered in the cited

works. Also, unlike previous works that only mention a general convergence statement, with the tree, it is possible to know

the exact convergence at each level, allowing to perform a more informative replication. Additionally, the convergence

was analyzed in large networks, as well as small and medium ones. Considering the studies above, Table 1 compiles the

replication key aspects and the differences from our work.

Table 1. Synthesis of literature works and main differences

Reference Brief Description Difference with Previous Research

[18]
Replicate information at different positions of the

ring, using the destination fingertable. Tested in small
networks of 4096 nodes.

• Develop a convergence formula and measure the convergence
for different proximity values, spanning all nodes in the search
path.

[19]
Replicate information on all nodes stored in the

destination’s fingertable. Tested in small networks of
500 nodes.

• Test the convergence with different small (up to 5000 nodes) and
medium (up to 100,000 nodes) size networks.

[20]
Replicate information in the proximity (predecessor
and successor) of the destination node. Tested in

small networks of 500 nodes.
• Test the convergence in large networks (up to 1,000,000 nodes).

[21]
Replicate information in the proximity of the
destination node. Tested in small networks of

1000 nodes.
• Analyze the replication for different proximity values.

[22]
Replicate information in exit points of a group closer
to the destination node. Tested in medium networks

of 65,536 nodes.

• Test the convergence in small and large networks (up to
1,000,000 nodes).

[23]
Replicate information close to the origin node. Tested

in medium networks of 16,000 nodes.
• Test the convergence in medium and large networks (up to
1,000,000 nodes).

4. Path convergence in Chord

As mentioned in the Introduction, to improve search efficiency, the nodes where the information will be replicated

should be those that allow reducing the path traveled by the search (through requests forwarding) until finding the

information. A path consist of the origin node, all nodes that forward the search request, and the destination node.

As shown in related works, one alternative is to use replication in the nodes belonging to the path traveled by the

requests. In this sense, considering that: different searches are requested for the same information; they are coming from

different origins; and they have at least one common node c in the path, preferably before reaching the destination, then,

the replication would be in c, thus reducing the size of the path, and consequently improving efficiency.

In this context, to understand the proposed concept of convergence, consider several search requests, made by different

nodes of the network, looking for the same identifier k. Note that the paths traveled by the requests will generate a tree

with node k as the root (given that it is the destination node for all the search requests). In this tree, the vertices represent

the Chord nodes through which the search request was forwarded.

In the context of the tree mentioned above, consider that:

• The root of the tree corresponds to level zero;

• Nx is the node with identifier x. present at some level i;

• sub_tree(Nx) is the number of nodes on the subtree whose root is Nx;

• descendents(i) is number of nodes on all levels greater than i.

In this work, we define the convergence of node Nx that is present at level i as:

Volume 2 Issue 2|2024| 63 Computer Networks and Communications

convergence(Nx, i) =
sub_tree(Nx)

descendents(i)
(1)

Figure 3 shows an example of a tree whose root, at level zero, is node N12. At level i = 1 are nodes N10 and N11.

According to the definition: descendents(1) = 9, corresponding to nodes N1 to N9; sub_tree(N10) = 6, corresponding to

nodes N1 to N6 and sub_tree(N11) = 3, corresponding to nodes N7 to N9. The convergence of N10 will be sub_tree(N10)

÷ descendents(1) = 6 ÷ 9, and the convergence in N11 will be sub_tree(N11) ÷ descendents(1) = 3 ÷ 9. Note that the

convergence at the root will be 1.

Figure 3. Convergence at level i = 1 of the tree

From the tree of paths created by the request forwarding of searches, it is possible to calculate and analyze the

convergences at each level of the tree. With this, it will be possible to understand at which levels (and in which nodes of

these levels) the information could be replicated to improve search efficiency.

It is important to note that, for this work, we assume the tree has static paths, meaning they do not change with

dynamic behaviors, such as adding or removing nodes. Additionally, the destination node is the same for all nodes, which

avoids having different destination nodes and, consequently, different trees.

5. Experimental evaluation

The experiments are carried out via simulation, considering a network size composed of n nodes. The calculated results

have 95% confidence intervals within 5% of the mentioned values, for a total of 30 simulation runs. In the simulation, each

Chord node makes a search request for the same identifier k (i.e., all searches will arrive at the same destination node),

initially obtained randomly.

5.1 Metrics

Consider a search tree with level i = 0 as the root and height h (i.e., the greatest distance between the root and any

node). For each level i of the tree, the following metrics were obtained:

• Conv1 corresponds to the value of the greatest convergence at level i. In other words, how much the most important

node at this level contributes to convergence;

• Conv5 corresponds to the average of the five largest convergence values at level i. In other words, how much the 5

most important nodes in this level contribute to convergence;

Computer Networks and Communications 64 | Vladimir Rocha, et al.

• Conv10 corresponds to the average of the ten largest convergence values at level i. In other words, how much the 10

most important nodes in this level contribute to convergence.

With these metrics will be possible to understand how many searches originating at levels greater than i converge at 1,

5, and 10 nodes at level i, respectively. In any metric, a high value represents high convergence. A low value represents

low convergence.

5.2 Results

In the graphs of the following figures, it is possible to observe the averages of the three metrics mentioned above (i.e.,

Conv1, Conv5, and Conv10). In each graph, the X-axis represents the level from the destination node. In other words,

how many request forwards are left to reach the destination node, disregarding the level zero that only has the destination

(consequently, with 100% convergence). The Y-axis represents the convergence at the level, in percentage, for each of the

three metrics mentioned above.

Figure 4 shows the metrics for a small network size of 1000 nodes. In this figure, it is possible to observe that, for one

extreme of the tree (i.e., level 1), the most important node, Conv1, has a convergence of 69%, the 5 most important nodes,

Conv5, have a convergence of 98%, and the 10 most important nodes, Conv10, have a convergence of 100%. For the other

extreme of the tree (i.e., its height or level 10), Conv1 has a convergence of 54%, and both Conv5 and Conv10 have a

convergence of 100%. Approximately in the middle of the tree (i.e., level 6), which has the lowest level of convergence,

Conv1 has a convergence of 15%, Conv5 has a convergence of 40%, and Conv10 has a convergence of 54%. The data

was consolidated in Table 2, where the column m corresponds to the level with the lowest convergence and the column h

corresponds to the height of the tree.

Figure 4. Convergence in a small network with 1000 nodes

Table 2. Convergence values for a network with 1000 nodes

Metrics Level 1 Level m Level h

Conv1 69% 15% 54%
Conv5 98% 40% 100%
Conv10 100% 58% 100%

Volume 2 Issue 2|2024| 65 Computer Networks and Communications

Considering the difference among the curves of the three metrics, it is possible to observe that the distance between

them, given a specific level, remains approximately the same (if the extreme levels are not considered—i.e., level 1 and

level h, the height of the tree) and the distance is more noticeable from the middle of the tree.

Figures 4–10 show the tree metrics for network of sizes with 1000, 5000 (small networks), 10,000, 50,000, 100,000

(medium networks), 500,000 and 1,000,000 nodes (large networks), respectively. Tables 2–8 present the consolidation

of the data obtained in the metrics for the corresponding network sizes mentioned above. It should be noted that the

distance between the curves has the same characteristic mentioned for the 1000 node network, but with smaller values of

convergence.

Figure 5. Convergence in a small network with 5000 nodes

Table 3. Convergence values for a network with 5000 nodes

Metrics Level 1 Level m Level h

Conv1 65% 8% 50%
Conv5 98% 20% 100%
Conv10 100% 30% 100%

Table 4. Convergence values for a network with 10,000 nodes

Metrics Level 1 Level m Level h

Conv1 63% 4% 50%
Conv5 98% 13% 100%
Conv10 100% 20% 100%

Table 5. Convergence values for a network with 50,000 nodes

Metrics Level 1 Level m Level h

Conv1 65% 3% 46%
Conv5 98% 8% 97%
Conv10 100% 10% 100%

Computer Networks and Communications 66 | Vladimir Rocha, et al.

Figure 6. Convergence in a medium network with 10,000 nodes

Table 6. Convergence values for a network with 100,000 nodes

Metrics Level 1 Level m Level h

Conv1 67% 1% 24%
Conv5 98% 2% 95%
Conv10 100% 4% 100%

Table 7. Convergence values for a network with 500,000 nodes

Metrics Level 1 Level m Level h

Conv1 67% 1% 45%
Conv5 98% 2% 95%
Conv10 100% 3% 100%

Figure 7. Convergence in a medium network with 50,000 nodes

Volume 2 Issue 2|2024| 67 Computer Networks and Communications

Figure 8. Convergence in a medium network with 100,000 nodes

5.3 Discussion

The figures presented allow for the visualization of convergence values for networks of different sizes. This aids in

determining the information replication according to the threshold necessary to reduce the search path and, consequently,

improve its efficiency. For example, in a small network of 5000 nodes (Figure 5), 20% of the requests could be reduced if

the information is replicated in levels 1 to 3 (near the root) or in levels 11 and 12 (near the leaf). A similar scenario applies

to a medium network of 50,000 nodes (Figure 7). However, in contrast, for a large network of 500,000 nodes (Figure 9), to

reach the same threshold of 20% the replication must be done just in levels 1 to 3.

Furthermore, from the figures shown, it is also possible to observe that the values of the metrics form similar curves

(in a U-shape), although with different values. Each curve can be separated into three zones as the tree levels increase:

decreasing zone, approximately horizontal zone, and increasing zone. Table 9 consolidates the mapping between the

zones and the tree levels. For example, in a network with 1000 nodes, the decreasing zone corresponds to levels 1–3, the

approximately horizontal zone corresponds to levels 4–6, and the increasing zone corresponds to levels 7–10.

Figure 9. Convergence in a large network with 500,000 nodes

Computer Networks and Communications 68 | Vladimir Rocha, et al.

Figure 10. Convergence in a large network with 1,000,000 nodes

Table 8. Convergence values for a network with 1,000,000 nodes

Metrics Level 1 Level m Level h

Conv1 65% 1% 20%
Conv5 98% 2% 73%
Conv10 100% 3% 100%

Table 9. Mapping zones to tree levels

Nodes Size Decreasing Zone Horizontal Zone Increasing Zone

1000 Small Levels 1–3 4–6 7–10
5000 Small Levels 1–4 5–8 9–12
10,000 Medium Levels 1–5 6–9 10–14
50,000 Medium Levels 1–6 7–11 12–15
100,000 Medium Levels 1–7 8–12 13–17
500,000 Large Levels 1–7 8–15 16–20
1,000,000 Large Levels 1–7 8–16 17–21

The emergence of these three zones occurs due to the tree format generated by the search paths. In the tree, the root

(i.e., the destination node) has limited amount of nodes in its subsequent level, which gives higher convergence values in

the decreasing zone. Note that this behavior is similar closer to leaf nodes, representing the increasing zone, which also

have a limited amount of nodes in their subsequent level. The horizontal zone occurs because the node is near the middle

of the tree, allowing several paths both to the destination and from the leaves, resulting in lower convergence values in this

zone. In the following, we analyze the convergence in these three zones which manifest independently of the network size.

Convergence in the decreasing zone. In the decreasing zone, it is possible to observe a high convergence, e.g., levels

1–3 of Figure 4 or levels 1–7 of Figure 10. This occurs because the search requests that converge in the decreasing zone

also converge with other search requests in the horizontal zone, which, in turn, also converge with other search requests in

the increasing zone. In this context, as there are few nodes at the levels of this zone (given that they are very close to the

root), the subtrees of these nodes are large compared to the total number of nodes at the higher levels, raising the value of

convergence for each node at the levels of this zone.

According to the values presented and following the results of previous research, it is possible to replicate an

information in this zone to improve efficiency by reducing the path to the node responsible for the information. Note that,

Volume 2 Issue 2|2024| 69 Computer Networks and Communications

differently from previous works that just mention a general convergence statement, now it is possible to know the exact

convergence at each level of the tree.

Convergence in the increasing zone. In the increasing zone, it is also possible to observe a high convergence, e.g.,

levels 7–10 of Figure 4 or levels 17–21 of Figure 10. Unlike the rationale mentioned above, this occurs because there are

few nodes in this zone (given that they are very close to the leaves of the tree). In this sense, the few nodes at the levels of

this zone have few descendants, consequently, increasing the value of the convergence of these nodes.

According to the values presented, in this zone, it is also possible to replicate information to improve search efficiency.

It should be noted that the value of this zone is less than that of the decreasing zone for large networks.

Convergence in the horizontal zone. In the approximately horizontal zone, it is possible to observe a low convergence,

e.g., levels 4–6 of Figure 4 or levels 8–16 of Figure 10. This happens because in this zone there are many nodes at a certain

level, each with many descendants. As the result, the subtrees are small compared to the total number of nodes at higher

levels, which decreases the convergence value for each node in this zone.

According to the values presented, in this zone, the information could be replicated in small networks, but should

not be replicated in medium and large networks, as it would be necessary to replicate in many nodes to improve search

efficiency

Convergence by the network size. According to the figures, it is possible to notice that the convergence in the

different zones decreases when the number of nodes that form the network increases. This occurs because, as the network

size increases, so does the number of nodes at each level, which increases the denominator in the convergence formula,

consequently decreasing the convergence value. However, for medium and large networks (e.g., 500,000 and 1,000,000

nodes), the difference in values is not as pronounced in the decreasing and horizontal zones as in small networks (e.g.,

1000 and 5000 nodes).

6. Conclusions and future work

The DHT Chord is a distributed structure widely used in various contexts to perform efficient searches for information.

To improve search efficiency, researchers often utilize replication in the nodes closer to the one responsible for the

information yet they do not analyze the required proximity of these nodes. To measure this proximity, this article elaborated

a convergence formula for the DHT Chord and analyzed its values for different network sizes. The results revealed three

distinct zones: decreasing, horizontal, and increasing. The decreasing zone is characterized by high convergence values,

as nodes are closer to the destination node and there are few paths to reach it. The horizontal zone is characterized by

low convergence values, attributed to the multitude of paths leading to the destination node. The increasing zone is

characterized by high convergence values, as there are few path originating from the origin node. Through the simulations,

it was observed that in the first and last zones, regardless of the network size, it is possible to replicate the information, and

in small networks, it is possible to replicate in the horizontal zone. In addition, it was possible to verify that convergence

decreases as the network size increases, but the difference is negligible when comparing just small, medium, or large sizes.

As future work and considering the limitations of this article, we point out the insertion of failures in the paths and

searches, as well as exploring node mobility. Finally, there are other DHTs, such as Pastry and Kademlia that, like Chord,

also create search paths when requesting specific information. In this context, we conjecture that the convergence formula

may be applied and that the three zones will be formed, too.

Conflict of interest

There is no conflict of interest for this study.

Computer Networks and Communications 70 | Vladimir Rocha, et al.

References

[1] A. Bhattacharya, Z. Yang, and S. Zhang, “Temporal-DHT and Its Application in P2P-VoD Systems,” in Proc. 2010

IEEE Int. Symp. Multimedia, Dec. 2010, pp. 81–88, https://doi.org/10.1109/ISM.2010.21.

[2] Y. Hassanzadeh-Nazarabadi, A. Kupçu, and O. Ozkasap, “Decentralized Utility- and Locality-Aware Replication

for Heterogeneous DHT-Based P2P Cloud Storage Systems,” IEEE Trans. Parallel Distrib. Syst., vol. 31, no. 5, pp.

1183–1193, May 2020, https://doi.org/10.1109/TPDS.2019.2960018.

[3] V. Rocha andA.A. Franco Brandão, “A scalable multiagent architecture for monitoring IoT devices,” J. Netw. Comput.

Appl., vol. 139, pp. 1–14, Aug. 2019, https://doi.org/10.1016/j.jnca.2019.04.017.

[4] Y. Hassanzadeh-Nazarabadi, A. Kupçu, and O. Ozkasap, “LightChain: Scalable DHT-Based Blockchain,” IEEE

Trans. Parallel Distrib. Syst., vol. 32, no. 10, pp. 2582–2593, Oct. 2021, https://doi.org/10.1109/TPDS.2021.3071176.

[5] Z. Nie, J. Li, F. Duan, and Y. Lu, “A collaborative ledger storing model for lightweight blockchains based on Chord

Ring,” J. Supercomputing, vol. 80, no. 4, pp. 5593–5615, Mar. 2024.

[6] H. Zhong and H. Dai, “A Cooperative Distributed File System Based on DHTAlgorithm,” in Proc. 2022 Int. Conf.

Wireless Commun., Networking Appl. (WCNA 2022), Singapore, 2023, pp. 390–397, Springer Nature Singapore,

ISBN 978-981-99-3951-0.

[7] M. Ghaleb, M. Mustafa, and F. Azzedin, “Towards Scalable and Efficient Architecture for Modeling Trust in IoT

Environments,” Sensors, vol. 21, no. 9, 2986, 2021, https://doi.org/10.3390/s21092986.

[8] Y. Hassanzadeh-Nazarabadi, S. Taheri-Boshrooyeh, and O. Ozkasap, “DHT-based Edge and Fog Computing Systems:

Infrastructures and Applications,” in Proc. IEEE Conf. Comput. Commun. Workshops (INFOCOM WKSHPS), Apr.

2022, pp. 1–6, https://doi.org/10.1109/INFOCOMWKSHPS54753.2022.9798218.

[9] S. Zahid, K. Ullah, A. Waheed, S. Basar, M. Zareei, and R. R. Biswal, “Fault Tolerant DHT-Based Routing in

MANET,” Sensors, vol. 22, no. 11, pp. 1–18, Jun. 2022, https://doi.org/10.3390/s22114280.

[10] J. Li, C. Li, Z. Fang, H. Wang, and Y. Wu, “Optimal layer division for low latency in DHT-based hierarchical P2P

network,” Int. J. Netw. Manag., vol. 26, no. 2, pp. 95–110, Mar. 2016, https://doi.org/10.1002/nem.1922.

[11] H. S. Nguyen, “Topology Optimization for Heterogeneous DHT-Based Multicast,” in Proc. G. Kecskemeti, Appl.

Integr. Tech. Methods Distrib. Syst. Technol., 2019, pp. 134–155.

[12] I. Stoica, et al., “Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applications,” in Proc. 2001 SIGCOMM,

Aug. 2001, pp. 149–160, https://doi.org/10.1145/383059.383071.

[13] S. Cherbal, A. Boukerram, and A. Boubetra, “RepMChord: A novel replication approach for mobile Chord with

reduced traffic overhead,” Int. J. Commun. Syst., vol. 30, no. 14, e3285, 2017, https://doi.org/10.1002/dac.3285.

[14] H. Zhang, Y. Wen, H. Xie, N. Yu, Distributed Hash Table: Theory, Platforms and Applications. New York, NY, USA:

Springer, 2013.

[15] P. Zave, “Reasoning about Identifier Spaces: How to Make Chord Correct,” IEEE Trans. Software Eng., vol. 43, no.

12, pp. 1144–1156, Oct. 2016, https://doi.org/10.1109/TSE.2017.2655056.

[16] F. Dabek, et al., “Building peer-to-peer systems with Chord, a distributed lookup service,” in Proc. Eighth Workshop

on Hot Topics in Operating Systems, 2001, pp. 81–86, https://doi.org/10.1109/HOTOS.2001.990065.

[17] A. Naghizadeh and A. Shahbahrami, “Binary search routing equivalent (BSRE): A circular design for structured P2P

networks,” Trans. Emerg. Telecommun. Technol., vol. 28, no. 4, e3012, 2017, https://doi.org/10.1002/ett.3012.

[18] D. Nguyen, N. Hoang, B. M. Nguyen, and V. Tran, “PSPChord—ANovel Fault Tolerance Approach for P2P Overlay

Network,” in Proc. Smart Comput. Commun.: 3rd Int. Conf. SmartCom 2018, Tokyo, Japan, Dec. 10–12, 2018, pp.

386–396, ISBN 978-3-030-05755-8.

[19] A. Guezzi, A. Lakas, A. Korichi, and S. Cherbal, “Peer to Peer Approach based Replica and Locality Awareness to

Manage and Disseminate Data in Vehicular Ad Hoc Networks,” Int. J. Comput. Netw. Commun., vol. 12, pp. 65–81,

Nov. 2020, https://doi.org/10.5121/ijcnc.2020.12605.

[20] S. K. Singh, C. Kumar, and P. Nath, “Resource-Cardinality Based Scheme to Reduce Resource Lookup Cost in

Structured P2P Networks,” Wirel. Pers. Commun., vol. 125, no. 4, pp. 3351–3377, Aug. 2022, ISSN 0929-6212,

https://doi.org/10.1007/s11277-022-09714-x.

Volume 2 Issue 2|2024| 71 Computer Networks and Communications

[21] F. Dabek, M. Kaashoek, D. Karger, R. Morris, and I. Stoica, “Wide-area cooperative storage with CFS,” ACM SIGOPS

Oper. Syst. Rev., vol. 35, no. 5, 202–215, Sep. 2001, https://doi.org/10.1145/502034.502054.

[22] K. P. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, and I. Stoica, “The impact of DHT routing

geometry on resilience and proximity,” in Proc. 2003 Conf. Appl. Technol. Archit. Protocols Comput. Commun., Oct.

2003, pp. 381–394, https://doi.org/10.1145/863955.863998.

[23] M. Artigas, P. López, and A. Skarmeta, “On the Relationship between Caching and Routing in DHTs,” in Proc.

2007 IEEE/WIC/ACM Int. Conf. Web Intell. Intell. Agent Technol.—Workshops, Dec. 2007, pp. 415–418, ISBN

0-7695-3028-1, https://doi.org/10.1109/WI-I.

Computer Networks and Communications 72 | Vladimir Rocha, et al.

	Introduction
	The Chord Distributed Hash Table
	Related work
	Information replicas
	Path convergence

	Path convergence in Chord
	Experimental evaluation
	Metrics
	Results
	Discussion

	Conclusions and future work

